Advertisement for orthosearch.org.uk
Results 1 - 20 of 547
Results per page:
Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims. Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release. Methods. A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks. Results. IA celecoxib resulted in greater mean PEA at ten weeks (69.6° (SD 4.6) vs 45.2° (SD 9.6), p = 0.004), 16 weeks (109.8° (SD 24.2) vs 60.9° (SD10.9), p = 0.004), and 24 weeks (101.0° (SD 8.0) vs 66.3° (SD 5.8), p = 0.004). Capsular stiffness was significantly reduced with IA celecoxib (2.72 Newton per cm (N·cm)/° (SD 1.04), p = 0.008), capsular release (2.41 N·cm/° (SD 0.80), p = 0.008), and capsular release combined with IA celecoxib (3.56 N·cm/° (SD 0.99), p = 0.018) relative to IA vehicle (6.09 N·cm/° (SD 1.64)). Conclusion. IA injections of a celecoxib led to significant improvements in passive extension angles, with reduced capsular stiffness, when administered to rabbit knees with established experimental contracture. Celecoxib was superior to surgical release, and the combination of celecoxib and a surgical release did not provide any additional value. Cite this article: Bone Joint Res 2022;11(1):32–39


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims. There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). Methods. The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites. Results. Following the addition of RIF to CaS/HA-VAN/GEN, adequate injectability and setting of the CaS/HA composites were noted. Sustained release of RIF above the minimum inhibitory concentrations of S. aureus was observed until study endpoint (day 35). Only combinations of CaS/HA-VAN/GEN + RIF exhibited antibacterial and antibiofilm effects yielding no viable bacteria at study endpoint. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with CaS/HA-VAN/GEN + RIF. Conclusion. Our in vitro results indicate that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for local delivery in clinically demanding bone infections. Cite this article: Bone Joint Res 2022;11(11):787–802


Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2


Bone & Joint Research
Vol. 6, Issue 9 | Pages 535 - 541
1 Sep 2017
Zan P Mol MO Yao JJ Fan L Yang D Liu K Li G

Objectives. The length of the tourniquet time during total knee arthroplasty (TKA) is related to the incidence of post-operative deep vein thrombosis (DVT). Our aim in this study was to investigate the effect of the early release of the tourniquet on the incidence of DVT in patients undergoing TKA. Methods. A total of 200 patients who underwent TKA between November 2015 and November 2016 were prospectively enrolled. The tourniquet was inflated before surgery and released immediately after the introduction of the components (early release group). This group was compared with a retrospective cohort of 200 primary TKAs, in which the tourniquet was released after the dressings had been applied (late release group). The presence of a DVT was detected using bilateral lower limb ultrasonography. Peri-operative clinical and follow-up data were collected for analysis. Results. The incidence of DVT in the early release group (9 of 196, 4.6%) was significantly lower compared with the late release group (24 of 200, 12%; odds ratio (OR) 0.35, 95% confidence interval (CI) 0.16 to 0.78, p = 0.008). The incidence of proximal DVT in the early release group (1 of 196 (0.5%)) was significantly lower than in the late release group (8 of 196, 4%; OR 0.12, 95% CI 0.02 to 0.99, p = 0.020). Although the mean intra-operative blood loss was higher in the early release group, the mean post-operative drainage, total blood loss, transfusion requirements and complications were not significantly different in the two groups. Conclusion. In patients who undergo TKA, releasing the tourniquet early is associated with a decreased incidence of DVT, without increasing the rate of complications. Cite this article: Bone Joint Res 2017;6:535–541


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Bone & Joint Research
Vol. 5, Issue 5 | Pages 175 - 177
1 May 2016
Rubin G Rinott M Wolovelsky A Rosenberg L Shoham Y Rozen N

Objectives. Injectable Bromelain Solution (IBS) is a modified investigational derivate of the medical grade bromelain-debriding pharmaceutical agent (NexoBrid) studied and approved for a rapid (four-hour single application), eschar-specific, deep burn debridement. We conducted an ex vivo study to determine the ability of IBS to dissolve-disrupt (enzymatic fasciotomy) Dupuytren’s cords. Materials and Methods. Specially prepared medical grade IBS was injected into fresh Dupuytren’s cords excised from patients undergoing surgical fasciectomy. These cords were tested by tension-loading them to failure with the Zwick 1445 (Zwick GmbH & Co. KG, Ulm, Germany) tension testing system. Results. We completed a pilot concept-validation study that proved the efficacy of IBS to induce enzymatic fasciotomy in ten cords compared with control in ten cords. We then completed a dosing study with an additional 71 cords injected with IBS in descending doses from 150 mg/cc to 0.8 mg/cc. The dosing study demonstrated that the minimal effective dose of 0.5 cc of 6.25 mg/cc to 5 mg/cc could achieve cord rupture in more than 80% of cases. Conclusions. These preliminary results indicate that IBS may be effective in enzymatic fasciotomy in Dupuytren’s contracture. Cite this article: Dr G. Rubin. A new bromelain-based enzyme for the release of Dupuytren’s contracture: Dupuytren’s enzymatic bromelain-based release. Bone Joint Res 2016;5:175–177. DOI: 10.1302/2046-3758.55.BJR-2016-0072


Bone & Joint Research
Vol. 1, Issue 4 | Pages 64 - 70
1 Apr 2012
Ritter MA Davis KE Meding JB Farris A

Objectives

The purpose of this study was to examine the effect of posterior cruciate ligament (PCL) retention, PCL recession, and PCL excision during cruciate-retaining total knee replacement.

Methods

A total of 3018 anatomic graduated component total knee replacements were examined; 1846 of these retained the PCL, 455 PCLs were partially recessed, and in 717 the PCL was completely excised from the back of the tibia.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 835 - 842
17 Nov 2022
Wiesli MG Livio F Achermann Y Gautier E Wahl P

Aims. There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO. 4. ) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO. 4. applied locally to treat ODAI. Methods. A total of 30 operations with ceftriaxone-loaded CaSO. 4. had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results. A total of 37 wound fluid concentrations from 16 operations performed in 14 patients were collected. The ceftriaxone concentrations remained approximately within a range of 100 to 200 mg/l up to three weeks. The median concentration was 108.9 mg/l (interquartile range 98.8 to 142.5) within the first ten days. No systemic adverse reactions were observed. Conclusion. Our study highlights new clinical data of locally administered ceftriaxone with CaSO. 4. as carrier material. The near-constant release of ceftriaxone from CaSO. 4. observed in vitro could be confirmed in vivo. The concentrations remained below known local toxicity thresholds. Cite this article: Bone Joint Res 2022;11(11):835–842


Bone & Joint Open
Vol. 5, Issue 9 | Pages 736 - 741
4 Sep 2024
Farr S Mataric T Kroyer B Barik S

Aims. The paediatric trigger thumb is a distinct clinical entity with unique anatomical abnormalities. The aim of this study was to present the long-term outcomes of A1 pulley release in idiopathic paediatric trigger thumbs based on established patient-reported outcome measures. Methods. This study was a cross-sectional, questionnaire-based study conducted at a tertiary care orthopaedic centre. All cases of idiopathic paediatric trigger thumbs which underwent A1 pulley release between 2004 and 2011 and had a minimum follow-up period of ten years were included in the study. The abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH) was administered as an online survey, and ipsi- and contralateral thumb motion was assessed. Results. A total of 67 patients completed the survey, of whom 63 (94%) had full interphalangeal joint extension or hyperextension. Severe metacarpophalangeal joint hyperextension (> 40°) was documented in 15 cases (22%). The median QuickDASH score was 0 (0 to 61), indicating excellent function at a median follow-up of 15 years (10 to 19). Overall satisfaction was high, with 56 patients (84%) reporting the maximal satisfaction score of 5. Among 37 patients who underwent surgery at age ≤ two years, 34 (92%) reported the largest satisfaction, whereas this was the case for 22 of 30 patients (73%) with surgery at aged > two years (p = 0.053). Notta’s nodule resolved in 49 patients (73%) at final follow-up. No residual triggering or revision surgery was observed. Conclusion. Surgical release of A1 pulley in paediatric trigger thumb is an acceptable procedure with excellent functional long-term outcomes. There was a trend towards higher satisfaction with earlier surgery among the patients. Cite this article: Bone Jt Open 2024;5(9):736–741


Bone & Joint Open
Vol. 5, Issue 9 | Pages 776 - 784
19 Sep 2024
Gao J Chai N Wang T Han Z Chen J Lin G Wu Y Bi L

Aims. In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance. Methods. A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively. Results. The contracture bands exhibited three typical types of shape – feather-like, striped, and mixed shapes – in MR images. Guided by MRN images, we designed minimally invasive approaches directed to each hip. These approaches resulted in a shortened incision length in each hip (0.3 cm (SD 0.1)), shorter surgery duration (25.3 minutes (SD 5.8)), less intraoperative bleeding (8.0 ml (SD 3.6)), and shorter time between the end of the operation and the patient’s first off-bed activity (17.2 hours (SD 2.0)) in each patient. Meanwhile, no serious postoperative complications occurred in all patients. The mean HOS-Sports subscale of patients increased from 71.0 (SD 5.3) to 94.83 (SD 4.24) at six months postoperatively (p < 0.001). The follow-up outcomes from all patients were “good” and “excellent”, based on objective assessments. Conclusion. Preoperative MRN analysis can be used to facilitate the determination of the relationship between contracture band and normal tissues. The minimally invasive surgical design via MRN can avoid nerve damage and improve the release effect. Cite this article: Bone Jt Open 2024;5(9):776–784


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology. Results. The Vm-MBs and Mp-MBs met the experimental requirements. The biofilm biomass in the Vm, Vm-MBs, UTMD, and Vm-MBs + UTMD groups was significantly lower than in the control group. MRSA and E. coli biofilms were most notably damaged in the Vm-MBs + UTMD group and Mp-MBs + UTMD group, respectively, with mean 21.55% (SD 0.08) and 19.73% (SD 1.25) remaining in the biofilm biomass. Vm-MBs + UTMD significantly reduced biofilm thickness and bacterial viability (p = 0.005 and p < 0.0001, respectively). Mp-MBs + UTMD could significantly decrease biofilm thickness and bacterial viability (allp < 0.001). Plate-counting method showed that the numbers of MRSA and E. coli bacterial colonies were significantly lower in the Vm-MBs + UTMD group and the Mp, Mp-MBs, UTMD, Mp-MBs + UTMD groups compared to the control group (p = 0.031). SEM showed that the morphology and structure of MRSA and E. coli were significantly damaged in the Vm-MBs + UTMD and Mp-MBs + UTMD groups. Conclusion. Vm-MBs or Mp-MBs combined with UTMD can effectively disrupt biofilms and protectively release antibiotics under ultrasound mediation, significantly reducing bacterial viability and improving the bactericidal effect of antibiotics. Cite this article: Bone Joint Res 2024;13(9):441–451


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims. This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA). Methods. Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model. Results. We discovered for the first time that MCL was substantially enriched in the synovial fluid of OA patients and promoted the release of inflammatory cytokines from FLSs through MCL phagocytosis. Through LC‒MS, ANT3 was identified and determined to be significantly upregulated in MCL and OA-FLSs, corresponding to impaired mitochondrial function and cell viability in OA-FLSs. Mitochondrial homeostasis was restored by ANT3 suppression, thereby alleviating synovial inflammation. Furthermore, elevated ANT3 levels inhibited ERK phosphorylation. Specifically, silencing ANT3 prevented inhibition of ERK phosphorylation and significantly reduced the elevation of reactive oxygen species (ROS) and JC1 membrane potential in MCL-induced synovial inflammation. Conclusion. This study revealed the important roles of MCL and ANT3 in FLS mitochondria. Silencing ANT3 rescued ERK phosphorylation, thereby restoring mitochondrial homeostasis in FLSs and alleviating synovitis and OA development, offering a potential target for treating synovitis and preventing early-stage OA. Cite this article: Bone Joint Res 2023;12(4):274–284


Bone & Joint Research
Vol. 13, Issue 4 | Pages 149 - 156
4 Apr 2024
Rajamäki A Lehtovirta L Niemeläinen M Reito A Parkkinen J Peräniemi S Vepsäläinen J Eskelinen A

Aims. Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium. Methods. Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia. Results. Median metal concentrations were as follows: cobalt: 0.69 μg/g (interquartile range (IQR) 0.10 to 6.10); chromium: 1.1 μg/g (IQR 0.27 to 4.10); and titanium: 1.6 μg/g (IQR 0.90 to 4.07). Moderate ALVAL scores were found in 30% (n = 39) of the revised knees. There were ten patients with an ALVAL score of 6 or more who were revised for suspected periprosthetic joint infection (PJI), aseptic loosening, or osteolysis. R2 varied between 0.269 and 0.369 for the ordinal regression models. The most important variables were model type, indication for revision, and cobalt and chromium in the ordinal regression models. Conclusion. We found that metal particles released from the knee prosthesis can accumulate in the periprosthetic tissues. Several patients revised for suspected culture-negative PJI had features of an ALVAL reaction, which is a novel finding. Therefore, ALVAL-type reactions can also be found around knee prostheses, but they are mostly mild and less common than those found around metal-on-metal prostheses. Cite this article: Bone Joint Res 2024;13(4):149–156


Bone & Joint Open
Vol. 3, Issue 9 | Pages 674 - 683
1 Sep 2022
Singh P Jami M Geller J Granger C Geaney L Aiyer A

Aims. Due to the recent rapid expansion of scooter sharing companies, there has been a dramatic increase in the number of electric scooter (e-scooter) injuries. Our purpose was to conduct a systematic review to characterize the demographic characteristics, most common injuries, and management of patients injured from electric scooters. Methods. We searched PubMed, EMBASE, Scopus, and Web of Science databases using variations of the term “electric scooter”. We excluded studies conducted prior to 2015, studies with a population of less than 50, case reports, and studies not focused on electric scooters. Data were analyzed using t-tests and p-values < 0.05 were considered significant. Results. We studied 5,705 patients from 34 studies. The mean age was 33.3 years (SD 3.5), and 58.3% (n = 3,325) were male. The leading mechanism of injury was falling (n = 3,595, 74.4%). Injured patients were more likely to not wear a helmet (n = 2,114; 68.1%; p < 0.001). The most common type of injury incurred was bony injuries (n = 2,761, 39.2%), of which upper limb fractures dominated (n = 1,236, 44.8%). Head and neck injuries composed 22.2% (n = 1,565) of the reported injuries, including traumatic brain injuries (n = 455; 2.5%), lacerations/abrasions/contusions (n = 500; 7.1%), intracerebral brain haemorrhages (n = 131; 1.9%), and concussions (n = 255; 3.2%). Standard radiographs comprised most images (n = 2,153; 57.7%). Most patients were treated and released without admission (n = 2,895; 54.5%), and 17.2% (n = 911) of injured patients required surgery. Qualitative analyses of the cost of injury revealed that any intoxication was associated with higher billing costs. Conclusion. The leading injuries from e-scooters are upper limb fractures. Falling was the leading mechanism of injury, and most patients did not wear a helmet. Future research should focus on injury characterization, treatment, and cost. Cite this article: Bone Jt Open 2022;3(9):674–683


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Methods. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits. Results. The patient cohort mean age was 66 years (SD seven years), 59% were female, and the mean BMI was 32 kg/m. 2. (SD 6 kg/m. 2. ). Mean two-year subsidence of the EF-TKA was 0.056 mm (95% confidence interval (CI) 0.025 to 0.086) versus 0.006 mm (95% CI -0.029 to 0.040) for the Std-TKA, and the two-year maximum total point motion (MTPM) was 0.285 mm (95% upper confidence limit (UCL) ≤ 0.363) versus 0.346 mm (95% UCL ≤ 0.432), respectively, for a mean difference of -0.061 mm (95% CI -0.196 to 0.074). Inducible displacement also did not differ between groups. The MTPMs between 12 and 24 months for each group was below the published threshold of 0.2 mm for predicting early aseptic loosening (p < 0.001 and p = 0.001, respectively). Conclusion. Both the enhanced fixation and the standard tibial implant design showed fixation with a predicted low risk of long-term aseptic loosening. Cite this article: Bone Jt Open 2024;5(1):20–27


Bone & Joint Research
Vol. 10, Issue 6 | Pages 363 - 369
1 Jun 2021
MacDonald DRW Neilly DW Elliott KE Johnstone AJ

Aims. Tourniquets have potential adverse effects including postoperative thigh pain, likely caused by their ischaemic and possible compressive effects. The aims of this preliminary study were to determine if it is possible to directly measure intramuscular pH in human subjects over time, and to measure the intramuscular pH changes resulting from tourniquet ischaemia in patients undergoing knee arthroscopy. Methods. For patients undergoing short knee arthroscopic procedures, a sterile calibrated pH probe was inserted into the anterior fascial compartment of the leg after skin preparation, but before tourniquet inflation. The limb was elevated for three minutes prior to tourniquet inflation to 250 mmHg or 300 mmHg. Intramuscular pH was recorded at one-second intervals throughout the procedure and for 20 minutes following tourniquet deflation. Probe-related adverse events were recorded. Results. A total of 27 patients were recruited to the study. Mean tourniquet time was 21 minutes (10 to 56). Tourniquet pressure was 300 mmHg for 21 patients and 250 mmHg for six patients. Mean muscle pH prior to tourniquet inflation was 6.80. Muscle pH decreased upon tourniquet inflation, with a steeper fall in the first ten minutes than for the rest of the procedure. Change in muscle pH was significant after five minutes of tourniquet ischaemia (p < 0.001). Mean muscle pH prior to tourniquet release was 6.58 and recovered to 6.75 within 20 minutes following release. No probe related adverse events were recorded. Conclusion. It is possible to directly measure skeletal muscle pH in human subjects over time. Tourniquet ischaemia results in a decrease in human skeletal muscle pH over time during short procedures. Cite this article: Bone Joint Res 2021;10(6):363–369


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims. Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods. For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results. In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion. Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required. Cite this article: Bone Joint Res 2024;13(8):383–391


Bone & Joint Research
Vol. 9, Issue 12 | Pages 848 - 856
1 Dec 2020
Ramalhete R Brown R Blunn G Skinner J Coathup M Graney I Sanghani-Kerai A

Aims. Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Methods. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. Results. ABG-gentamicin was bactericidal from 10 μg/ml and could release bactericidal concentrations over seven days, preventing biofilm formation. A concentration of 75 μg/ml of gentamicin in ABG showed the highest bactericidal effect up to day 7. On titanium disks, a significant bacterial reduction on ABG-gentamicin coated disks was observed when compared to both uncoated (mean 2-log reduction) and ABG-coated (mean 3-log reduction) disks, at days 3 and 7. ABG alone exhibited no antimicrobial or anti-biofilm properties. However, a concentration of 75 μg/ml gentamicin in ABG sustains release over seven days and significantly reduced biofilm formation. Its use as an implant coating in patients with a high risk of infection may prevent bacterial adhesion perioperatively and in the early postoperative period. Conclusion. ABG’s use as a carrier for stem cells was effective, as it supported cell growth. It has the potential to co-deliver compatible cells, drugs, and growth factors. However, ABG-gentamicin’s potential needs to be further justified using in vivo studies. Cite this article: Bone Joint Res 2020;9(12):848–856