Abstract
Ceramic-on-ceramic (CoC) articulations in total hip arthroplasty (THA) have low wear, but the unique risk of fracture. After revision for CoC fracture, ceramic third bodies can lead to runaway wear of cobalt chrome (CoCr) causing extremely elevated blood cobalt. We present five cases of ceramic liner fractures revised to a CoCr head associated with the rapid development of severe cobalt toxicity.
We identified 5 cases of fractured CoC THA treated with revision to CoCr on highly cross-linked polyethylene (HXLPE) – three to conventional bearings and two to modular dual mobility bearings (CoCr acetabular liner, CoCr femoral head, and HXLPE). Mean follow up was 2.5 years after CoCr/HXLPE re-revision.
Symptoms of cobalt toxicity occurred at average 9.5 months after revision for ceramic fracture (range 6–12). All patients developed vision and hearing loss, balance difficulties, and peripheral neuropathy. Several had cardiomyopathy, endocrinopathy, and local skin discoloration. Two reported hip pain. Re-revision for cobalt toxicity occurred at an average of 22 months (range 10–36) after revision for ceramic fracture. Average serum cobalt level at re-revision was 991 μg/L (range 734–1302, normal <1 μg/L). All CoCr heads exhibited massive wear with asphericity; deep tissues exhibited prominent metallosis. Treatment consisted of debridement and revision to a ceramic head with HXLPE. Serum cobalt improved to an average of 25 μg/L at final follow up. All patients reported partial improvement in vision and hearing; peripheral neuropathy and balance did not recover.
Systemic cobalt toxicity is a rare but devastating complication of ceramic fracture in THA treated with cobalt-alloy bearings. Cobalt alloy bearings should be avoided in this setting. The diagnosis of systemic cobalt toxicity requires a high index of suspicion and was typically delayed following systemic symptoms. Debridement and revision to a ceramic-on-HXLPE leads to improvement but not resolution of cobalt toxicity complications.