Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

AI-BASED AUTOMATED VARUS/VALGUS ALIGNMENT MEASUREMENT IN STANDARD KNEE RADIOGRAPHS

The European Orthopaedic Research Society (EORS) 32nd Annual Meeting, Aalborg, Denmark, 18–20 September 2024.



Abstract

Introduction

Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs.

Method

We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the proximal tibia/fibula with points to capture the knee joint (including implants in the post-operative images). This included point positions used to permit calculation of the anatomical tibiofemoral angle. We defined varus/valgus as negative/positive deviations from zero. Ground truth measurements were obtained from the manually placed points. We used the training dataset to develop a machine-learning-based automatic system to locate the point positions and derive the automatic measurements. Agreement between the automatic and manual measurements for the test dataset was assessed by intra-class correlation coefficient (ICC), mean absolute difference (MAD) and Bland-Altman analysis.

Result

Analysing the agreement between the manual and automated measurements, ICC values were excellent pre-/post-operatively (0.96, CI: 0.94-0.96) / (0.95, CI: 0.95-0.96). Pre-/post-operative MAD values were 1.3°±1.4°SD / 0.7°±0.6°SD. The Bland-Altman analysis showed a pre-/post-operative mean difference (bias) of 0.3°±1.9°SD/-0.02°±0.9°SD, with pre-/post-operative 95% limits of agreement of ±3.7°/±1.8°, respectively.

Conclusion

The developed machine-learning-based system demonstrates high accuracy and reliability in automatically measuring anatomical varus/valgus alignment in pre-operative and post-operative knee radiographs. It provides a promising approach for automating the measurement of anatomical alignment without the need for long-leg radiographs.

Acknowledgements

This research was funded by the Wellcome Trust [223267/Z/21/Z].


Corresponding author: Claudia Lindner