Abstract
A modular hemiarthroplasty has a Metal-on-Metal (MoM) taper-trunnion junction, which may lead to increased wear and Adverse-Reaction-to-Metal-Debris (ARMD). To-date no wear related issues have been described in the elderly and less active that receives a hemiarthroplasty. This study aims to determine in vivo wear (i.e. serum metal ion levels) in hip hemiarthroplasty, and identify factors associated with increased wear.
This is a prospective, IRB approved, single-centre, cohort study of patients that received an uncemented, modular hemiarthroplasty of proven design for the treatment of hip fracture between 2013–2015. All, alive, patients at 12-months post-implantation with AMTS≥6 were invited to participate. Of the 125 eligible patients, 50 accepted the invitation and were reviewed, including clinical/radiological assessment, metal-ion ([Chromium (Cr) and Cobalt (Co)]) measurement and Oxford Hip Score (OHS). Acetabular erosion was graded (0–3: normal-protrusio). Metal ion levels were considered high if ≥7ppb.
The mean OHS was 37 (SD: 10). No acetabular erosion was detected in 21, whilst the remaining had either grade-1 (n=21) or grade-2 (n=8). The median Cr and Co levels were 2.9 (SD:9) and 2.2 (SD:4) respectively. There were 8 cases (16%) with high ion levels. To-date only 2 of them has an ARMD lesion, and none have been revised. Patients with metal ion levels had similar pre-fall mobility, taper- and head- size and OHS to those with low metal ion levels (p=0.2–0.7) However, all hips with high metal ion levels had evidence of acetabular erosion (≥1).
Modular Hip hemiarthroplasties and their taper-trunnion junction are not immune to high wear and ARMD despite being implanted in a less active cohort. Acetabular erosion should alert clinicians, as it is associated with 20× increased-risk of taper wear, presumably due to the increased transmitted torque. Whether the use of modular hemiarthroplasties should remain is debatable.