Advertisement for orthosearch.org.uk
Results 1 - 20 of 197
Results per page:
Bone & Joint Research
Vol. 11, Issue 11 | Pages 826 - 834
17 Nov 2022
Kawai T Nishitani K Okuzu Y Goto K Kuroda Y Kuriyama S Nakamura S Matsuda S

Aims. The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip. Methods. We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model. Results. A total of 45 of 398 (11.3%) eligible patients were taking an oral bisphosphonate at the time of knee surgery, with a mean age of 75.8 years (SD 6.2) in bisphosphonate users and 75.7 years (SD 6.8) in non-users. The mean joint space narrowing rate was 0.04 mm/year (SD 0.11) in bisphosphonate users and 0.12 mm/year (SD 0.25) in non-users (p < 0.001). In the multivariate model, age (standardized coefficient = 0.0867, p = 0.016) and the use of a bisphosphonate (standardized coefficient = −0.182, p < 0.001) were associated with the joint space narrowing rate. After successfully matching 43 bisphosphonate users and 86 non-users, the joint narrowing rate was smaller in bisphosphonate users (p < 0.001). Conclusion. The use of bisphosphonates is associated with decreased joint degeneration in non-arthritic hips after knee arthroplasty. Bisphosphonates slow joint degeneration, thus maintaining the thickness of joint cartilage in the normal joint or during the early phase of osteoarthritis. Cite this article: Bone Joint Res 2022;11(11):826–834


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate. Results. Time series clustering allowed us to divide the patients into two groups, and the predictive factors were identified including patient- and operation-related factors. The area under the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction averaged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG), creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed significant association with the estimated patient-specific efficacy of bisphosphonate. Conclusion. Periprosthetic BMD loss after THA is predictable based on patient- and operation-related factors, and optimal prescription of bisphosphonate based on the prediction may prevent BMD loss. Cite this article: Bone Joint Res 2024;13(4):184–192


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 69 - 69
10 Feb 2023
Tong Y Holmes S Sefton1 A
Full Access

There is conjecture on the optimal timing to administer bisphosphonate therapy following operative fixation of low- trauma hip fractures. Factors include recommendations for early opportunistic commencement of osteoporosis treatment, and clinician concern regarding the effect of bisphosphonates on fracture healing. We performed a systematic review and meta-analysis to determine if early administration of bisphosphonate therapy within the first month post-operatively following proximal femur fracture fixation is associated with delay in fracture healing or rates of delayed or non-union. We included randomised controlled trials examining fracture healing and union rates in adults with proximal femoral fractures undergoing osteosynthesis fixation methods and administered bisphosphonates within one month of operation with a control group. Data was pooled in meta-analyses where possible. The Cochrane Risk of Bias Tool and the GRADE approach were used to assess validity. For the outcome of time to fracture union, meta-analysis of three studies (n= 233) found evidence for earlier average time to union for patients receiving early bisphosphonate intervention (MD = −1.06 weeks, 95% CI −2.01 – −0.12, I. 2. = 8%). There was no evidence from two included studies comprising 718 patients of any difference in rates of delayed union (RR 0.61, 95% CI 0.25–1.46). Meta-analyses did not demonstrate a difference in outcomes of mortality, function, or pain. We provide low-level evidence that there is no reduction in time to healing or delay in bony union for patients receiving bisphosphonates within one month of proximal femur fixation


Bone & Joint Research
Vol. 7, Issue 10 | Pages 548 - 560
1 Oct 2018
Qayoom I Raina DB Širka A Tarasevičius Š Tägil M Kumar A Lidgren L

During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2


Bone & Joint Open
Vol. 1, Issue 9 | Pages 512 - 519
1 Sep 2020
Monzem S Ballester RY Javaheri B Poulet B Sônego DA Pitsillides AA Souza RL

Aims. The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Methods. Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured. Results. Fracture analyses revealed that OVX+IBN significantly reduced yield displacement (vs SHAM/OVX) and resilience, and increased stiffness (vs SHAM). OVX+IBN elevated tibial trabecular parameters and also increased cortical cross-sectional area and second moment of area around minor axis, and diminished ellipticity proximally. Conclusion. These data indicate that combined ovariectomy and bisphosphonate generates cortical changes linked with greater bone brittleness and modified fracture characteristics, which may provide a basis in mice for interrogating the mechanisms and genetics of atypical fracture aetiology. Cite this article: Bone Joint Open 2020;1-9:512–519


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results. BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm. 2. vs 6.55/cm. 2. vs 5.25/cm. 2. ). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion. BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 76 - 76
1 Jan 2011
Gibbons CLMH Jones F Taylor R Knowles H Hogendoorn P Wass JAH Balke M Picci P Gebert C Athanasou NA
Full Access

Introduction: Giant cell tumour of bone (GCTB) is an expansile osteolytic tumour of bone which contains numerous osteoclast-like giant cells. GCTB is a locally aggressive tumour which can cause extensive bone destruction that can be difficult to control surgically, up to 35% of cases recurring after simple curettage. Bisphosphonates are anti-resorptive agents that have proved effective in the treatment of a number of osteolytic conditions. Methods: This study reports results from four European centres where bisphosphonates are being used to treat problematic GCTBs. Details of treatment with bisphosphonates of 25 cases of primary, recurrent and metastatic GCTBs was assessed clinically and radiologically. Results: Most primary/recurrent tumours did not exhibit progressive enlargement and, in some cases, both primary and metastatic GCTBs showed a degree of radiological improvement following treatment. Some patients also noted relief of pain following treatment. In a few cases, no apparent treatment effect was noted and there was disease progression. Several inoperable large spinal/pelvic GCTBs remained stable in size following treatment. Discussion: Our findings provide preliminary evidence for the use of bisphosphonates to inhibit the progressive osteolysis associated with GCTB. These agents had a beneficial clinical and/or radiological effect in most cases. This study reports results from four European centres and highlights the fact that these centres are all employing different clinical indications and different regimes of bisphosphonate treatment. Bisphosphonates have significant side effects and indications for treatment and standardisation of drug type and dosage regimes (and measurement of agreed outcome measures to determine treatment efficacy) should be established for the use of these agents to control GCTB tumour growth and osteolysis


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 140 - 140
1 Mar 2009
Ramachandran M Fox M Munns C Cowell C Brown R Little D
Full Access

Background: Traumatic femoral head osteonecrosis in adolescents has a poor prognosis due to collapse and subsequent degenerative change. There are currently no satisfactory treatments available for this condition. Bisphosphonate therapy has improved outcome in animal models of osteonecrosis. We have evaluated bisphosphonate therapy as a novel strategy for adolescent traumatic osteonecrosis. Methods: We established a protocol of identification of adolescents with osteonecrosis utilizing bone scans immediately after surgical treatment for hips at risk of osteonecrosis after trauma. Of a consecutive group of twenty-eight patients with either unstable slipped capital femoral epiphyses (SCFE) (22), femoral neck fracture (4) or hip dislocation (2), seventeen patients with osteonecrosis were identified. These patients (13 boys and 4 girls, mean age 12.6 years) and their families consented for treatment with intravenous bisphosphonates based on animal experimental evidence. Of the patients with osteonecrosis, twelve had presented with unstable SCFE, four with femoral neck fractures and one following traumatic hip dislocation. The average length of bisphosphonate treatment was 20.3 months (range 7 to 39). All patients were followed for at least 2 years. Results: At mean follow-up of 38.7 months, fourteen patients (82%) were pain free. Clinically, all patients had a good to excellent outcome. The mean Harris Hip Score was 91.1, the Iowa Hip Rating was 92.1 and the Global PODCI score was 91.5. On radiographs, nine patients (53%) were rated as Stulberg I–II, six (35%) as Stulberg III, and two (12%) as Stulberg V. Conclusion: Bisphosphonates therapy may play an adjunctive role in the treatment of adolescents with traumatic osteonecrosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIV | Pages 54 - 54
1 Apr 2012
Dadia S Gortzak Y Kollender Y Bickels J Meller I
Full Access

Aim. Giant cell tumour (GCT) of bone is a benign but locally aggressive tumour. Although topical adjuvants have been used in the past, local recurrence following intralesional excision of GCT of bone continues to remain a problem. The use of bisphosphonates as an anti-osteoclastic agent in the management of osteolytic bone metastases is well accepted. Therefore our study aims to retrospectively demonstrate whether the administration of bisphosphonate as an adjuvant can control aggressive local recurrence of GCT and prevent wide resections of bones or amputations. Method. A retrospective study was performed between 2004 and 2010. 6 patients were diagnosed with aggressive local recurrence of appendicular GCT. All patients were treated for the primary tumour by surgical curettage and cryoablation followed by cementation or biological reconstruction. In 5 patients the tumour was located in the distal radius and in one in the first metacarpal bone. All recurrences were in the bone with large soft-tissue extension. After histological diagnosis – by CT core needle biopsy – the patients were treated by intravenous bisphosphonate, followed by clinical & radiological assessments. Results. Average follow-up of 42 months, ranging from 12 to 72 consecutive months. All patients showed good response to bisphosphonate treatment: lesions become calcified gradually as shown in x-rays & CT scans, reduction in size of soft tissue components, patient reported relief of pain & improvement of the affected limb. All treated patients did not report any untoward effects. Conclusion. In the current study bisphosphonate treatment is found to be an effective treatment for local control of aggressive local recurrence of GCT of the extremities and can therefore be a good alternative to wide resections of bone and complicated reconstructions. Functional results are shown to be promising as well. The study results need further investigation & a larger scale of patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 47 - 47
1 Feb 2012
Kiely P Ward K Chan S Bellemore M Little D
Full Access

Background. Distraction Osteogenesis can be complicated by regenerate insufficiency resulting in prolonged implant usage or regenerate failure with malalignment or fracture. Experimental evidence has demonstrated that bisphosphonates may mediate improved local limb BMD and regenerate strength. Methods. A prospective series of 14 patients over 5 years. One cohort (Group A) of these cases presented with established regenerate insufficiency leading to consideration for surgical intervention. Patients received a therapeutic regime of intravenous bisphosphonate A further cohort (Group B) of 7 patients was commenced on bisphosphonate therapy at an earlier stage, prior to the regenerate maturation phase. Results. Mean age at primary surgery was 11.6 years (3-17 yrs) with a minimum follow-up of 12 months after fixator removal. The sites of regenerate insufficiency were tibia (12) and distal femur (3), with 1 patient undergoing both femoral and tibial lengthening. Mean fixator time was 108 days prior to treatment for a mean lengthening of 5.3 cm. At time of treatment measurements demonstrated a reduced BMD in the bone, mean 44% (39-58%) of the normal limb, the primary consolidation index was high at 40.5 (46-68) days/cm, reflecting observed regenerate insufficiency. Significant increase in regenerate bone mass and mineral density was observed after the first dose of intravenous bisphosphonate. No significant systemic complications were encountered. After a mean 130 days (range 103-231 days) of therapy the bone consolidated to unencumbered full weight bearing, final healing index of 82 days/cm (Range 67-108days/cm). Cases demonstrated a rapid and sustained improvement in local BMD (increasing to mean 78% of the normal side). Remodelling was seen radiologically from 12 months post-therapy. However, subsequently, one femoral regenerate fractured and required intramedullary nail stabilisation. Conclusion. This is early clinical evidence that Bisphosphonate therapy has potential therapeutic benefit in managing regenerate insufficiency and counteracting local osteopenia in distraction osteogenesis


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 117 - 117
1 Mar 2006
Brown R Goergens E Cowell C Little D
Full Access

Traumatic osteonecrosis of the femoral head in adolescents has a poor prognosis due to collapse and degenerative change. We hypothesised that early bisphosphonate treatment to reduce osteoclast activity could allow revascularisation and repair with maintenance of joint congruity. Nine patients with documented osteonecrosis were treated with intermittent intravenous pamidronate (Aredia, Novartis) commencing within a mean 1 month of diagnosis (range, 5 to 91days). The dosing protocol has evolved over two years with the current dose being 9 mg/kg/year for 18 months. Mean follow up is 19.8 months (range, 13 to 30 months) with all patients followed for more than one year. There were 6 patients, who presented after unstable SCFE. Of these the index procedure had failed in three, requiring multiple early operations. The other three patients had sustained an inter-trochanteric fracture with a pelvic fracture, a traumatic hip dislocation and a femoral neck fracture respectively. Eight of the patients are painfree. Six have been instructed to fully weight bear, while two can partial weight bear and one is non-weight bearing. Seven of 9 patients do not show significant resorption of the femoral heads at the most recent follow up. Of the two patients with significant resorption, one patient began to resorb after his medication was ceased, so it was recommenced. He has subsequently undergone a realignment procedure. The other patient had resorption of a section of the femoral head, which had not re-vascularised by 18 months, and this was elevated and bone grafted. These two hips are considered functional in the short term as they are currently pain free, but their deformity is expected to bring about early osteoarthritis in adult life. This early experience lays the foundation for prospective clinical trials of bisphosphonate therapy in adolescents with osteonecrosis. It appears that bisphosphonate treatment protocols for adolescents will need to be prolonged. Our current practice is for a duration of around 18 months with normalisation of uptake on bone scan as the end point for therapy


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 484 - 484
1 Apr 2004
Brown R Goergens E Cowell C Little D
Full Access

Introduction Traumatic osteonecrosis of the femoral head in adolescents has a poor prognosis due to femoral head collapse and degenerative change. We hypothesised that early bisphosphonate treatment to reduce osteoclast activity could allow revascularisation and repair with maintenance of joint congruity. Methods Nine patients with documented osteonecrosis are presented. There were six patients, who presented after unstable SCFE. Of these the index procedure had failed in three, requiring multiple early operations. The other three patients had sustained an inter-trochanteric fracture with a pelvic fracture, a traumatic hip dislocation and a femoral neck fracture respectively. They were treated with intermittent intravenous pamidronate (Aredia, Novartis) commencing within a mean one month of diagnosis (range 5 to 91 days). The dosing protocol has evolved over two years with the current dose being 9 mg/kg/year for 18 months. Mean follow-up is 19.8 months (range 13 to 30 months) with all patients followed for more than one year. Results Eight of the patients are painfree. Six have been instructed to fully weight bear, while two can partial weight bear and one is non-weight bearing. Seven of nine patients do not show significant resorption of the femoral heads at the most recent follow-up. Of the two patients with significant resorption, one patient began to resorb after his medication was ceased, so it was recommenced. He has subsequently undergone a realignment procedure. The other patient had resorption of a section of the femoral head, which had not re-vascularised by 18 months, and this was elevated and bone grafted. These two hips were considered functional in the short term as they were pain free, but their deformity was expected to bring about early osteoarthritis in adult life. Conclusions This early experience lays the foundation for prospective clinical trials of bisphosphonate therapy in adolescents with osteonecrosis. It appears that bisphosphonate treatment protocols for adolescents will need to be prolonged. Our current practice is for a duration of around 18 months with normalisation of uptake on bone scan as the end point for therapy. In relation to the conduct of this study, one or more of the authors is in receipt of a research grant from a non-commercial source


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 226 - 226
1 May 2009
Akens M Bisland SK Karotki A Whyne C Wilson BC Yee AJ
Full Access

Bone is the preferred site of metastases in women with breast cancer, which can cause skeletal-related events (SRE¡¦s) such as pathologic fractures. Bisphosphonates are the current standard of care for treatment of meta-static bone disease by preventing further bone destruction. Photodynamic therapy (PDT) has been applied successfully as a non-radiative treatment for malignancies. In PDT, light is delivered to a tumour after the administration of a photosensitiser. Earlier pre-clinical studies in a metastatic rat model have shown that PDT reduced the tumour burden in the vertebrae. The goal of this investigation was to study the effect of PDT on bisphosphonate pre-treated cancer in-vitro. Human breast cancer cells, MT-1, were cultured until confluent. The following groups were formed: no treatment; incubation with zoledronic acid (24h; 10 ƒÝmol) only; PDT treatment only and incubation with zoledronic acid and PDT treatment. Prior to light application 1 microg/ml of the photosensitiser BPD-MA was added. PDT was performed with a light dose of 1J and 10 J. The cells were stained with a live/dead stain and analyzed by fluorescence microscope and flowcytometry. Incubation of the MT-1 carcinoma cells with bisphosphonate zoledronic acid resulted in a significantly higher number of dying cells following PDT treatment when compared cells that were not treated by zoledronic acid (p< 0.05). When comparing cell groups that did not undergo PDT treatment the incubation with zoledronic acid alone did not have a statistically significant effect on cell survival twenty-four hours following zoledronic acid administration. In-vitro, breast cancer cells appear more susceptible to PDT after they have been incubated with the zoledronic acid. Zoledronic acid, a potent bisphosphonate, inhibits farsenylpyrophosphate (FPP) which is involved in farsenylation of cell membrane proteins. The inhibition of FPP may cause a reduced effect of PDT on cell rescue. The treatment with bisphosphonates seems to have a synergistic effect with PDT treatment. As such, light dosimetry in PDT treatment may need to take into account potential therapeutic interactions between PDT and current medical therapies in the treatment of skeletal metastatic burden


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 189 - 189
1 Sep 2012
Murphy C O'Flanagan S Keogh P Kenny P
Full Access

Introduction. The emergence of a new variant of subtrochanteric stress fractures of the femur affecting patients on oral bisphosphonate therapy has only recently been described. This fracture is often preceded by pain and distinctive radiographic changes, and associated with a characteristic fracture pattern. We undertook a review of this cohort of patients in our service. Method. A retrospective review was carried out looking for patients with subtrochanteric fractures who were taking oral bisphosphonates presenting with a low velocity injury over a two year period. Clinical data and radiographs were assessed. Results. 11 fractures were found in 10 patients matching the inclusion criteria outlined. All were female, and taking bisphosphonates for a mean of 4.3 years. 5 of the 10 patients described prodromal symptoms, for an average of 7.8 months before fracture. Although all fractures were deemed low velocity, 5 of 11 were atraumatic. 3 patients have had bilateral subtrochanteric fractures. Presence of the distinctive radiological ‘bleb’ was common. Surveillance on 2 patients shows lateral cortical blebs on the contralateral femur which merit close follow up. Conclusion. Patients taking oral bisphosphonate therapy may be at risk of a new variant of stress fracture of the proximal femur. Awareness of the symptoms is key to ensure appropriate investigations are undertaken. Following such a fracture surveillance of the contralateral femur is recommended, and the option of discontinuing bisphosphonates should be discussed


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 440 - 440
1 Jul 2010
Gibbons C Jones F Taylor R Knowles H Hogendoorn P Wass J Balke3 M Gebert3 C Athanasou NA
Full Access

Giant cell tumour of bone (GCTB) is an expansile osteolytic tumour of bone which contains numerous osteoclast-like giant cells. GCTB is a locally aggressive tumour which can cause extensive bone destruction that can be difficult to control surgically, up to 35% of cases recurring after simple curettage. Bisphosphonates are anti-resorptive agents that have proved effective in the treatment of a number of osteolytic conditions. In keeping with its known effect on osteoclasts, we found that the aminobisphosphonate zoledronate abolished in vitro lacunar resorption in cultures of osteoclasts isolated from GCTB. The effect of zoledronate and other bisphosphonates on 15 cases of recurrent primary GCTB, four of which had metastasised to the lung, was assessed clinically. Most recurrent tumours did not exhibit progressive enlargement and, in some cases, both primary and metastatic GCTBs showed a degree of radiological improvement following treatment However, tumours did not diminish in size and, in some cases, no apparent treatment effect was noted. Our findings provide in vitro evidence for the use of bisphosphonates to inhibit the progressive osteolysis associated with GCTB. In vivo, these agents produced a degree of clinical and radiological improvement in some cases. This study reports results from three European centres where bisphosphonates are being used to treat recurrent GCTB and highlights the fact that these centres are all employing different clinical indications and different regimes of bisphosphonate treatment. Bisphosphonates have significant side effects and indications for treatment and standardisation of drug type and dosage regimes (and measurement of agreed outcome measures to determine treatment efficacy) should be established before these agents are included as part of a treatment protocol to control GCTB tumour growth and osteolysis


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 399 - 399
1 Jul 2008
Malik A Lakshmanan P Gerrand C Haslam P
Full Access

Background: Giant-cell tumour (GCT) of bone is a benign but aggressive tumour, usually treated by radical surgical curettage. Surgical treatment of GCT involving the ischium is associated with a high local recurrence rate. We describe a case in which serial arterial embolisation and bisphosphonate treatment resulted in radiological healing of the tumour. So far we have avoided surgical treatment. Case Report: A 40-year-old lady was referred to the bone tumour unit following a fall. A plain radiograph of the pelvis revealed a lytic lesion in the ischium, extending into the posterior column of the acetabulum and associated with a pathological fracture. Biopsy confirmed a diagnosis of GCT. Given the anatomic location, the tumour was treated with serial arterial embolisation and intravenous zoledronate infusions. Follow up at one-year shows healing of the lesion, with no radiological evidence of recurrence. The patient has so far avoided surgery. Discussion: Serial arterial embolisation has been described in the treatment of giant cell tumours in anatomical regions where surgery is likely to be associated with significant morbidity, such as the sacrum. There is a sound theoretical basis for the use of bisphosphonates in this disease; they have been shown to cause apoptosis of the osteoclast-like giant cells and interfere with osteoclast recruitment. As far as we are aware this is the first case described in which embolisation and bisphosphonate treatment appears to have led to healing and stabilisation of the lesion. The durability of this response remains uncertain


Bone & Joint Research
Vol. 4, Issue 6 | Pages 99 - 104
1 Jun 2015
Savaridas T Wallace RJ Dawson S Simpson AHRW

Objectives. There remains conflicting evidence regarding cortical bone strength following bisphosphonate therapy. As part of a study to assess the effects of bisphosphonate treatment on the healing of rat tibial fractures, the mechanical properties and radiological density of the uninjured contralateral tibia was assessed. Methods. Skeletally mature aged rats were used. A total of 14 rats received 1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium chloride (control) daily. Stress at failure and toughness of the tibial diaphysis were calculated following four-point bending tests. Results. Uninjured cortical bone in the iban group had a significantly greater mean (standard deviation (. sd. )), p < 0.001, stress at failure of 219.2 MPa (. sd. 45.99) compared with the control group (169.46 MPa (. sd. 43.32)) following only nine weeks of therapy. Despite this, the cortical bone toughness and work to failure was similar. There was no significant difference in radiological density or physical dimensions of the cortical bone. Conclusions. Iban therapy increases the stress at failure of uninjured cortical bone. This has relevance when normalising the strength of repair in a limb when comparing it with the unfractured limb. However, the 20% increase in stress at failure with iban therapy needs to be interpreted with caution as there was no corresponding increase in toughness or work to failure. Further research is required in this area, especially with the increasing clinical burden of low-energy diaphyseal femoral fractures following prolonged use of bisphosphonates. Cite this article: Bone Joint Res 2015;4:99–104


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 53 - 53
1 Oct 2016
Ma S Goh E Patel B Jin A Boughton O Cobb J Hansen U Abel R
Full Access

Osteoporosis is a global health issue with 200 million people suffering worldwide and it is a common condition in the elderly. Bisphosphonates including alendronate and risendronate are considered as the first line treatment for osteoporosis. However, there is increasing evidence that bisphosphonate (BP) therapy is associated with atypical fractures. Animal studies have reported a dose-dependent association between the duration of BP therapy and the accumulation of micro-damage. We tested the hypothesis that hip fracture patients treated with BP exhibited greater micro-damage density than untreated fracture and ‘healthy’ aging non-fracture controls. Trabecular bone cores from patients treated with BP were compared with patients who had not received any treatment for bone metabolic disease (ethics reference: R13004). Non-fractured cadaveric femora from individuals with no history of bone metabolic disease were used as controls. Cores were imaged in high spatial resolution (∼1.3µm) using Synchrotron X-ray tomography (Diamond Light Source Ltd.) A novel classification system was devised to characterise features of micro-damage in the Synchrotron images: micro-cracks, diffuse damage and perforations. Synchrotron micro-CT stacks were visualised and analysed using ImageJ, Avizo and VGStudio MAX. Our findings show that the BP group had the highest micro-damage density across all groups. The BP group (7.7/mm. 3. ) also exhibited greater micro-crack density than the fracture (4.3/mm. 3. ) and non-fracture (4.1/mm. 3. ) controls. Furthermore, the BP group (1.9/mm. 3. ) demonstrated increased diffuse damage when compared to the fracture (0.3/mm. 3. ) and non-fracture (0.8/mm. 3. ) controls. In contrast, the BP group (1.9mm. 3. ) had fewer perforations than fracture (3.0/mm. 3. ) and non-fracture controls (3.9/mm. 3. ). BP inhibits bone remodelling, thereby reducing the number of perforated trabeculae, but over-suppression leads to micro-damage accumulation. Accumulated damage could weaken the trabecular bone in the femoral head and neck, increasing the risk of a fracture during a trip or fall


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 130 - 130
1 Feb 2017
Ma S Goh E Patel B Jin A Boughton O Cobb J Hansen U Abel R
Full Access

Introduction. Bisphosphonates (BP) are the first-line therapy for preventing osteoporotic fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate use is associated with over-suppression of remodeling. Animal studies have reported that BP therapy is associated with accumulation of micro-cracks (Fig. 1) and a reduction in bone mechanical properties, but the effect on humans has not been investigated. Therefore, our aim was to quantify the mechanical strength of bone treated with BP, and correlate this with the microarchitecture and density of micro-damage in comparison with untreated osteoporotic hip-fractured and non-fractured elderly controls. Methods. Trabecular bone cores from patients treated with BP were compared with patients who had not received any treatment for bone osteoporotic disease. Non-fractured cadaveric femora from individuals with no history of bone metabolic disease were also used as controls. Cores were imaged in high resolution (∼1.3µm) using Synchrotron X-ray tomography (Diamond Light Source Ltd.) The scans were used for structural and material analysis, then the cores were mechanically tested in compression. A novel classification system was devised to characterise features of micro-damage in the Synchrotron images: micro-cracks, diffuse damage and perforations. Synchrotron micro-CT stacks were visualised and analysed using ImageJ, Avizo and VGStudio MAX. Results. Our findings demonstrated that patients treated with BP (17.2 MPa) had significantly lower tissue strength than untreated fracture (24.0 MPa) and non-fracture controls (28.0 MPa). Yet treated and untreated hip-fracture patient's exhibited comparable bone microarchitecture, volume fraction, apparent and material density. The data also revealed that the BP group had the highest micro-damage density across all groups. The BP group (7.7/mm. 3. ) also exhibited significantly greater micro-crack density than the fracture (4.3/mm. 3. ) and non-fracture (4.1/mm. 3. ) controls. Furthermore, the BP group (1.9/mm. 3. ) demonstrated increased diffuse damage when compared to the fracture (0.3/mm. 3. ) and non-fracture (0.8/mm. 3. ) controls. In contrast, the BP group (1.9. mm. 3. ) had fewer perforations than fracture (3.0/mm. 3. ) and non-fracture controls (3.9/mm. 3. ). Discussion. Despite having comparable microarchitecture apparent and material density, patients taking BP exhibited weaker tissue strength compared to the controls. This weakness is likely to be the the result of the increased accumulation of micro-damage found in BP treated bone. BP inhibits bone remodelling, thereby reducing the number of perforated trabeculae, meanwhile over-suppression leads to the accumulation of micro-cracks and diffuse damage which reduce strength. Conclusion. In our subgroup of hip-fracture patients, BP therapy appeared to offer no mechanical advantage in resisting femoral fractures. BP accumulated micro-damage may have weakened the trabecular bone in the femoral head and neck thereby, therefore increasing the risk of a fracture during a trip or fall


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 19 - 19
1 Apr 2018
Geven E Bakker N van de Ven C Gossen J
Full Access

Bone healing especially in elderly patients is a complex process with limited therapeutic options. In recent years the use of BMP2 for fracture healing is investigated extensively. However, for many applications superficial amounts of BMP2 were required for efficacy due to the absence of sustained release carriers and severe side effects have reported thereby limiting the use of BMP2. Here we present an alternative method based on the use of a combination of low molecular weight compounds, testosterone and alendronate, with established safety profiles in men. Moreover, in contrast to BMP2 which activates both osteoblasts and osteoclasts, this combination of drugs enhances osteoblast activity but simultaneously inhibits osteoclast activity resulting in a net effect of bone growth. Human primary osteoblasts were obtained from bone of patients requiring knee prostheses and cultured in the presence of various concentrations testosterone with and without alendronate. Optimal concentrations were selected and used to stimulate 5×8 mm porcine bone biopsies for 4 weeks. Medium was exchanged regularly and ALP activity was determined. At endpoint biopsies were analyzed in a MicroCT (Bruker Skyscan 1076) to analyze bone volume (BV), trabecular thickness (Tb.Th) and tissue volume (TV). Bone strength was measured using Hounsfield (H10KT) test equipment. The data obtained showed a significant and dose dependent increase in ALP activity of primary osteoblasts (day 7–10) indicating robust activation of osteoblast activity. Optimal and synergistic ALP activation was observed when treating cells with 15–375 nM testosterone in combination with 2 μM alendronate. Significant inhibition (75%) of osteoclast activity was observed by alendronate (2–10 μM) which was further enhanced by high testosterone levels. This concept was further tested in bovine bone biopsies cultured for 4 weeks in the presence of 75 nM testosterone and 2 μM alendronate. MicroCT analysis of the biopsies revealed a ± 40% increase in both bone volume (trabecular and cortical bone) and bone strength. Moreover bone mineral density was increased by 20% indicating increased mineralization of bone tissue. Treatment of human primary osteoblasts or human or bovine bone explants with a combination of an androgen (testosterone) and a bisphosphonate (alendronate) significantly enhance bone growth and bone mineral density. Moreover, bone strength was increased indicating the formation of high quality bone tissue. These findings are the basis for the development of sustained release materials to be applied locally at the bone fracture site, which would allow for low amounts of the drugs and no systemic exposure. By encapsulating testosterone and alendronate in a biodegradable polymer coating, a sustained release up to 5 weeks can be achieved, and the loaded coating can be applied in combination with collagen membranes to improve bone healing or as a coating onto implants to improve osseo-integration