Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims. The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. Methods. Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison. Results. The stress and strain on the tibial post for the three polyethylenes greatly increased when the insert was placed in malrotation, showing a 38% to 56% increase in von Mises stress and a 335% to 434% increase in PEEQ. The VEPE insert had the lowest PEEQ among the three materials. The mobile-bearing design exhibited a lower increase in stress and strain around the tibial posts than the fixed-bearing design. Conclusion. Using VEPE for the tibial component potentially eliminates the risk of material permanent deformation. The mobile-bearing insert can help to avoid a dramatic increase in plastic strain around the tibial post in cases of malrotation. The mobility allows the pressure to be distributed on the tibial post and demonstrated lower stresses with all three polyethylenes simulated. Cite this article: Bone Joint Res 2020;9(11):768–777


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 69 - 69
23 Jun 2023
Buckner BC Urban ND Cahoy KM Garvin KL
Full Access

Oxidized zirconium (Oxinium) and highly cross-linked polyethylene (HXLPE) were developed with the purpose of minimizing wear, and subsequent osteolysis, in Total Hip Arthroplasty (THA). However, few articles have been published on long-term results of Oxinium on highly cross-linked polyethylene. The purpose of this investigation is to report minimum 10-year HXLPE wear rates and the clinical outcome of patients in this group and compare this population to a control group of cobalt chrome and ceramic. One hundred forty THAs were performed for 123 patients using an Oxinium head with an HXLPE liner. Ninety-seven had 10 years of clinical follow-up (avg. 14.5). Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up. Radiographs of 85 hips were available for a minimum 10-year follow-up (avg. 14.5) and used to calculate wear using PolyWare software. Control groups of cobalt chrome and ceramic articulation on HXLPE with a minimum 10-year follow-up were studied. Clinical follow-up of the Oxinium group showed a statistical improvement compared to preoperative and was similar to the control group of patients. Radiographic evaluation found the linear and volumetric wear rates for the Oxinium group of 0.03 mm/year (range 0.00–0.08) and 3.46 mm. 3. /year (range 1.0 to 15.0) respectively. There was no statistically significant difference in linear or volumetric wear rate between the groups (P-value 0.92 and 0.55 respectively). None of these patients underwent revision of their hip for any reason. Oxinium on highly cross-linked polyethylene has performed exceptionally with wear rates comparable to those of cobalt chrome or ceramic on HXLPE


Highly cross-linked polyethylene (HXLPE) has decreased wear and revision rates in total hip replacement (THR) at a long-term. However, the effect of HXLPE manufacturing characteristics on femoral head penetration has not been clearly defined yet. We report this single-institution study to investigate the clinical and radiological results of different HXLPE liners in THR. In this retrospective cohort analysis of our prospective database, we identified 904 THRs performed between 2000 and 2013. Seven different HXLPE liner types were assessed: remelted (3), annealed (2), sequentially annealed (1) and vitamin E-infused (1). The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Roman Software v1.70 package. Thirty hips were revised for the following reasons: aseptic loosening (11), dislocation (12), periprosthetic femoral fracture (6), and infection (1). No hip was revised for wear or osteolysis. 741 THRs were evaluated for a mean follow-up of 15 years (range, 10 to 20). The mean total penetration 15 years after THR was 0.17 mm in the sequentially annealed, and 0.16 mm in the vitamin E-infused groups, whereas it was 0.26 mm in the melted 95 kGy, 0.27 mm in the melted 5 Mrad and 0.25 mm in the melted 100 kGy groups (p=0.001). From one to 15 years after surgery, the mean wear was 0.206 mm in cups with an acetabular inclination greater than 50º and 0.105 mm in those placed between 35º and 50º (p<0.001). Although HXLPE characteristics can result in a different wear performance in patients undergoing THR at a mean follow-up of 15 years, the clinical results are excellent. The position of the acetabular component can influence on the femoral head penetration of modern HXLPEs. Nevertheless, these patients should continue to be monitored to detect future problems


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 66 - 66
19 Aug 2024
Terhune EB Sutter EG Balkissoon R Pallante GD Specht L Leikin JB Kwon YM Lewallen DG Gerlinger TL Jacobs JJ
Full Access

Ceramic-on-ceramic (CoC) articulations in total hip arthroplasty (THA) have low wear, but the unique risk of fracture. After revision for CoC fracture, ceramic third bodies can lead to runaway wear of cobalt chrome (CoCr) causing extremely elevated blood cobalt. We present five cases of ceramic liner fractures revised to a CoCr head associated with the rapid development of severe cobalt toxicity. We identified 5 cases of fractured CoC THA treated with revision to CoCr on highly cross-linked polyethylene (HXLPE) – three to conventional bearings and two to modular dual mobility bearings (CoCr acetabular liner, CoCr femoral head, and HXLPE). Mean follow up was 2.5 years after CoCr/HXLPE re-revision. Symptoms of cobalt toxicity occurred at average 9.5 months after revision for ceramic fracture (range 6–12). All patients developed vision and hearing loss, balance difficulties, and peripheral neuropathy. Several had cardiomyopathy, endocrinopathy, and local skin discoloration. Two reported hip pain. Re-revision for cobalt toxicity occurred at an average of 22 months (range 10–36) after revision for ceramic fracture. Average serum cobalt level at re-revision was 991 μg/L (range 734–1302, normal <1 μg/L). All CoCr heads exhibited massive wear with asphericity; deep tissues exhibited prominent metallosis. Treatment consisted of debridement and revision to a ceramic head with HXLPE. Serum cobalt improved to an average of 25 μg/L at final follow up. All patients reported partial improvement in vision and hearing; peripheral neuropathy and balance did not recover. Systemic cobalt toxicity is a rare but devastating complication of ceramic fracture in THA treated with cobalt-alloy bearings. Cobalt alloy bearings should be avoided in this setting. The diagnosis of systemic cobalt toxicity requires a high index of suspicion and was typically delayed following systemic symptoms. Debridement and revision to a ceramic-on-HXLPE leads to improvement but not resolution of cobalt toxicity complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 35 - 35
1 Oct 2019
Bedard NA Tetreault MW Hanssen AD Lewallen DG Trousdale RT Berry DJ Abdel MP
Full Access

Introduction. Cementation of a new liner into an existing well-fixed acetabular component is common during revision total hip arthroplasties (THAs) for many indications, but most commonly for lack of a modern compatible crosslinked polyethylene liner. However, little is known about the long-term durability of this strategy. The purpose of this study was to evaluate the long-term implant survivorship, risk of complications, clinical outcomes, and radiographic results of cementing a new highly cross-linked polyethylene (HXLPE) liner into a well-fixed acetabular component. Methods. We retrospectively identified 326 revision THAs where a non-constrained HXLPE liner was cemented into a well-fixed acetabular component. Mean age at revision THA was 63 years, with 50% being female. The most common indications for revision THA were wear and osteolysis (49%), aseptic femoral loosening (35%), and instability (8%). Mean follow-up was 10 years. Results. Polyethylene liner failure occurred in 15 cases (5%). In all cases, the cemented liner dissociated from the acetabular component. Survivorships free from any revision and any reoperation were 79% and 77% at 10 years, respectively. The most common reason for re-revision was dislocation (56% of re-revisions). The cumulative incidence of dislocation was 17% at 10 years. Hips revised at the index revision for instability were significantly more likely to have a subsequent dislocation when compared to those revised for polyethylene liner wear (HR 2.5, p<0.01). Harris hip scores significantly improved from a mean of 65 preoperatively to 88 postoperatively (p < 0.01). Conclusions. Cementation of a non-constrained HXLPE liner into a well-fixed acetabular component during revision THA provided durable fixation at 10 years with only a small number of failures at the cement interface (5%). Instability after this procedure remains a concern, but this is likely multi-factorial in nature. These new long-term data support continued use of this technique, when necessary, during revision THAs. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 52 - 52
1 Jan 2017
Chua W De SD Teo A Nee P
Full Access

Highly cross-linked polyethylene (HXLPE) is now a common used bearing surface in total hip arthroplasty. Current studies report superior wear rates with the use of HXLPE in total hip arthroplasty. However, there are few studies to support its long term use. The aim of this study is to measure the long term wear of HXLPE and evaluate patient satisfaction at more than 10 years follow up. 44 total hip arthroplasties were performed through a direct lateral approach by a single surgeon. All patients received the same uncemented acetabular component, mean liner thickness was 6.91mm (SD= 0.68). 16 of the femur components were cemented. Outcomes analysed include wear rates, osteolysis, revision rates, SF12 and Oxford hip scores. Wear rate was calculated using computer software (Polyware®) using edge detection software. Mean age at surgery was 58.9 years (SD= 11.67). The mean follow up was 11.3 years (SD= 1.19). There was no evidence of osteolysis and none had undergone revision surgery. Mean two dimensional wear was 0.38mm (SD= 0.25) and mean wear rate per year was 0.03mm (SD= 0.02, range 0.009 to 0.078). Oxford hip score at last follow up indicated satisfactory joint function (mean= 42 SD= 6.2). Our results support the use of highly cross-linked polyethylene in primary total hip replacements. The absence of osteolysis and need for revision surgery over a mean of 11.3 years is very encouraging


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 39 - 39
1 May 2016
Meftah M Ranawat A Ranawat C
Full Access

Background. Wear and osteolysis are major contributors, which limit the durability of total hip Arthroplasty (THA) and ultimately cause it to fail. Efforts were made to decrease wear by highly cross-linked polyethylene (HXLPE) and using ceramic bearings. Questions/Purposes. The purpose of this study is to analyze and compare the five year performance of large sized (32mm and 36mm) ceramic and metal heads on X3 HXLPE (Stryker, Mahwah, NJ, USA). Materials and Methods. One hundred and twenty near-consecutive patients that underwent primary THA between January 2006 and December 2009 for osteoarthritis with five-year radiographic and clinical follow-up were identified from our institutional review board-approved prospective database. All patients received a non-cemented THA with larger femoral head (32 or larger) on X3 HXLPE, either a ceramic (n=60) or metal (n=60). Linear and volumetric wear was measured using the computer-assisted Roman software. Results. At final follow up, the mean wear rates were not significantly different (p=0.63): 0.018 ± 0.06 mm/yr and 0.021 ± 0.06 mm/yr for ceramic-on-X3 and metal-on-X3, respectively. When negative values were considered zero as worst-case scenario, wear rates for ceramic-on-X3 and metal-on-X3 HXLPE groups were 0.032 ± 0.04 mm/yr and 0.041 ± 0.05 mm/yr, respectively (P=0.55). Mean volumetric wear rates were also statistically similar: 68.56 mm3/y and 79.96 mm3/y for the ceramic-on-X3 and metal-on-X3 HXLPE groups respectively (p=0.78); when negatives were considered zeroes, they were 121.42 mm3/y and 164.63 mm3/y, respectively (p=0.20). Patients with ceramic heads were significantly younger (p <0.01), more active (p<0.01) and had better clinical scores than those with metal heads. Conclusions. Large ceramic and metal heads on HXLPE have excellent durability at minimum 5 years followup without any statistical significant difference in linear or volumetric wear rates


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 116 - 116
1 Jan 2016
Park C Meftah M Ranawat CS
Full Access

Introduction. Wear and osteolysis are major contributors which limit the durability of total hip arthroplasty (THA) and ultimately cause it to fail. Efforts were made to decrease the wear by highly cross-linked polyethylene (HXLPE) and using ceramic bearings. The purpose of this study is to analyze the five year performance of large sized (32mm and 36mm) ceramic and metal heads on X3 HXLPE (Stryker, Mahwah, NJ). Materials and Method. From Jan 2006 to June 2008, 81 consecutive patients with minimum 5 year radiographic and clinical followup were identified from out institutional prospective database. 51 non-cemented THA (45 patients) had ceramic on HXLPE (CoX3) group and 30 hips (29 patients) had metal on HXLPE (MoX3) group. Mean age was 36 ± 8 years (36–76) and 50 ± 9 years (51–86) in ceramic and metal group, respectively. Wear rates were measured on an anteroposterior weight-bearing pelvis radiographs using the computer-assisted Roman software. Results. The mean WOMAC, PAQ, HSS and UCLA scores for CoX3 and MoX3 groups at final follow-up were 13.2 ± 17.3, 10.1 ± 14.4, 36.4 ± 5.3 and 5.9 ± 1.8 and 16.5 ± 17.8, 17.1 ± 17.2, 31.6 ± 10.5 and 5.3 ± 1.6, respectively. At the final follow up, the mean wear rates were 0.022 ± 0.06 mm/yr and 0.022 ± 0.05 mm/yr for CoX3 and MoX3 groups, respectively. This was not statistically significant (p=0.8). When negative values were considered zero, wear rates for CoX3 and MoX3 groups were 0.037 ± 0.04 mm/yr and 0.033 ± 0.04 mm/yr, respectively (p=0.6). Radiographic analysis does not reveal any incidence of osteolysis or loosening in both groups. Discussion and Conclusion. The five year wear rate of large diameter metal and ceramic femoral heads on HXLPE bearing demonstrated excellent similar wear rates. Longer follow-ups are required to assess superiority of one bearing over another


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 98 - 98
1 Jan 2016
Kawamura H Oe K Ueda Y Okamoto N Nakamura T Ueda N Iida H
Full Access

Introduction. Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head. Materials and Methods. A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05. Results. The mean linear wear rate of HXLPE was 0.043 mm/year, compared with 0.109 mm/year for CPE (p<0.05). The incidence of osteolysis was 1 hip in the CPE group, compared with none in the HXLPE group. No evidence of revision for any reasons was noted. Statistical analysis revealed no significant differences among any variables. Conclusions. Polyethylene wear of HXLPE with a 22.225 mm zirconia head remains significantly lower than that of CPE with a 22.225 mm ortron head at 10 years after operation. HXLPE has a great advantage but careful continued follow-up will be required


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 318 - 318
1 May 2009
Garcia-Rey E García-Cimbrelo E Cruz A Ortega-Chamarro J
Full Access

Introduction and purpose: Highly cross-linked polyethylenes (HXLPE) sterilized in an air-free environment have been used to prevent osteolysis and loosening of implants. This prospective randomized study analyzes the results of a series in which one single type of prosthesis but made with one of two different kinds of polyethylene (PE) has been used. Materials and methods: We assessed 45 Allofit cups with a Sulene-PE liner (sterilized in nitrogen) and 45 with Durasul-PE liner (highly cross-linked) associated with an Alloclassic stem (femoral head: 28 mm) with a minimum follow-up of 5 years (mean 66.3 months). Femoral head penetration was analyzed by means of a digital program at 6 weeks, and at 6 and 12 months and once a year, using the Dorr method given the non-spherical shape of the cups. Results: All assessed hips had good outcomes determined clinically and by x-rays. There was no loosening of any component. There were no radiolucent lines or osteolysis. Femoral head penetration at 6 weeks was 47.4% less in the Durasul group (0.19+0.06 mm for the Sulene-PE and 0.09+0.03 for the Durasul-PE [p< 0.0001]). Mean annual penetration was 20% less in the Durasul group (0.04+0.02 and 0.008+0.008 [p< 0.0001] respectively. The differences increased by the third year. Mean penetration at 5 years was 39.1% less in the Durasul group (p< 0.0001). Conclusions: There was significant femoral reduction in the Durasul-PE group. Long term results are necessary to confirm that these prostheses lead to a lower rate of osteolysis


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 145 - 145
1 Mar 2010
Nakahara I Nakamura N Miki H Takao M Sakai T Nishii T Yoshikawa H Sugano N
Full Access

Ceramic heads and highly cross-linked polyethylene (HXLPE) as bearing surface materials have been introduced to reduce the production of polyethylene wear particles. The present study hypothesized that the wear rate of HXLPE could be further reduced when combined with a ceramic head. The purpose of this study was to compare the in vivo wear of Longevity HXLPE against cobalt-chromium and zirconia heads after a minimum 5-year follow-up. A prospective cohort study was performed in 102 cementless total hip arthroplasties (THAs) with the Longevity HXLPE socket (Zimmer) between June 2000 and October 2001. Same prostheses were used in all cases both acetabular cups (Trilogy; Zimmer) and femoral stems (Versys Fiber Metal Taper; Zimmer). 26-mm zirconia heads (NGK) or 26-mm cobalt-chromium heads (Zimmer) were randomly used in 51 hips each. A minimum 5-year follow-up was completed for 47 hips with zirconia heads and 46 hips with cobalt-chromium heads. Two-dimensional linear wear of Longevity HXLPE was measured using computer-assisted methods (PolyWare) on annual x-rays, and total head penetration rates and steady state wear rates were calculated. In addition, periprosthetic osteolysis was evaluated. At a mean 6-year follow-up, the total head penetration rates were 0.034±0.016 mm/year (zirconia) and 0.031±0.015 mm/year (cobalt-chromium). The steady state wear rates were −0.01 mm/year (zirconia) and −0.01 mm/year (cobalt-chromium). No significant difference was seen between the two groups (p=0.4 and p=0.91). Osteolysis was not observed around prostheses in any hips. In conclusion, no advantage was seen for the zirconia head compared with the cobalt-chromium head in this time period


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 448 - 449
1 Nov 2011
Nakahara I Nakamura N Miki H Takao M Sakai T Nishii T Yoshikawa H N.
Full Access

Using a larger diameter femoral head in total hip arthroplasty (THA) has advantages in terms of the increased joint stability and range of motion. And the wear resistance of highly cross-linked polyethylene (HXLPE) even combined with a larger head has already been demonstrated by in vitro studies. The purpose of this study was to compare the in vivo wear of Longevity HXLPE sockets against 32 mm and 26 mm heads at a 5-year follow-up. From November 2000 to November 2001, 51 primary cementless THAs were performed with a 26 mm cobalt-chromium head and a Longevity HXLPE socket (Zimmer). A cohort of 32 mm cobalt-chromium heads was comprised of 51 THAs with the same prosthesis performed from December 2001 to December 2003. No significant differences between the groups were observed in gender, age, and BMI, however, polyethylene liners with 32 mm heads were significantly thinner than those with 26 mm heads. Two-dimensional linear wear was measured using PolyWare software on annual x-rays, and total head penetration rates at postoperative 5-year and steady state wear rates were calculated. In addition, periprosthetic osteolysis was evaluated. At the 5-year follow-up, the total head penetration rates were 0.047±0.022 mm/year with 26 mm heads and 0.048±0.026 mm/year with 32 mm heads. The steady state wear rates were −0.008 mm/year with 26 mm heads and 0.001 mm/year with 32 mm heads. No significant differences were seen between the two groups (p=0.82 and p=0.24). Osteolysis was not observed around pros-theses in any hips. At the 5-year follow-up, the wear rate of Longevity HXLPE was very low. A Longevity HXLPE socket will undergo the same level of wear whether with a 32 mm head or a 26 mm head


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 547 - 547
1 Nov 2011
Thomas G Simpson D Taylor A Whitwell D Gibbons C Gundle R Mclardy-smith P Gill H Glyn-jones S Murray D
Full Access

Introduction: The use of highly cross-linked polyethylene (HXLPE) is now commonplace for total hip arthroplasty, however there is no long-term data to support its use. Hip simulator studies suggest that the wear rate of some types of HXLPE is ten times less than conventional polyethylene (UHMWPE). The outcomes of hip simulator studies are not always reproduced in vivo and there is some evidence that HXLPE wear may increase between 5 and 7 years. Method: A prospective double blind randomised control trial was conducted using Radiostereometric Analysis (RSA). Fifty-four subjects were randomised to receive hip replacements with either UHMWPE liners or HXLPE liners. All subjects received a cemented CPT stem and uncemented Trilogy acetabular component (Zimmer, Warsaw, IN, USA). The 3D penetration of the head into the socket was determined to a minimum of 7 years. Results: The total liner penetration was significantly different at 7 years (p=0.005) with values of 0.33 mm (SE 0.05 mm) for the HXLPE group and 0.55 mm (SE 0.05 mm) for the UHMWPE group. The steady state wear rate from 1 year onwards was significantly lower for HXLPE (0.005 mm/yr, SE 0.007 mm/yr) than for UHMWPE (0.037 mm/yr, SE 0.009 mm/yr) (p=0.007). The direction of wear was supero-lateral. Discussion: We have previously demonstrated that the penetration in the first year is creep-dominated, from one year onwards the majority of penetration is probably due to wear. This study confirms the predictions from hip simulator studies which suggest that the wear rate of this HXLPE approaches that of metal-on-metal and ceramic-on-ceramic articulations. HXLPE may have the potential to reduce the need of revision surgery, due to wear debris induced osteolysis. It may also enable surgeons to use larger couples, thus reducing the risk of impingement and dislocation


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 220 - 220
1 May 2011
Thomas G Simpson D Gill H McLardy-Smith P Murray D Glyn-Jones S
Full Access

Introduction: The use of second generation highly cross-linked polyethylene (HXLPE) is now commonplace for total hip arthroplasty, however there is no long-term data to support its use. Hip simulator studies suggest that the wear rate of HXLPE is ten times less than conventional polyethylene (UHMWPE). The outcomes of hip simulator studies are not always reproducible in vivo. Long term clinical data is required, as there is emerging clinical data, which suggests that some types of second generation HXLPE may have increased wear after 5 years. Method: A prospective double blind randomised control trial was conducted using Radiostereometric analysis (RSA). Fifty-four subjects were randomised to receive hip replacements with either UHMWPE liners or HXLPE liners. All subjects received a cemented CPT stem and uncemented Trilogy acetabular component (Zimmer, Warsaw, IN, USA). The 3D penetration of the head into the socket was determined to a minimum of 7 years. Results: The total liner penetration was significantly different at 7 years (p=0.01) with values of 0.33mm (SD 0.17mm) for the HXLPE group and 0.51mm (SD 0.14mm) for the UHMWPE group. The steady state wear rate from 1 year onwards was significantly lower for HXLPE (0.003 mm/yr, SD 0.04 mm/yr) than for UHMWPE (0.03 mm/yr, SD 0.03 mm/yr) (p=0.01). The direction of wear was in the antero-medial direction in both groups. Conclusion: We have previously demonstrated that the penetration in the first year is creep-dominated, from one year onwards the majority of penetration is due to wear. The wear rate of this second generation HXLPE approaches that of metal on metal bearings. Second-generation HXLPE may have the potential to reduce the risk of revision surgery, due to wear debris induced osteolysis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 131 - 131
1 Sep 2012
Mizokawa S Oonishi H Oonishi H Kyomoto M Iwamoto M Takano Y Ueno M
Full Access

Different types of highly cross-linked polyethylene (HXLPE) have been introduced widely in acetabular cups in hip prostheses to reduce the incidence of wear debris-induced osteolysis. Also, we reported that HXLPE cups with 28-mm alumina ceramic femoral head exhibited lower wear than conventional PE cups. Recently, the combination of HXLPE cup and larger diameter femoral head is used widely to prevent dislocation. In this study, we examined the wear of HXLPE with 32-mm alumina ceramic femoral head and compared it with the wear of HXLPE with 28-mm alumina ceramic femoral head. The in vivo wear of 60 HXLPE cups (Aeonian; Kyocera Corp., Kyoto, Japan, currently Japan Medical Materials Corp., Osaka, Japan) with 28-mm alumina ceramic femoral head with clinical use for 3.1–9.1 years (mean 7.4 years) and eight HXLPE cups with 32-mm alumina ceramic femoral head used for 2.3–3.2 years (mean 2.8 years) were examined by radiographic analysis. The early wear rate for the first year of HXLPE cups with 28-mm and 32-mm alumina ceramic femoral head were 0.24±0.10 mm/year and 0.29±0.12 mm/year respectively. There was no significant difference in both femoral head groups (p>0.05). The steady wear rate after 1 year were 0.001±0.03 mm/year and −0.03±0.10 mm/year respectively. There was no significant difference either in both femoral head groups (p>0.05). These findings from this radiographic analysis suggest that the early wear rate in the first 1 year probably represents the creep deformation in bedding-in stage; and the steady wear rate after 1 year probably represents mainly the wear than of the creep deformation. By the radiographic analysis, HXLPE cups in both femoral head groups exhibited low steady wear rate. In conclusion, we expect that the combination of HXLPE cup and 32-mm diameter alumina ceramic femoral head has favorable wear properties with possibility of prevention of dislocation in long-term clinical use


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 56 - 56
1 Feb 2017
Kawata T Goto K So K Kuroda Y Okuzu Y Matsuda S
Full Access

Introduction. The long-term wear performance of highly cross-linked polyethylene (HXLPE) in cemented total hip arthroplasty (THA) has rarely been reported. Here we report a prospective randomized comparative analysis of radiographic wear after a minimum follow-up of 10 years in cemented THAs with either HXLPE or conventional polyethylene (CPE), and assess its clinical relevance. Patients and Methods. From 1999 to 2001, we conducted 94 primary cemented THAs with a 22.225-mm head at our hospital as part of a prospective randomized trial. All surgeries were performed using a direct lateral approach with a trochanteric osteotomy (Dall's approach). The patients were divided into 4 groups. Twenty-six hips in group A were implanted with CPE sockets against zirconia heads and Charnley-type stems. HXLPE sockets (Aeonian, Kyocera Medical Corp) were implanted in all hips in the other 3 groups. Twenty-five hips in group B were implanted with zirconia heads and KC stems (Kyocera Medical Corp), 23 hips in group C with zirconia heads and distal cylindrical stems, and 20 hips in group D with stainless steel heads and C-stem (DePuy Inc). The sockets were highly cross-linked by gamma irradiation at a dose of 35 kGy, heat annealed at 110ºC, and sterilized with 25 kGy of gamma irradiation in nitrogen. For radiographic evaluation, anteroposterior radiograms were taken for each patient annually, and every two years postoperatively for wear analyses. Two-dimensional head penetration was measured on each postoperative radiogram using a computer-aided technique. Results. Wear measurements were performed for 59 cases followed up over 10 years. Linear wear rates were 0.138±0.074 (mm/year±SD) for group A, 0.010±0.015 for group B, 0.013±0.020 for group C, and 0.012±0.027 for group D. Linear wear rates differed significantly between group A and other groups, and no significant difference was found among groups B, C, and D. There were four revision cases. Among them, two sockets of group A were revised for aseptic loosening at 7 and 14 years postoperatively with linear wear rates of 0.749 and 0.153 mm, respectively. Two stems of group B and C were revised for aseptic loosening at 10 and 9 years postoperatively with linear wear rates of 0.007 and 0.041 mm, respectively. There were no other cases with aseptic loosening in any group. Osteolysis was found in 10 cases (group A: 7, group B: 1, group C: 1, group D: 1), and there was a significant difference in linear wear rates between the cases with and without osteolysis (0.157±0.083 and 0.030±0.053 mm/year±SD respectively). Discussion. The two revision cases of HXLPE did not have aggressive socket wear, and possibly cement fracture caused osteolysis and stem instability. The results of this study indicate that there is a significant difference in wear rate between CPE and HXLPE, and it was evident that PE wear was associated with osteolysis and aseptic loosening of the socket


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 142 - 142
1 Sep 2012
Traynor A Simpson D Ellison P Collins S
Full Access

Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain mechanical properties, minimise wear and to improve the oxidation resistance in the long-term. The aim of this study was to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; conventional UHMWPE, HXLPE and ECIMA. Methods. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three conventional UHMWPE liners (GUR1050, Ø32 mm, 30 kGy sterilised in Nitrogen), three HXLPE liners (GUR1020, Ø40 mm, 75 kGy cross-linking and EtO sterilised) and six ECIMA liners (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy cross-linking, mechanically deformed and annealed, and EtO sterilised) articulated against CoCrMo alloy femoral heads to ASTM F75 (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, with a maximum force of 3.0 kN and at a frequency of 1 Hz. The test lubricant used was calf serum with a protein content of 30 g/l and 1% (v/v) patricin added as an antibacterial agent. Volumetric wear rate was determined gravimetrically after the first 0.5 mc and every 1 mc thereafter. ASTM D638 type V specimens (3.2 mm thick) were machined from ECIMA material for uniaxial tension testing to ASTM D638. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Results. There was a 94% and a 68% reduction in the wear rate for the ECIMA liners compared to the conventional UHMWPE and HXLPE liners respectively. There was an increase in UTS, yield strength and elongation of 11%, 11% and 15% respectively, for ECIMA compared to HXLPE. Discussion. The wear results reported in this study indicate that ECIMA is a very low wearing material which has the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to conventional UHMWPE than HXLPE. The reduced wear rate during in-vitro hip simulation of ECIMA compared to conventional UHMWPE, coupled with improved mechanical properties in comparison to HXLPE, makes ECIMA a promising next generation, advanced bearing material


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 511 - 511
1 Oct 2010
Bragdon C Burke D Ekeledo A Freiberg A Greene M Harris W Malchau H
Full Access

Highly cross-linked polyethylene (HXLPE) is one of the most widely utilized bearing surfaces for total hip arthroplasty (THA). The first patients to receive XLPE will be 10 years post-op as of December 31, 2008. The purpose of this study is to report the long-term clinical and radiographic outcomes of patients implanted with HXLPE. A group of 247 primary total hip replacements (224 patients) using HXLPE liners (Longevity or Durasul, Zimmer Inc.) with 22, 26, 28, or 32mm femoral heads were implanted between 1999 and 2001. Clinical evaluation measures included the Harris hip, EQ-5D, SF-36 functional scores, and UCLA activity scores. In addition to plain radiograph assessment, the computerized Martell method was used to measure head penetration over time. A matched group of 241 primary total hip replacements (201 patients) with the same head sizes using conventional polyethylene (PE) with a minimum of 7 years follow-up was used as a Martell method control group. The steady state penetration rate was defined as the slope of the linear regression line of the plot of head penetration from the 1 year film to each subsequent film to discount the early bedding-in process. A student’s t-test was used to compare wear rates between head sizes in each group, and a repeated-measures mixed model ANOVA was used to compare the groups for the 28mm head size. There were no osteolytic lesions around the cup or stem, and no revisions were performed for polyethylene wear or liner fracture. Clinical outcome scores were averaged: Harris Hip 88.1±11.97, EQ-5D 74.0±27.0, SF-36 physical activity scores 53.3±8.4, SF-36 mental score 46.9±11.1, and UCLA activity 6.4±2.1. The steady state wear of the conventional polyethylene patients increased with time for both 26 and 28mm head sizes (0.144 and 0.127mm/year, respectively). No significant difference was found between the head sizes coupled with conventional polyethylene (p=0.14). Femoral head penetration in the highly cross-linked polyethylene did not increase over time after the first year. The steady state wear rates of HXLPE liners with 28mm or 32mm femoral heads were not significantly different than a slope of zero (p=0.54 for both head sizes). Clinical follow-up results are typical of a primary THR patient population, and the radiographic results are excellent with no signs of peri-prosthetic osteolysis. Patients with PE show wear rates that are significantly different than zero indicating significant wear of the material. Conversely, patients with HXLPE display no measureable wear at 7–9 years as the wear rates were within the error detection of the Martell method. This long-term clinical and radiographic follow-up study for this new bearing material shows excellent clinical outcomes with very low in vivo wear


Bone & Joint Open
Vol. 2, Issue 5 | Pages 278 - 292
3 May 2021
Miyamoto S Iida S Suzuki C Nakatani T Kawarai Y Nakamura J Orita S Ohtori S

Aims

The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA.

Methods

A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis.