Objectives. Modular dual-mobility (MDM) constructs are used to reduce dislocation rates after total hip replacement (THR). They combine the advantages of dual mobility with the option of supplementary acetabular screw fixation in complex revision surgery. However, there are concerns about adverse reaction to metal debris (ARMD) as a result of fretting corrosion between the metal liner and shell. Methods: The aim of this systematic review was to find and review all relevant studies to establish the outcomes and risks associated with MDM hip replacement. All articles on MDM THRs in the Medline, EMBASE, CINAHL, Cochrane Library, and Prospero databases were searched. A total of 14 articles were included. A random intercept logistic regression model was used for meta-analysis, giving estimated average values. Results: There were 6 cases of ARMD out of 1312 total. Estimated median incidence of ARMD from meta-analysis was 0.3% (95% CI 0.1 – 1.4%). Mean postoperative serum Cobalt was 0.81 μg/L (95% CI 0.33 – 1.29 μg/L), and Chromium was 0.77 μg/L (95% 0.35 – 1.19 μg/L), from 279 cases in 7 studies. Estimated median incidence of a serum cobalt or chromium ion measurement ≥1 μg/L was 7.9% (95% CI 3.5 – 16.8%), and ≥7 μg/L was 1.8% (95% CI 0.7 – 4.2%). Conclusions: ARMD is a rare but significant complication following total hip replacement using a MDM construct. Its incidence appears higher than that reported in non-metal-on-metal (MoM) hip replacements but lower than that of MoM hip replacements. MDM hip replacements are associated with raised serum
A concern of metal on metal hip resurfacing arthroplasty is long term exposure to Cobalt (Co) and Chromium (CR) wear debris from the bearing. This study compares whole blood
Systemic metal ion monitoring (Co;Cr) has proven to be a useful screening tool for implant performance to detect failure at an early stage in metal-on-metal hip arthroplasty. Several clinical studies have reported elevated
Introduction. Systemic metal ion monitoring (Co;Cr) has proven to be a useful screening tool for implant performance to detect failure at an early stage in metal-on-metal hip arthroplasty. Several clinical studies have reported elevated
The purpose of this randomized controlled trial was to evaluate serum
This study evaluates
A modular hemiarthroplasty has a Metal-on-Metal (MoM) taper-trunnion junction, which may lead to increased wear and Adverse-Reaction-to-Metal-Debris (ARMD). To-date no wear related issues have been described in the elderly and less active that receives a hemiarthroplasty. This study aims to determine in vivo wear (i.e. serum metal ion levels) in hip hemiarthroplasty, and identify factors associated with increased wear. This is a prospective, IRB approved, single-centre, cohort study of patients that received an uncemented, modular hemiarthroplasty of proven design for the treatment of hip fracture between 2013–2015. All, alive, patients at 12-months post-implantation with AMTS≥6 were invited to participate. Of the 125 eligible patients, 50 accepted the invitation and were reviewed, including clinical/radiological assessment, metal-ion ([Chromium (Cr) and Cobalt (Co)]) measurement and Oxford Hip Score (OHS). Acetabular erosion was graded (0–3: normal-protrusio).
Introduction. The use of metal-on-metal (MOM) and modular total hip arthroplasty (THA) is associated with potentially serious complications including elevated serum
Background. Modularity in total hip replacement(THR) enables precise recreation of native hip biomechanics. However, there have been concerns about raised
Summary. Management of metal on metal hip replacements can be accomplished with a simple algorithm including easily available
Introduction. Higher concentrations of
Introduction. Metal-on-metal (MoM) hip resurfacing arthroplasty is a popular choice for young and active patients. However, there are concerns recently regarding soft tissue masses or pseudotumours. The appearance of these complications is thought to be related blood
Background. Recent clinical studies have suggested that systemic
Background:. The Rejuvenate modular neck stem (Stryker, Mahwah, NJ) was recently recalled due to corrosion at the neck-stem junction. The purpose of this study was to investigate the rate of corrosion related failures and survivorship of this implant, and analyze the correlation between the implant and patient factors with serum
A randomised prospective study of four bearing surfaces in hip replacements is being conducted. The primary objective is to identify the best long term bearing surf ace clinically and radiographically, and
The search for the ideal bearing surface in Total Hip Replacements continues. The current ‘best’ materials are felt to be combinations of metal, ceramics and cross-linked polyethylene. Laboratory studies suggest that ceramic-on-metal articulations may provide distinct advantages. This study aims to identify the best bearing surface combination with the lowest adverse side effect profile. Between February 2004 and September 2007, 164 hips were replaced in 142 patients. 39% were male and 69% were female. The average age at surgery was 53 years (17-72 years). Follow-up assessment included radiographs, the Harris Hip Score and whole blood samples for
Metal-on-metal (MOM) hip arthroplasty, including resurfacing, has become the subject of recent research and debate. There is the perceived benefit of improved wear rates of bearing surfaces leading to superior durability and performance of these types of implant. An associated feature of MOM bearing surfaces is the generation of metal ions. These can have local and systemic cytotoxic effects. An immunoloigical response has been suggested, however, metal wear debris may cause direct damage to cellular DNA. Studies have shown that release of these ions is related to bearing diameter and component alignment. However, little is known about the relationship between
Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at modular taper connections of orthopedic implants can cause cell-mediated hypersensitivity reactions and might lead to aseptic loosening. Modularity is also commonly used in total shoulder replacement. However, little is known about metal ion exposure in patients following TSA. The objective of this study was to determine in-vivo blood
Introduction. Mechanical or corrosive failure of total knee arthroplasties (TKAs) is difficult to diagnose with current laboratory and radiographic analyses. As such, the goal of this study was to determine the mean blood concentration of cobalt, chromium, and titanium in a series of revision TKAs with mechanical implant failure and evaluate whether they facilitated identification of the underlying TKA failure mechanism. Methods. Serum cobalt, chromium, and titanium levels and synovial fluid characteristics were evaluated in 12 patients (13 aseptic revision TKAs) who underwent revision TKA between 2000 and 2020 at a single academic institution for mechanical implant failure or corrosion. Seventy-five percent were re-revisions of previously revised TKAs. Mean time to revision was 6 years. Modular metallic junctions were present in 100%. Twenty-five percent did not have another in situ total joint arthroplasty, and the remaining patients did not have a metal-on-metal articulation that could lead to elevation in serum