Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a
Advances in total hip and knee replacement technologies have heretofore been largely driven by corporate marketing hype with each seeming advancement accompanied by a cost increase often out in front of peer-reviewed reports documenting their efficacy or not. As example, consider the growing use of ceramic femoral heads in primary total hip arthroplasty (THA). The question to consider is “Can an upcharge of $350 for a ceramic femoral head in primary THA be justified?” The answer to this question lies in an appreciation of whether the technology modifies the potential for costly revision arthroplasty procedures. Peer-Reviewed Laboratory & Clinical Review - According to the 2022 Australian National Joint Replacement Registry, the four leading causes of primary THA failure requiring revision are: 1.) infection, 2.) dislocation/instability, 3.) periprosthetic fracture and 4.) loosening, which constitute 87.5% of the reported reasons for revision. Focusing on these failure modes,
Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural assessment to examine material behaviour changes during edge loading. A dynamic deformable FE model, matching the experimental conditions, was created to simulate the stress strain environment within liners. Five liners were tested for 4Mc (million cycles) of standard loading (ISO14242:1) followed by 3Mc of edge loading with dynamic separation (ISO14242:4) in a
Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental
Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation. A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical inclination, 4mm mismatch, 70N swing phase load, and 100N/mm spring. Fixture mass was varied from 0.5-5kg, spring damping coefficient was varied from 0-2Ns/mm. They were changed independently, and in combination. Maximum separation values were relatively insensitive to changes in the mass, damping coefficient, or both. The sensitivity of peak plastic strain, to this range of inputs, was similar to changing the swing phase load from 70N to approximately 150N – 200N. Increasing the fixture mass and/or damping coefficient increased the peak plastic strain, with values from 0.15-0.19. Liner plastic deformation was sensitive to the spring damping and fixture mass, which may explain some of the differences in fatigue and deformation results in UHMWPE liners tested on different machines or with modified fixtures. These values should be described when reporting the results of ISO14242:4 testing. Acknowledgements Funded by EPSRC grant EP/N02480X/1; CAD supplied by DePuy Synthes.
A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade. Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.Aims
Methods
Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors. Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti12Mo6Zr2Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients.Aims
Methods
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
Abstract. Objectives. Dual mobility (DM) hip implants whereby the polyethylene liner is “free-floating” are being used increasingly clinically. The motion of the liner is not well understood and this may provide insight into failure mechanisms; however, there are no published methods on tracking liner motion while testing under clinically relevant conditions. The aim was to develop and evaluate a bespoke inertial tracking system for DM implants that could operate submerged in lubricant without line-of-sight and provide 3D orientation information. Methods. Trackers (n=5) adhered to DM liners were evaluated using a robotic arm and a six-degree of freedom anatomical
Aims. This study investigates head-neck taper corrosion with varying head size in a novel
Abstract. Objectives. The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro
Abstract. OBJECTIVES. Abnormal joint mechanics have been proposed as adversely affecting natural hip joint tribology, whereby increased stress on the articular cartilage from abnormal loading leads to joint degeneration. The aim of this project was to assess the damage caused by different loading conditions on the articular surfaces of the porcine hip joint in an experimental simulator. METHODS. Porcine hip joints were dissected and mounted in a single station
Abstract. Objectives. Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. A geometric model of a THR in situ was previously developed to predict impingement for different component orientations and joint motions of activities[2]. However, the consequence of any predicted impingement is unknown. This study aimed to develop an in-vitromethod to investigate the effects of different impingement scenarios. Method. A ProSim electro-mechanical single-station
Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the acetabular liner articulates against the neck of a femoral stem prosthesis. This may occur in vivo due to factors such as prostheses design, patient anatomical variation, and/or surgical malpositioning, and may be linked to joint instability, unexplained pain, and dislocation. The Standard Test Method for Impingement of Acetabular Prostheses, ASTM F2582 −14, may be used to evaluate acetabular component fatigue and deformation under repeated impingement conditions. It is worth noting that while femoral neck impingement is a clinical observation, relative motions and loading conditions used in ASTM F2582-14 do not replicate in vivo mechanisms. As written, ASTM F2582-14 covers failure mechanism assessment for acetabular liners of multiple designs, materials, and sizes. This study investigates differences observed in the implied and executed kinematics described in ASTM F2582-14 using a Prosim electromechanical
Introduction. Retrieval investigations have shown that cracking or rim failure of polyethylene hip liners may occur at the superior aspect of the liner, in the area that engages the locking ring of the shell. 1. Failure could occur due to acetabular liner/stem impingement and/or improper cup position. Other contributing factors may include high body mass index, patient activity and design characteristics such as polyethylene material properties, thin liner rim geometry and cup rim design. Currently no standard multi-axis simulator methodology exists for high angle rim fatigue testing, although tests have been developed using static uniaxial load frames. 2. The purpose of this study was to develop a technique to create a clinically relevant rim crack/fracture event on a 4-axis
Introduction. Acetabular component loosening has been one of the factors of revision of total hip arthroplasty (THA). Inadequate mechanical fixation or load transfer may contribute to this loosening process. Several reports showed the load transfer in the acetabulum by metal components. However, there is no report about the influence of the joint surface on the load transfer. We developed a novel acetabular cross-linked polyethylene (CLPE) liner with graft biocompatible phospholipid polymer(MPC) on the surface. The MPC polymer surface had high lubricity and low friction. We hypothesized the acetabular component with MPC polymer surface (MPC-CLPE) may reduce load transfer in the acetabulum compared to that of the by CLPE acetabular component without MPC. Methods. We fixed the three cement cup with MPC-CLPE (Group M; sample No.1–3) and three cement cup with CLPE (Group C; sample No.4–6) placed in the synthetic bone block with bone cement with a 0.10mm thick arc-shaped piezoresistive force sensor, which can measure the dynamic load transfer(Tekscan K-scan 4400; Boston). (Fig 1) A
Introduction. Adverse local tissue reactions (ALTR) can result in devastating soft tissue and osseous destruction, while potentially increasing the risk of concomitant periprosthetic joint infection (PJI). The aims of this study were to evaluate cobalt (Co) and chromium (Cr) levels generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs, and determine their impact on native tissues and PJI risk through evaluation of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis isolates. Methods. Ten
INTRODUCTION. There is great potential for the use of computational tools within the design and test cycle for joint replacement devices. The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment. The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions. METHODS. A series of models of a 36mm BIOLOX. ®. Delta THR bearing (DePuy Synthes, Leeds, UK) were generated to match an experimental simulator study which included a mediolateral spring to cause lateral head separation due to a simulated mediolateral component misalignment of 4mm. A static, rigid, frictionless model was implemented in Python (PyEL, runtime: ∼1m), and results were compared against 1) a critically damped dynamic, rigid, FE model (runtime: ∼10h), 2) a critically damped dynamic, rigid, FE model with friction (µ = 0.05) (runtime: ∼10h), and 3) kinematic experimental test data from a
Introduction and Aims. A recent submission to ASTM, WK28778 entitled “Standard test method for determination of friction torque and friction factor for hip implants using an anatomical motion hip simulator”, describes a proposal for determining the friction factor of hip implant devices. Determination of a friction factor in an implant bearing couple using a full kinematic walking cycle as described in ISO14242-1 may offer designers and engineers valuable input to improve wear characteristics, minimize torque and improve long term performance of hip implants. The aim of this study was to investigate differences in friction factors between two commercially available polyethylene materials using the procedure proposed. Methods. Two polyethylene acetabular liner material test groups were chosen for this study: commercially available Marathon. ®. (A) and AltrX. ®. (B). All liners were machined to current production specifications with an inner diameter of 36mm and an outer diameter of 56mm. Surface roughness (Ra) of the liner inner diameters were measured using contact profilometry in the head-liner contact area, before and after 3Mcyc of wear testing. Liners were soaked in bovine serum for 48 hours prior to testing. Friction factor measurements were taken per ASTM WK28778 prior to, and after wear testing using an external six degrees of freedom load cell (ATI Industrial Automation) and a reduced maximum vertical load of 1900N. Friction factor and wear testing was conducted in bovine serum (18mg/mL total protein concentration) supplemented with 0.056% sodium azide (preservative) and 5.56mM EDTA (calcium stabilizer) on a 12-station AMTI (Watertown, MA) ADL