Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Volume 99-B, Issue SUPP_20 December 2017 International Society of Computer-Assisted Orthopaedic Surgery (CAOS), 17th Annual Scientific Meeting, Aachen, June 2017

M. Uehara J. Takahashi S. Ikegami S. Kuraishi M. Shimizu T. Futatsugi H. Oba H. Kato

Pedicle screw (PS) insertion has been critised for its risk of serious injury to neurovascular structures. Although computed tomography (CT)-based navigation has been developed to avoid such complications, perforation remains an issue, even with the aid of additional guidance. We clarify screw perforation rate and direction in 359 consecutive patients treated using CT-based PS insertion and present important considerations for more accurate screw placement.

The medical records of 359 consecutive patients who underwent PS insertion involving C2-L5 using a CT-based navigation system were reviewed. Postoperative CT images were analysed to evaluate the accuracy of screw placement. We investigated both rate and direction of screw perforation according to vertebral level.

Of the 3413 PS that were inserted, 3.0% (104/3413) were judged as Grade 3 (more than 4mm) perforations. Allover perforation rates by vertebral level were shown in Table 1. The rate of these perforations was 5.0% for C2, 7.8% for C3–5, 3.9% for C6–7, 3.4% for T1–4, 3.5% for T5–8, 1.4% for T9–12, and 1.7% for L1–5. We also analysed the odds ratio (OR) for screw perforation in vertebrae accounting for the effects of age and disease. Multivariate analysis identified that PS insertions at C3–5 (OR 4.9, 95% CI 2.2–10.9; p<0.001) were significantly associated with Grade 3 screw perforation as compared with that of L1–5.

Even with CT-based navigation, careful insertion of PS is needed in the middle cervical spine because of a significantly higher perforation rate as compared with the lumbar region.

For figures and tables, please contact authors directly.


G. H. Seeber K. Kolbow U. Maus A. Kluge D. Lazovic

Patient-specific instrumentation (PSI) has been greatly marketed in knee endoprosthetics for the past few years. By utilising PSI, the prosthesis´ accuracy of fit should be improved. Besides, both surgical time and hospital costs should be reduced. Whether these proposed advantages are achieved in medial UKA remains unclear yet. The aim of this study was to evaluate the preoperative planning accuracy, time saving, and cost effectiveness utilising PSI in UKA.

Data from 22 patients (24 knees) with isolated medial unicompartmental knee osteoarthritis were analysed retrospectively. The sample comprised sixteen men and six women (mean age 61 ± 8 years) who were electively provided with a UKA utilising PSI between June 2012 and October 2014. For evaluation of preoperative planning accuracy (1) planned vs. implanted femoral component size, (2) planned vs. implanted tibial component size, and (3) planned vs. implanted polyethylene insert size were analysed. Since UKA is a less common, technically demanding surgery, depending in large part on the surgeon´s experience, preoperative planning reliability was also evaluated with regard to surgeon experience. Moreover, actual surgical time and cost effectiveness utilising PSI was evaluated.

Preoperative planning had to be modified intraoperatively to a wide extend for gaining an optimal outcome. The femoral component had to be adjusted in 41.7% of all cases, the tibial component in 58.3%, and the insert in 87.5%. Less experienced surgeons had to change preoperative planning more often than experienced surgeons. Utilising PSI increased surgical time regardless of experience. Linear regression revealed PSI-planning and surgeon inexperience as main predictors for increased surgical time. Additionally, PSI increased surgical costs due to e.g. enlarged surgical time, license fees and extraordinary expenditure for MRI scans.

The preoperative planning accuracy depends on many different factors. The advertised advantages of PSI could not be fully supported in case of UKA on the basis of the here presented data – especially not for the inexperienced surgeon.


J-Y. Jenny

INTRODUCTION

Unicompartmental knee arthroplasty (UKA) is considered a highly successful procedure. However, complications and revisions may still occur, and some may be related to the operative technique. Computer assistance has been suggested to improve the accuracy of implantation of a UKA. The present study was designed to evaluate the long-term (more than 10 years) results of an UKA which was routinely implanted with help of a non-image based navigation system.

MATERIAL AND METHODS

All patients operated on between 2004 and 2005 for implantation of a navigated UKA were included. Usual demographic and peri-operative items have been record. All patients were prospectively followed with clinical and radiological examination. All patients were contacted after the 10 year follow-up for repeat clinical and radiological examination (KSS, Oxford knee questionnaire and knee plain X-rays). Patients who did not return were interviewed by phone call. For patients lost of follow-up, family or general practitioner was contacted to obtain relevant information about prosthesis survival. Survival curve was plotted according to Kaplan-Meier.


J-Y. Jenny M. De Gori

INTRODUCTION

The patient-specific templates (PST) for total knee arthroplasty (TKA) have been developed to improve accuracy of implantation, decrease operating time and decrease costs. There remains controversy about the accuracy of PST in comparison with either navigated or conventional instruments. Furthermore, the learning curve after introducing PST has not been well defined. The goal of the present study was to perform quality control with a commercially available navigation system and the CUCUM test when introducing PST technique at our academic department.

MATERIAL AND METHODS

The first 50 TKAs implanted with the use of PST at an academic department were scheduled to enter in a prospective, observational study. PSTs were designed to obtain a neutral coronal alignment. All TKAs were implanted by an experienced, high volume senior consultant with high experience in knee navigation. PSTs were carefully positioned over the bone and articular surfaces to the best fit position, without any navigated information. Then the 3D femoral and tibia PSTs positioning were recorded by the navigation system. The difference between expected and achieved position was calculated, and an accuracy score was calculated and plotted according to the rank of observation into a CUSUM test.


G. Dardenne Z. Dib C. HAmitouche C. Lefevre E. Stindel

Functional approaches for the localisation of the hip centre (HC) are widely used in Computer Assisted Orthopedic Surgery (CAOS). These methods aim to compute the HC defined as the centre of rotation (CoR) of the femur with respect to the pelvis. The Least-Moving-Point (LMP) method is one approach which consists in detecting the point that moves the least during the circumduction motion. The goal of this paper is to highlight the limits of the native LMP (nLMP) and to propose a modified version (mLMP).

A software application has been developed allowing the simulation of a circumduction motion of a hip in order to generate the required data for the computation of the HC. Two tests have been defined in order to assess and compare both LMP methods with respect to (1) the camera noise (CN) and (2) the acetabular noise (AN).

The mLMP and nLMP error is respectively: (1) 0.5±0.2mm and 9.3±1.4mm for a low CN, 21.7±3.6mm and 184.7±13.1mm for a high CN, and (2) 2.2±1.2mm and 0.5±0.3mm for a low AN, 35.2±18.5mm and 13.0±8.2mm for a high AN.

In conclusion, mLMP is more robust and accurate than the nLMP algorithm.


Z. Dib G. Dardenne C. Hamitouche C. Lefevre E. Stindel

The hip centre (HC) in Computer Assisted Orthopedic Surgery (CAOS) can be determined either with anatomical (AA) or functional approaches (FA). AA is considered as the reference while FA compute the hip centre of rotation (CoR). Four main FA can be used in CAOS: the Gammage, Halvorsen, pivot, and least-moving point (LMP) methods. The goal of this paper is to evaluate and compare with an in-vitro experiment (a) the four main FA for the HC determination, and (b) the impact on the HKA.

The experiment has been performed on six cadavers. A CAOS software application has been developed for the acquisitions of (a) the hip rotation motion, (b) the anatomical HC, and (c) the HKA angle. Two studies have been defined allowing (a) the evaluation of the precision and the accuracy of the four FA with respect to the AA, and (b) the impact on the HKA angle.

For the pivot, LMP, Gammage and Halvorsen methods respectively: (1) the maximum precision reach 14.2, 22.8, 111.4 and 132.5 mm; (2) the maximum accuracy reach 23.6, 40.7, 176.6 and 130.3 mm; (3) the maximum error of the frontal HKA is 2.5°, 3.7°, 12.7° and 13.3°; and (4) the maximum error of the sagittal HKA is 2.3°, 4.3°, 5.9°, 6.1°.

The pivot method is the most precise and accurate approach for the HC localisation and the HKA computation.


Z. Dib T. Mutsvangwa G. Dardenne C. Hamitouche V. Burdin E. Stindel

Active Shape Models (ASM) have been widely used in the literature for the extraction of the tibial and the femoral bones from MRI. These methods use Statistical Shape Models (SSM) to drive the deformation and make the segmentation more robust. One crucial step for building such SSM is the shape correspondence (SC). Several methods have been described in the literature. The goal of this paper is to compare two SC methods, the Iterative Median Closest Point-Gaussian Mixture Model (IMCP-GMM) and the Minimum Description Length (MDL) approaches for the creation of a SSM, and to assess the impact on the accuracy of the femur segmentation in MRI.

28 MRI of the knee have been used. The validation has been performed by using the leave-one-out cross-validation technique. An ASMMDL and an ASMIMCP-GMMM has been built with the SSMs computed respectively with the MDL and IMCP-GMM methods. The computation time for building both SSMs has been also measured.

For 90% of data, the error is inferior to 1.78 mm and 1.85 mm for respectively the ASMIMCP-GMM and the ASMMDL methods. The computation time for building the SSMs is five hours and two days for respectively the IMCP-GMM and the MDL methods.

Both methods seem to give, at least, similar results for the femur segmentation in MRI. But (1) IMCP-GMM can be used for all types of shape, this is not the case for the MDL method which only works for closed shape, and (2) IMCP-GMM is much faster than MDL.


W. Tian M. Fan Y. Liu

To introduce a new robot-assisted surgical system for spinal posterior fixation which called TiRobot, based on intraoperative three-dimensional images. TiRobot has three components: the planning and navigation system, optical tracking system and robotic arm system. By combining navigation and robot techniques, TiRobot can guide the screw trajectories for orthopedic surgeries.

In this randomised controlled study approved by the Ethics Committee, 40 patients were involved and all has been fully informed and sign the informed consent. 17 patients were treated by free-hand fluoroscopy-guided surgery, and 23 patients were treated by robot-assisted spinal surgery.

A total of 190 pedicle screws were implanted. The overall operation times were not different for both groups. None of the screws necessitated re-surgery for revised placement. In the robot-assisted group, assessment of pedicle screw accuracy showed that 102 of 102 screws (100%) were safely placed (<2 mm, category A+B). And mean deviation in entry point was 1.70 +/− 0.83mm, mean deviation in end point was 1.84 +/− 1.04mm. In the conventional freehand group, assessment of pedicle screw accuracy showed that 87 of 88 (98.9%) were safely placed (<2 mm, category A+B), 1 screw fall in category C, mean deviation in entry point was 3.73 +/− 2.28mm, mean deviation in end point was 4.11 +/− 2.31mm.

This randomised controlled study verified that robot-assisted pedicle screw placement with real-time navigation is a more accuracy and safer method, and also revealed great clinical potential of robot-assisted surgery in the future.


Y. Dai A. Jung C. Hamad L. Angibaud

As previous meta-analyses on the alignment outcomes of Computer-assisted orthopaedic surgery (CAOS) did not differentiate between CAOS systems, limited information is available on the accuracy of a specific CAOS system based on clinical cases. This study assessed the accuracy and precision of achieving surgical goals in approximately 7000 cases using a specific contemporary CAOS system.

Alignment parameters were extracted from the technical logs of 6888 TKA surgeries performed between October 2012 and January 2017 using a contemporary CAOS system. The following surgical parameters were investigated: 1) planned resection defined by the surgeon prior to the bone cuts; 2) Checked resection defined as digitalisation of the bony cuts. Deviations in alignment between planned and checked resections were evaluated, with acceptable resections defined as no more than 3° of resection deviations.

For the tibial resection, deviations in tibial varus/valgus angle and posterior tibial slope were 0.06 ± 0.94° and −0.09 ± 1.73°, respectively. For the femoral resection, deviations in femoral varus/valgus angle amd femoral flexion were 0.00 ± 0.97° and −0.17 ± 1.44°, respectively. High percentages of the resections were found to be acceptable (>94% of the cases).

The CAOS system investigated was shown to provide accurate and precise intra-operative assistance to the surgeon in achieving targeted resections. The study summarised a large number of cases spanning the application history of the specific CAOS system, including both experienced users and new adopters of the technology. The data provided a complete clinical relevant evaluation demonstrating its high accuracy and precision in resection alignment.


Y. Dai C. Hamad A. Jung L. Angibaud

Computer-assisted orthopaedic surgery (CAOS) has been demonstrated to increase accuracy to component alignment of total knee arthroplasty compared to conventional techniques. The purpose of this study was to assess if learning affects resection alignment using a specific CAOS system.

Nine surgeons, each with >80 TKA experience using a contemporary CAOS system were selected. Prior to the study, six surgeons had already experienced with CAOS TKA (experienced), while the rest three were new to the technology (novice). The following surgical parameters were investigated: 1) planned resection, resection parameters defined by the surgeon prior to the bone cuts; 2) checked resection, digitalisation of the realised resection surfaces. Deviations in the alignment between planned and checked resections were compared between the first 20 cases (in learning curve) and the last 20 cases (well past learning curve) within each surgeon. Any significance detected (p < 0.05) with >1° difference in means indicated clinically meaningful impact on alignment by the learning phase.

Both pooled and surgeon-specific analysis exhibited no clinically meaningful significant difference between the first 20 and the last 20 cases from both experienced and novice surgeon groups. The resections in both the first 20 and the last 20 cases demonstrated acceptable rates of over 95% in alignment (<3° deviation) for both experienced and novice surgeons.

This study demonstrated that independent of the surgeon's prior CAOS experiences, the CAOS system investigated can provide an accurate and precise solution to assist in achieving surgical resection goals with no clinically meaningful compromise in alignment accuracy and outliers during the learning phase.


N. Confalonieri A. Manzotti A. Biazzo

Introduction

At a minimum 12 years follow-up the Authors performed a matched paired study between 2 groups: Bi-Unicompartimental (femoro-tibial) versus Total Knee Replacements, both navigated, they hypothesised that Bi-UKR guarantees a clinical score and patient satisfaction at least similar to TKR without differences in survivorship.

Materials and Methods

19 BI-UKR (1999–2003) were included in the study (group A). Every single patients in group A was matched to a computer-assisted TKR implanted in the same period (group B). The clinical outcome was evaluated using the Knee Society Score, the GIUM Score and the WOMAC Arthritis Index. Radiographically the HKA angle and the Frontal Tibial Component angle (FTC) were. Statistical analysis of the results was performed and Kaplan-Meir survival rate was assessed in both the groups.


A. W. Yu B. G. Zheng

Accurate 3D pre-operative planning shows significance of improving the precision of Total Hip Arthroplasty (THA) and Total Knee Arthroplasty (TKA). Since CT acquisition leads to high radiation exposure to patients, it is clinically desirable to find an alternative to CT scan for planning THA or TKA such as patient-specific 2D–3D reconstruction from a limited number of 2D calibrated X-ray images acquired with much lower radiation dose e.g. EOS imaging. Feature-based 2D–3D non-rigid registration based on the construction of statistical shape model (SSM) as a priori has been applied to reconstruct the surface models of proximal femur, and also the surface reconstruction of lower extremity for TKA has been validated in a cadaveric study by Zheng et al. On the other hand, intensity-based 2D–3D non-rigid registration can reconstruct the patient-specific intensity volumes like CTs to allow an insight into lower extremity morphology such as intramedullary anatomy, which can provide more comprehensive information in routine clinical practice. In this study, we will present an atlas- based 2D–3D reconstruction method and introduce its application to reconstruct the intensity volumes of lower extremity. Moreover, we take the articulation in the knee joint into consideration so as to avoid the penetration between femur and tibia which is favourable for the pre-operative planning. The results of the experiments demonstrated the efficacy of the proposed method on reconstructing the lower extremity morphology as well as the intramedullary canal anatomy.


T. Martin A. Alk J. Kozak

The key for a successful total hip replacement (THR) and the longevity of the implant is the correct alignment of the acetabular cup which is to be considered as the most critical component. The alignment of the cup is defined with respect to anterior pelvic plane (APP). The APP defines the reference for the anteversion and inclination angles which sets the basis for the correct alignment of the implant. The angle of the plane is created by three distinct anatomical landmarks which are represented by two anterior superior iliac spines (ASIS) and the symphysis pubis. The angle of the APP in respect to the coronal plane defines the pelvic tilt (PT) which can be anterior or posterior. The rotation of the pelvis highly depends on the individual anatomy of the subject. This means that a neutral pelvic tilt (PT) in supine position is rarely observed and also may be dissimilar in standing position. In this paper we present a non-invasiveness and cost-effective prototype for measuring the patient-specific PT under the use of a navigated smart-device based ultrasound system for supporting surgery planning. In view of the non-invasiveness method the system can be used to measure pre- and postoperative pelvic orientation. With the use of an artificial hip reference model different cases were measured. The computed results look very promising with a standard deviation of ±1°.


S. Pflugi T. Lerch R. Vasireddy N. Boemke M. Tannast T. M. Ecker K. Siebenrock G. Zheng

Purpose

To validate a small, easy to use and cost-effective augmented marker-based hybrid navigation system for peri-acetabular osteotomy [PAO] surgery.

Methods

A cadaver study including 3 pelvises (6 hip joints) undergoing navigated PAO was performed. Inclination and anteversion of two navigation systems for PAO were compared during acetabular reorientation. The hybrid system consists of a tracking unit which is placed on the patient's pelvis and an augmented marker which is attached to the patient's acetabular fragment. The tracking unit sends a video stream of the augmented marker to the host computer. Simultaneously, the augmented marker sends orientation output from an integrated inertial measurement unit (IMU) to the host computer. The host computer then computes the pose of the augmented marker and uses it (if visible) to compute acetabular orientation. If the marker is not visible, the output from the IMU is used to update the orientation. The second system served as ground truth and is a previously developed and validated optical tracking-based navigation system.


A. Alk T. Martin J. Kozak

In orthopaedic spine surgery pedicle screw systems are used for stabilisation of the spine after injuries or disorders. With an percutaneous operation method surgeons are faced with huge challenges compared to an open surgery, but it's less traumatic and the patient benefits with a faster rehabilitation and less traumatic injuries. The screw positions and the required rod dimensions for the stabilising connection between the screws are hard to define without an open view on the operating field. Because of these facts a new smart device based system for rod shape determination was invented. Therefore, an application was developed, which integrates a localiser module to get the position data of the pedicle screws, with help of rigid bodies placed on top of the pedicle screws down-tubes. An algorithm was developed to choose the best fitting rod to connect the pedicle screws with help of calculating the rod length and the rod radius. The system was tested in a test scenario where four pedicle screws were drilled into a wooden plate. The positions of the screws were adjusted to fit a curved and a straight rod. In the test scenario the application chose always the rod correctly.


I. Perets J. P. Walsh M. R. Close B. Mu L. C. Yuen B. G. Domb

Background

Robotic assistance is being increasingly utilised in the surgical field in an effort to minimise human error. In this study, we report minimum two-year outcomes and complications for robotic-assisted total hip arthroplasty.

Methods

Data were prospectively collected and retrospectively reviewed between June 2011 and April 2014. Inclusion criteria were primary robotic-assisted THAs treating idiopathic osteoarthritis with ≥ 2- year follow-up. Demographics, operating time, complications, 2-year outcome scores and satisfaction, and subsequent surgeries were recorded.


D. Knez J. Mohar R. J. Cirman B. Likar F. Pernuš T. Vrtovec

We present an analysis of manual and computer-assisted preoperative pedicle screw placement planning. Preoperative planning of 256 pedicle screws was performed manually twice by two experienced spine surgeons (M1 and M2) and automatically once by a computer-assisted method (C) on three-dimensional computed tomography images of 17 patients with thoracic spinal deformities. Statistical analysis was performed to obtain the intraobserver and interobserver variability for the pedicle screw size (i.e. diameter and length) and insertion trajectory (i.e. pedicle crossing point, sagittal and axial inclination, and normalized screw fastening strength). In our previous study, we showed that the differences among both manual plannings (M1 and M2) and computer-assisted planning (C) are comparable to the differences between manual plannings, except for the pedicle screw inclination in the sagittal plane. In this study, however, we obtained also the intraobserver variability for both manual plannings (M1 and M2), which revealed that larger differences occurred again for the sagittal screw inclination, especially in the case of manual planning M2 with average differences of up to 18.3°. On the other hand, the interobserver variability analysis revealed that the intraobserver variability for each pedicle screw parameter was, in terms of magnitude, comparable to the interobserver variability among both manual and computer-assisted plannings. The results indicate that computer-assisted pedicle screw placement planning is not only more reproducible and faster than, but also as reliable as manual planning.


M. Boudissa H. Oliveri M. Chabanas P. Merloz J. Tonetti

Several preoperative planning tools in computer-assisted surgery in acetabular fractures have been proposed. Moreover, all these preoperative planning tools are based on geometrical repositioning with their own limitations. The aim of this study was to evaluate the value of our prototype virtual planning tool using a rigid biomechanical model to predict failure in fracture reduction.

Between November of 2015 and June of 2016, 10 patients were operated by the main author for acetabular fracture in our institution. To validate our biomechanical model planning tool, biomechanical simulation was performed for each patient immediately after the surgery. Reduction quality was assessed on post-operative CT scans. A 3D model of the acetabular fracture was build out of the CT images using the non-commercial software Itksnap. Then a biomechanical model implemented within the non-commercial Artisynth framework was used to perform virtual reduction. Surgical approach and surgical strategy according to the operative report were simulated. The simulated reductions and the surgical reductions were compared.

The same reductions were obtained during surgery and biomechanical simulation in the 10 cases. For 7 cases, reduction was achieved by anterior surgical approach and so was the simulation. For 3 cases, reduction was achieved by posterior surgical approach and so was the simulation. The biomechanical simulation found similar results using the same surgical strategy with 9 anatomical reductions (90%) and one imperfect reduction (10%). The mean duration to perform acetabular planning surgery was 24 +/− 9 min [16–38].

Our virtual planning tool using a rigid biomechanical model can predict success or failure in fracture reduction according to the surgical approach and the surgical strategy.


M. Mediouni D. Ziou F. Cabana

With the advancement of the virtual technologies, three-dimensional surgical simulators are now possible. In this article, we describe an immersive simulation platform, allowing students in orthopaedic surgery to learn how to deal with a sample diaphyseal fracture of the femur using LC-DCP plate hole, cortical screw and verbrugge forceps. To reach certain realism, weight of the objects and force feedback are used in addition to the visual scene and the 3D sound. The students feel the weight, the strength of the bone when they pierce the holes, and the vibration of the drill. The simulation is implemented by using CAVE, the CyberGlove, CyberGrasp, and 3D sound system.


L. Xu X. Chen H. Wang F. Wang Q. Wang

Over the past decades, computer-aided navigation system has experienced tremendous development for minimising the risks and improving the precision of the surgery. Nowadays, some commercially-available and self-developed surgical navigation systems have already been tested and proved successfully for clinical applications. However, all of these systems use computer screen to render the navigation information such as the real-time position and orientation of the surgical instrument, virtual path of preoperative surgical planning, so that the surgeons have to switch between the actual operation site and computer screen which is inconvenient and impact the continuity of surgery. In recent years, Augmented Reality (AR)- based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualisation of an extensive variety of information to the users.

Therefore, in this study, a pilot study of a surgical navigation system for orthopaedics based on optical see-through augmented reality (AR-SNS) is presented, which encompasses the preoperative surgical planning, calibration, registration, and intra-operative tracking. With the aid of AR-SNS, the surgeon wearing the optical see-through head-mounted display can obtain a fused image that the 3D virtual critical anatomical structures are aligned with the actual structures of patient in intra-operative real-world scenario, so that some disadvantages of the traditional surgical navigation are overcome (For example, surgeon is no longer obliged to switch between the real operation scenario and computer screen), and the safety, accuracy, and reliability of the surgery may be improved.


M. Kimm L. Jauer C. Hinke J. H. Schleifenbaum R. Poprawe

Due to tumours or bone fractures caused by high mechanical impact, the affected tissue has to be removed. Preserving the physiological mobility after the treatment could prevent stress shielding or overload of the surrounding muscles and ligaments. In case of a critical vertebral body defect, the body and its attached disks have to be removed. Thereafter the adjacent vertebral bodies are braced together resulting in limited physiological spine movability. A flexible implant adapted to and preserving the patient-specific physiological spine mobility would be a desirable solution.

Since Ti6Al4V is a common material for medical implants as well as in AM, it is used in this scientific study. Using design methodology tools, a systematic generation of possible solutions is achieved. Furthermore, already existing solid state hinges made of plastics with AM are taken as archetype and their design is adapted to the metal laser powder bed fusion (L-PBF) process. Therefore, an initial geometry design, based on a solid state hinge demonstrator made by TNO was created with Inventor 2016.

By abstracting the vertebrae body segment, two contact surfaces, two joints with rotational degree of freedom (DOF) and axial suspension as well as one solid connection could be identified. As a first implant design, the abstracted joints are replaced by the designed hinges. By the application of simulation software tools the flexion behaviour of the solid state hinge can be analysed. Initial results show that the simulation of the flexion behaviour corresponds with the AM specimen. The applied force necessary for bending the specimen depends on the thickness of the struts.


A. K. C. Wong B. S. M. Kumta C. L. Sze

Navigation-assisted surgery has been reported to enhance resection accuracy in bone sarcoma surgery. Patient-specific instruments (PSIs) have been proposed as a simpler alternative with fewer setup facilities. We investigated the use of 3D surgical planning and PSI in realising computer planning of complex resections in bone sarcoma patients with regards to surgical accuracy, problems, and early clinical results.

We retrospectively studied twelve patients with bone sarcoma treated surgically by PSIs with 3D planning. The procedure was planned using engineering software. The resection accuracy was accessed by comparing CT images of tumour specimens with the planned in seven patients. Mean age was 30.9 (9 – 64). Mean follow-up was 3.1 year (0.5 – 5.3).

31 planes of bone resections were successfully performed using the technique and were considered accurate. The mean time required for placing PSIs was 5.7 minutes (1 – 10) and performing bone osteotomies with the assistance of PSIs was 4.7 minutes (2 – 7). The mean maximum deviation error was 1.7mm (0.5 – 4.4). One PSI was broken during bone resection, and one patient needed re-resection using the same PSI. One pelvic patient died of local recurrence and lung metastases six months postoperatively. One patient developed a soft tissue local recurrence and lung metastasis at 20 months after surgery. The mean MSTS functional score was 27.9 (21 – 30). There were no complications related to 3D planning and PSIs.

In selected patients, 3D surgical planning and PSIs replicate complex bone resections and reconstructions in bone sarcoma surgery. Comparative studies with conventional or navigation- assisted resections are required.


T. Sakai H. Hamada T. Murase M. Takao H. Yoshikawa N. Sugano

The purpose of this experimental study was to elucidate the accuracy of neck-cut PSG setting, and femoral component implantation using neck-cut PSG in the THA through the anterolateral-approach relative to the preoperative planning goals, and to determine the usefulness of PSG compared with the procedure without PSG. A total of 32 hips from 16 fresh Caucasian cadaveric samples were used and classified into 4 groups: cementless anatomical stem implantation with wide-base-contact PSG (AWP: 8 hips, Fig.2); (2) cementless anatomical stem implantation with narrow-base-contact PSG (ANP: 8 hips, Fig.2); (3) cementless anatomical stem implantation without PSG (Control: 8 hips); and (4) cementless taper-wedge stem implantation with wide-base-contact PSG (TWP: 8 hips). The absolute error of PSG setting in the sagittal plane of the AWP group was significantly less than that of the ANP (p=0.003).THA with wide-base- contact PSG resulted in better alignment of the femoral component than THA without PSG or with narrow- base-contact PSG. Although the neck-cut PSG did not control the sagittal alignment of taper-wedge stem, the neck-cut PSG was effective to realise the preoperative coronal alignment and medial height for THA via the anterolateral approach regardless of the femoral component type.

For figures and tables, please contact authors directly.


F. Lampe C.J. Marques J. Lützner

Computer navigation in total knee arthroplasty (TKA) has proven to significantly reduce the number of outliers in prosthesis positioning and to improve mechanical leg alignment. Despite these advantages the acceptance of navigation technologies is still low among orthopaedic surgeons. The time required for navigation might be a reason for the low acceptance. The aim of the study was to test whether software and instrument improvements made in an established navigation system could lead to a significant navigation acquisition time reduction.

An improved and the current version of the TKA navigation software were used to perform surgery trials on a human cadaveric specimen by two experienced orthopaedic surgeons.

A significant effect of the “procedure” (navigation software version) on the navigation time (p< 0.001) was found, whereas the difference between surgeons was not significant (p= 0.2). There was no significant interaction between surgeon and navigation software version (p= 0.5). The improved version led to a significant navigation acquisition time reduction of 28%. Software and instrument improvements led to a statistically significant navigation acquisition time reduction. The achieved navigation acquisition time decrease was independent from surgeon.

Specific instrument and software improvements in established navigation systems may significantly decrease the surgery time segments where navigation takes place. However, the total navigation acquisition time is low in comparison to the total surgery time.


J-K. Seon E-K. Song D-H. Lee J-H. Yeo

Background

There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty.

Methods

Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups.


Full Access
D. Pedersen V. Vanheule R. Wirix-Speetjens O. Taylan H. P. Delport L. Scheys M. S. Andersen

Joint laxity assessments have been a valuable resource in order to understand the biomechanics and pathologies of the knee. Clinical laxity tests like the Lachman test, Pivot-shift test and Drawer test are, however, subjective of nature and will often only provide basic information of the joint. Stress radiography is another option for assessing knee laxity; however, this method is also limited in terms of quantifiability and one-dimensionality.

This study proposes a novel non-invasive low-dose radiation method to accurately measure knee joint laxity in 3D. A method that combines a force controlled parallel manipulator device, a medical image and a biplanar x-ray system.

As proof-of-concept, a cadaveric knee was CT scanned and subsequently mounted at 30 degrees of flexion in the device and placed inside a biplanar x-ray scanner. Biplanar x-rays were obtained for eleven static load cases.

The preliminary results from this study display that the device is capable of measuring primary knee laxity kinematics similar to what have been reported in previous studies. Additionally, the results also display that the method is capable of capturing coupled motions like internal/external rotation when anteroposterior loads are applied.

We have displayed that the presented method is capable of obtaining knee joint laxity in 3D. The method is combining concepts from robotic arthrometry and stress radiography into one unified solution that potentially enables unprecedented 3D joint laxity measurements non-invasively. The method potentially eliminates limitations present in previous methods and significantly reduces the radiation exposure of the patient compared to conventional stress radiography.


N. Siroros M. Verjans K. Radermacher J. Eschweiler

The glenohumeral joint is an important joint with large mobility of the human upper extremity. In shoulder arthroplasty patients often has an unsatisfactory outcome. In order to understand the biomechanical complexity of the shoulder, a novel computer controlled experimental shoulder simulator with an innovative muscle control were constructed. The main component of the simulator includes the active pneumatic muscles to replicate the deltoid and the rotator-cuff function and two springs as passive muscle. The aim of this study is to evaluate the impact of a variation of shoulder joint geometries on shoulder biomechanics in the basis of motion analysis. The radius of the glenoid cavity varied from 28–33mm with 2.5mm increment while the radius the humeral head are varied from 20.1–25.1 with 2.5mm increment. The “teach-in” function of the simulator allows an operator to assign the movement to the simulator where the lengths of the pneumatic muscles are recorded. Then the simulator repeats the assigned movement according to the recorded muscles length. The daily living activities includes abduction/adduction, internal/external rotation with adducted arm, and circumduction. The results show promising repeatability of the simulator with minor deviation. However, damage on the surface of the humeral head has been found which should be further studied for both shoulder behavior investigation and the shoulder simulator optimisation. Therefore, this study is a decent initial study toward the verification of the simulator and lead to a better understanding of shoulder biomechanical behavior to cope with the clinical problems in the future.


M.C.M. Fischer S. Schörner S. Rohde C. Lüring K. Radermacher

The sagittal orientation of the pelvis commonly called pelvic tilt has an effect on the orientation of the cup in total hip arthroplasty (THA). Pelvic tilt is different between individuals and changes during activities of daily living. In particular the pelvic tilt in standing position should be considered during the planning of THA to adapt the target angles of the cup patient-specifically to minimise wear and the risk of dislocation. Methods to measure pelvic tilt require an additional step in the planning process, may be time consuming and require additional devices or x-ray imaging.

In this study the relationship between three functional parameters describing the sagittal pelvic orientation in standing position and seven morphological parameters of the pelvis was investigated. Correlations might be used to estimate the pelvic tilt in standing position by the morphology of the pelvis in order to avoid additional measuring techniques of pelvic tilt in the planning process of THA. For 18 subjects a semi-automatic process was established to match a 3D-reconstruction of the pelvis from CT scans to orthogonal EOS imaging in standing position and to calculate the morphological and functional parameters of the pelvis subsequently.

The two strongest correlations of the linear correlation analysis were observed between morphological pelvic incidence and functional sacral slope (r = 0.78; p = 0.0001) and between morphological pubic symphysis-posterior superior iliac spines-ratio and functional tilt of anterior pelvic plane (r = −0.59; p = 0.0098). The results of this study suggest that patient-specific adjustments to the orientation of the cup in planning of THA without additional measurement of the sagittal pelvic orientation in standing position should be based on the correlation between morphological pelvic incidence and functional sacral slope.


K. Tokunaga M. Okamoto

The anterior pelvic plane (APP) angle is often used as a reference to decide pelvic alignment for hip surgeons. However, Rousseau criticised the validness of the APP angles because the APP angles in standing position measured on conventional standing X-ray films never showed correlation with the other pelvic alignment parameters, such as sacral slope (SS). We measured the APP angles, SS and pelvic tilt (PT) on the non-distorted anteroposterior (AP) and lateral digitally reconstructed radiography (DRR) images in supine position (with CT scans) and AP and lateral X-ray images in standing position (with EOS X-ray machine [EOS imaging, Paris, France]) by using of the same EOS software. Our data showed that the pre- and post-operative APP angles correlated with SS and PT in both supine and standing positions. Our non-distorted high quality images and the EOS software revealed these correlations. Therefore, we can still use the APP angles to decide pelvic alignment for patients who undergo total hip arthroplasty (THA). Recent papers demonstrated positional or chronological dramatic changes of the APP angles between pre- and post-operative states in patients who underwent THA. The EOS system will be a powerful tool to investigate these changes of the pelvic alignments.


H. Hommel A. Akcoltekin B. Thelen J. Stifter T. Schwägli G. Zheng

Good clinical outcomes of Total Knee Arthroplasty (TKA) demand the ability to plan a surgery precisely and measure the outcome accurately. In comparison with plain radiograph, CT-based 3D planning offers several advantages. More specifically, CT has the benefits of avoiding errors resulting from magnification and inaccurate patient positioning. Additional benefits include the assessment in the axial plane and the replacement of 2D projections with 3D data. The concern on 3D CT-based planning, however, lies in the increase of radiation dosage to the patients. An alternative is to reconstruct a patient-specific 3D model of the complete lower extremity from 2D X-ray radiographs. This study presents a clinical validation of a novel technology called “3XPlan” which allows for 3D prosthesis planning using 2D X-ray radiographs.

After a local institution review board (IRB) approval, 3XPlan was evaluated on 24 patients TKA. Pre-operatively, all the patients underwent a CT scan according to a standard protocol. Image acquisition consisted of three separate short spiral axial scans: 1) ipsilateral hip, 2) affected knee and 3) ipsilateral ankle. All the CT images were segmented to extract 3D surface models of both femur and tibia, which were regarded as the ground truth. Additionally, 2 X-ray images were acquired for each affected leg and were used in 3XPlan to derive patient-specific models of the leg. For 3D models derived from both modalities (CT vs. X-ray), five most relevant anatomical parameters for planning TKA were measured and compared with each other. Except for tibial torsion, the average differences for all other anatomical parameters are smaller than or close to 3 degrees.


Y. Maeda N. Sugano N. Nakamura T. Tsujimoto A. Kakimoto

The purpose of this preliminary study was to evaluate the feasibility and accuracy of HipAlign (OrthAlign, Inc., USA) system for cup orientation in total hip arthroplasty (THA). The subjects of this study were 5 hips that underwent primary cementless THA via a posterior approach in the lateral decubitus position. Evaluation 1; after reaming acetabular bone, a trial cup was placed in the reamed acetabulum in an aimed alignment using HipAlign. Then, the trial cup alignment was measured using HipAlign and CT-based navigation system in the radiographic definition. Evaluation 2; a cementless cup was placed in the reamed acetabular in an aimed alignment using CT-based navigation and cup alignment was measured using both methods. After operation, we measured the cup alignment using postoperative CT in each patient. In the results, the average cup inclination measured with HipAlign was around 5 degrees of true cup inclination angles. The average cup anteversion with HipAlign tended to be larger than that with CT-based navigation or postoperative CT in both evaluations. That is because there is a difference in the pelvic sagittal tilt between the lateral position and supine position. In conclusion, this study suggests that guiding cup alignment with the use of HipAlign is feasible through a posterior approach and the mean cup inclination measured with HipAlign showed an acceptable level of accuracy, but the mean cup anteversion is not reliable. We need a further modification for pelvic registration to improve the accuracy of cup anteversion.


O. Gieseler J. Alvarez-Gomez H. Roth J. Wahrburg

Total hip replacement in Germany has been performed in 227293 cases in 2015 and tendency is increasing. Although it is a standard intervention, freehand positioning of cup protheses has frequently poor accuracy. Image-based and image-free navigation systems improve the accuracy but most of them provide target positions as alphanumeric values on large-size screens beneath the patient site. In this case the surgeon always has to move his head frequently to change his eye-focus between incision and display to capture the target values. Already published studies using e.g. IPod-based displays or LED ring displays, show the chance for improvement by alternative approaches. Therefore, we propose a novel solution for an instrument-mounted small display in order to visualise intuitive instructions for instrument guidance directly in the viewing area of the surgeon.

For this purpose a solution consisting of a MicroView OLED display with integrated Arduino microcontroller, equipped with a Bluetooth interface as well as a battery has been developed. We have used an optical tracking system and our custom-designed navigation software to track surgical instruments equipped with reference bodies to acquire the input for the mini-display. The first implementation of the display is adapted to total hip replacement and focuses on assistance while reaming the acetabulum. In this case the reamer has to be centred to the middle point of the acetabular rim circle and its rotation axis must be aligned to the acetabular centre axis by Hakki. By means of these references the actual deviations between instrument and target pose are calculated and indicated. The display contains a cross-hair indicator for current position, two bubble level bars for angular deviation and a square in square indicator for depth control. All display parts are furnished with an adaptive variable scale. Highest possible resolution is 0.5 degrees angular, 1 millimeter for position and depth resolution is set to 2 mm.

Compared to existing approaches for instrument-mounted displays, the small display of our solution offers high flexibility to adjust the mounting position such that it is best visible for the surgeon while not constraining instrument handling. Despite the small size, the proposed visualisation symbols provide all information for instrument positioning in an intuitive way.


H. Letissier G. Walch P. Boileau D. Le Nen E. Stindel J. Chaoui

Introduction

Reverse Total Shoulder Arthroplasty (rTSA) is an efficient treatment, to relieve from pain and to increase function. However, scapular notching remains a serious issue and post-operative range of motion (ROM) presents many variations. No study compared implant positioning, different implant combinations, different implant sizes on different types of patient representative to undergo for rTSA, on glenohumeral ROM in every degree of freedom.

Material and Methods

From a CT-scan database classified by a senior surgeon, CT-exams were analysed by a custom software Glenosys® (Imascap®, Brest, France). Different glenoid implants types and positioning were combined to different humerus implant types. Range of motion was automatically computed. Patients with an impingement in initialisation position were excluded from the statistical analysis. To validate those measures, a validation bench was printed in 3D to analyse different configurations.


E-K. Song J-K. Seon D-H. Lee J-H. Yeo

Total knee arthroplasty using navigation system is known to be more effective than conventional methods in achieving more accurate bone resection and neutral alignment. Mobile bearing is also known to reduce wear and automatically correct rotational mal-alignment of the tibia but the long-term follow-up results of more than 10 years are extremely rare. The purpose of this study is to investigate the results of clinical and radiologic long-term follow-up and complications of total knee arthroplasty using navigation and multi-directional mobile bearing.

From 2003 to 2006, a total of 111 navigation TKAs using multi-directional mobile bearing design were carried out and reviewed retrospectively. TKAs were performed by two experienced surgeons at one institute. Of the 111 patients, 102 were women and 9 were men. The mean duration of follow-up was 11.4 ± 1.0 years (range, 10.1 to 14.08 years). Clinical outcomes were evaluated in terms of Knee Society Score, Hospital for Special Surgery score, Western Ontario and McMaster University (WOMAC) score, range of motion and complications. Long-term radiological outcomes and survival rates were evaluated at least 10 years.

Average preoperative HSS score was 66.5 ± 9.8 and KSS pain and function score were 25.0 ± 11.8 and 44.5 ± 12.3, respectively. Scores improved to 94.1 ± 8.2, 46.6 ± 11.6 and 88.2 ± 14.6 at the last follow up, respectively. Mean preoperative WOMAC scores of 75.8 ± 16.5 improved to 13.8 ± 16.0 at last follow-up. Five knees required re-operation, two for liner breakage for liner wear, one for distal femoral fracture and one for infection. The estimated 10-year prosthesis survival rates for any reason and for prosthesis-related problems were 95.5% and 97.4%, respectively. TKAs using each techniques resulted in similar good clinical outcomes and post-operative leg alignments. Robotic and navigation TKA appeared to reduce the number of postoperative leg alignment outliers and revision rate compared to conventional TKA.


S.E. Bosma P.C. Jutte K.C. Wong L. Paul J.G. Gerbers

Computer Assisted Surgery (CAS) and Patient Specific Instrumentation (PSI) have been reported to increase accuracy and predictability of tumour resections. The technically demanding joint-preserving surgery that retains the native joint with the better function may benefit from the new techniques. This cadaver study is to investigate the surgical accuracy of CAS and PSI in joint-preserving surgery of knee joint.

CT scans of four cadavers were performed and imported into an engineering software (MIMICS, Materialise) for the 3D surgical planning of simulated, multiplanar joint-preserving resections for distal femur or proximal tibia metaphyseal bone sarcoma. The planned resections were transferred to the navigation system (OrthoMap 3D, Stryker) for navigation planning and used for the design and fabrication of the PSI. Each of the four techniques (freehand, CAS, PSI and CAS + PSI) was used in four joint-preserving resections. Location accuracy (the maximum deviation of distance between the planned and the achieved resections) and bone resection time were measured. The results were compared by using t-test (statistically significant if P< 0.05).

Both the CAS+PSI and PSI techniques could reproduce the planned resections with a mean location accuracy of < 2 mm, compared to 3.6 mm for CAS assistance and 9.2 mm for the freehand technique. There was no statistical difference in location accuracy between the CAS+PSI and the PSI techniques (p=0.92) but a significant difference between the CAS technique and the CAS+PSI (p=0.042) or PSI technique (p=0.034) and the freehand technique with the other assisted techniques. The PSI technique took the lowest mean time of 4.78 ±0.97min for bone resections. This was significantly different from the CAS+PSI technique (mean 12.78 min; p < 0.001) and the CAS technique (mean 16.97 min; p = < 0.001).

CAS and PSI assisted techniques help reproduce the planned multiplanar resections. The PSI technique could achieve the most accurate bone resections (within 2mm error) with the least time for bone resections. Combining CAS with PSI might not improve surgical accuracy and might increase bone resection time. However, PSI placement on the bone surface depends only on the subjective feeling of surgeons and may not apply if the extraosseous tumor component is large. Combining CAS with PSI could address the limitations.


L. Theisgen S. Jeromin M. Vossel S. Billet K. Radermacher M. de la Fuente

Robotic surgical systems reduce the cognitive workload of the surgeon by assisting in guidance and operational tasks. As a result, higher precision and a decreased surgery time are achieved, while human errors are minimised. However, most of robotic systems are expensive, bulky and limited to specific applications.

In this paper a novel semi-automatic robotic system is evaluated, that offers the high accuracies of robotic surgery while remaining small, universally applicable and easy to use. The system is composed of a universally applicable handheld device, called Smart Screwdriver (SSD) and an application specific kinematic chain serving as a tool guide. The guide mechanism is equipped with motion screws. By inserting the SSD into a screw head, the screw is identified automatically and the required number of revolutions is executed to achieve the desired pose of the tool guide.

The usability of the system was evaluated according to IEC 60601-1-6 using pedicle screw implementation as an example. The achieved positioning accuracies of the drill sleeve were comparable to those of fully automatic robotic systems with −0.54 ± 0.93 mm (max: − 2.08 mm) in medial/lateral-direction and 0.17 ± 0.51 mm (max: 1.39 mm) in cranial/caudal- direction in the pedicle isthmus. Additionally, the system is cost-effective, safe, easy to integrate in the surgical workflow and universally applicable to applications in which a static position in one or more DOF is to be adjusted.


L. Paul T. Schubert R. Evrard P-L. Docquier

INTRODUCTION

Bone tumour resection and subsequent reconstruction remains challenging for the surgeon. Obtaining adequate margins is mandatory to decrease the risk of local recurrence. Improving surgical margins quality without excessive resection, reducing surgical time and increasing the quality of the reconstruction are the main goals of today's research in bone tumour surgical management. With the outstanding improvements in imaging and computerised planning, it is now a standard. However, surgical accuracy is essential in orthopaedic oncologic surgery (Grimmer 2005). Patient specific instruments (PSI) may greatly improve the surgeon's ability to achieve the targeted resection. Thanks to its physical support, PSI can physically guide the blade yielding to a better control over the cutting process (Wong, 2014). Surgical time might significantly be reduced as well when compared to conventional method or navigated procedure. Finally, reconstruction may gain in rapidity and quality especially when allograft is the preferred solution as PSI can be designed as well for allograft cutting (Bellanova, 2013). Since 2011, PSI have systematically been used in our institution for bone tumour resection and when applicable allograft reconstruction. This paper reports the mid- to long-term medical outcomes on a large series.

MATERIALS AND METHODS

Between 2011 and 2016, we systematically used PSI to remove bone tumours in 30 patients. The pre-operative planning involved the tumour delineation drawn on MRI by the surgeon. The MRI and obtained tumour volume were transferred to the CT-scan by image fusion (co- registration). Cutting planes were positioned around the tumour including a safe margin. The PSI were designed to ensure a sufficient stability but kept thin enough to limit the bone exposure. The PSI was manufactured by 3D-printing in a biocompatible and sterilisable material. PSI has been intraoperatively to cut the bone with predetermined margins. Medical files were reviewed for large data collection: type, size and site of the tumour, pre-and post-operative metastatic status, bone and soft tissues resection margins, local recurrence, use of an allograft and a PSI for graft adjustment or not for the reconstruction, the fusion of the allograft when applicable, the follow-up time and early/late complications.


G. Dagnino I. Georgilas K. Georgilas P. Köhler S. Morad P. Gibbons R. Atkins S. Dogramadzi

The treatment of joint-fractures is a common task in orthopaedic surgery causing considerable health costs and patient disabilities. Percutaneous techniques have been developed to mitigate the problems related to open surgery (e.g. soft tissue damage), although their application to joint-fractures is limited by the sub-optimal intra-operative imaging (2D- fluoroscopy) and by the high forces involved. Our earlier research toward improving percutaneous reduction of intra-articular fractures has resulted in the creation of a robotic system prototype, i.e. RAFS (Robot-Assisted Fracture Surgery) system.

We propose a robot-bone attachment device for percutaneous bone manipulation, which can be anchored to the bone fragment through one small incision, ensuring the required stability and reducing the “biological cost” of the procedure. It consists of a custom-designed orthopaedic pin, an anchoring system (AS secures the pin to the bone), and a gripping system (GS connects the pin and the robot). This configuration ensures that the force/torque applied by the robot is fully transferred to the bone fragment to achieve the desired anatomical reduction.

The device has been evaluated through the reduction of 9 distal femur fractures on human cadavers using the RAFS system. The devices allowed the reduction of 7 fractures with clinical acceptable accuracy. 2 fractures were not reduced: in one case the GS failed and was not able to keep the pin stationary inside the robot (pin rotates inside the GS). The other fracture was too dislocated (beyond the operational workspace capability of the robot). A more stable GS will be designed to avoid displacements between the pin and the robot.


Z. Alsinan M. Cieslak P. He N. Rupertus C. Spinelli M.J. Vives I. Hacihalioglu

In recent years, there has been a growing interest to incorporate ultrasound into computer assisted orthopaedic surgery procedures in order to provide non-ionizing intra-operative imaging alternative to traditional fluoroscopy. However, identification of bone boundaries still continues to be a challenging process due low signal to noise ratio and imaging artifacts. The quality of the collected images also depends on the orientation of the ultrasound transducer with respect to the imaged bone surface. Shadow region is an important feature indicating the presence of a bone surface in the collected ultrasound data. In this work, we propose a framework for the enhancement of shadow regions from extended field of view spine ultrasound data. First bone surfaces are enhanced using a combination of local phase based image features. The combination of the phase features provides a more compact representation of vertebrae bone surfaces with supressed soft tissue interfaces. These enhanced features are used as an input to a L1 norm based regularisation method which emphasised uncertainty in the shadow regions. Validation on phantom and in vivo experiments achieve a mean dice coefficient value of 0.93 and 0.9 respectively.


J.W. Giles F.M. Rodriguez y Baena

Patient Specific Instruments (PSIs) are becoming increasingly common in arthroplasty but have only been used with highly invasive surgical approaches that can result in significant complications. We have previously described a novel PSI for minimally invasive total shoulder arthroplasty and shown that it can accurately guide the creation of guide holes in the humerus and scapula. However, conducting shoulder replacement in a minimally invasive environment precludes the use of traditional instruments. In this work, we describe and evaluate the efficacy of a set of novel instruments that, in conjunction with our PSIs, enable accurate minimally invasive total shoulder arthroplasty to be achieved for the first time.

The key components of this surgical procedure are: 1) a new minimally invasive posterior surgical approach that avoids the need for muscle transection; 2) a novel PSI that enables accurate guide tunnels to be simultaneously created in the humerus and scapula using a c- shaped drill guide that mates to the PSI; 3) a custom humeral head resection guide that uses the humeral guide tunnel; 4) a novel reamer and 3D metal printed gear mechanism for radial displaced drilling both powered by a central driver placed through the humeral head; and 5) custom impactors for glenoid and humeral implantation – the latter is achieved using a modular slap hammer that is guided by the central humeral drill hole. Accuracy of this system was assessed at each surgical step using an optical tracking camera and an iterative closest point registration method to map measurements to the pre-operative plan.

The accuracy results for the physical PSI registration and guide hole drilling were found to be in line with our previously reported results: the intra-articular guide hole locations were 2.2mm and 3.9mm for the humerus and glenoid with angular errors of 2.8° and 8°, respectively. After humeral resection, the humeral cut plane had an angular error of 10.1°. The final humeral implant location had an error of 12.1° and 1.9mm. For the glenoid implant, the positional error was 3.8mm with angular errors of 3.3° ante-retroversion and 8.6° supero- inferior inclination.

We believe that these initial results demonstrate that this minimally invasive PSI and instrumentation system can accurately guide total shoulder replacement while avoiding the complications of open surgery. A full cadaveric testing series is currently being completed.


J. W. Giles Y. Chen S. Bowyer

Joint assessment through manual physical examination is a fundamental skill that must be acquired by orthopaedic surgeons. These joint assessments allow surgeons to identify soft tissue injuries (e.g. ligament tears) which are critical in identifying appropriate treatment options.

The difficulty in communicating the feeling of different joint conditions and the limited opportunities for practice can make these skills challenging to learn, resulting in reduced treatment effectiveness and increased costs. This research seeks to improve the training of joint assessment with the creation of a haptic joint simulator that can train surgeons with increased effectiveness.

A first of its kind haptic simulator is presented, which incorporates: a newly defined kinetic knee simulation, a haptic device for user interaction, and a haptic control algorithm. The knee model has been specifically created for this application and allows six degree-of-freedom manipulation of the tibia while considering the effects of ten knee ligament bundles. The model has been mathematically formulated to allow for the high update rates necessary for smooth and stable haptic simulation.

Two quantitative assessments were made of the model to confirm its clinical validity. The first was against the widely used OpenSim biomechanical simulation software. Simulations of the model's performance for both anterior-posterior draw tests and varus-valgus rotation tests showed less than 0.7%RMSE for force and 5.5%RMSE for moments. Crucially, the proposed model could generate updated forces in less than 1ms, compared to 188ms for OpenSim. The second validation of the model was against a cadaveric knee that was tested using a validated robotic testing platform. This comparison showed that the model could generate similar force- motion pathways to the cadaveric knee after the model's parameters were scaled to match.

Having demonstrated that it is possible to create a computational knee model that has good conformance to gold-standard knee simulations and cadaveric recordings, while updating at less than 1ms, this research has overcome a major hurdle. The next stage of this research will be to incorporate the knee model into a full haptic simulator and perform skill acquisition trials. Given the effectiveness of past haptic training systems in aiding clinical skills acquisition, this research offers a promising way to improve surgeon training, and therefore also patient diagnosis and treatment.


D. Steimer E.M. Suero U. Luecke T. Stuebig C. Krettek E. Liodakis

INTRODUCTION

To test whether there are differences in postoperative mechanical and component alignment, and in functional results, between conventional, navigated and patient-specific total knee arthroplasties in a low-volume centre?

MATERIAL AND METHODS

Retrospective cohort study of 391 patients who received conventional, navigated or patient- specific primary cemented TKA in a low-volume hospital.


Neirynck J Leirs G

Background

Differences of dynamic (extension vs. flexion) coronal alignment in osteoarthritic (OA) knees undergoing primary total knee arthroplasty (TKA) remain poorly studied.

Methods

Prospectively collected measurements of dynamic coronal alignment using an imageless computer-navigation system (Stryker©) during primary TKA were analysed. Coronal alignment was represented by the hip-knee-ankle angle and determined at maximal extension and 90° flexion before making any bony cuts or ligamentous releases. Measurements were subgrouped according to coronal alignment in extension as varus (≤-3°), neutral (>−3°, <+3°) or valgus (≥+3°).


E. Hampp L. Scholl M. Prieto T. Chang A. Abbasi M. Bhowmik-Stoker J. Otto D.J. Jacofsky M.M. Mont

While total knee arthroplasty has demonstrated clinical success, final bone cut and final component alignment can be critical for achieving a desired overall limb alignment. This cadaver study investigated whether robotic-arm assisted total knee arthroplasty (RATKA) allows for accurate bone cuts and component position to plan compared to manual technique. Six cadaveric specimens (12 knees) were prepared by an experienced user of manual total knee arthroplasty (MTKA), who was inexperienced in RATKA. For each cadaveric pair, a RATKA was prepared on the right leg and a MTKA was prepared on the left leg. Final bone cuts and final component position to plan were measured relative to fiducials, and mean and standard deviations were compared.

Measurements of final bone cut error for each cut show that RATKA had greater accuracy and precision to plan for femoral anterior internal/external (0.8±0.5° vs. 2.7±1.9°) and flexion/extension* (0.5±0.4° vs. 4.3±2.3°), anterior chamfer varus/valgus* (0.5±0.1° vs. 4.1±2.2°) and flexion/extension (0.3±0.2° vs. 1.9±1.0°), distal varus/valgus (0.5±0.3° vs. 2.5±1.6°) and flexion/extension (0.8±0.5° vs. 1.1±1.1°), posterior chamfer varus/valgus* (1.3±0.4° vs. 2.8±2.0°) and flexion/extension (0.8±0.5° vs. 1.4±1.6°), posterior internal/external* (1.1±0.6° vs. 2.8±1.6°) and flexion/extension (0.7±0.6° vs. 3.7±4.0°), and tibial varus/valgus* (0.6±0.3° vs. 1.3±0.7°) rotations, compared to MTKA, respectively, (where * indicates a significant difference between the two operative methods based on 2- Variances testing, with α at 0.05). Measurements of final component position error show that RATKA had greater accuracy and precision to plan for femoral varus/valgus* (0.6±0.3° vs. 3.0±1.4°), flexion/extension* (0.6±0.5° vs. 3.0±2.1°), internal/external (0.8±0.5° vs. 2.6±1.6°), and tibial varus/valgus (0.7±0.4° vs. 1.1±0.8°) than the MTKA control, respectively.

In general, RATKA demonstrated greater accuracy and precision of bone cuts and component placement to plan, compared to MTKA in this cadaveric study. For further confirmation, RATKA accuracy of component placement should be investigated in a clinical setting.


P. Sriphirom C. Siramanakul S. Sirisak B. Chanopas P. Setasuban

The “correct” rotational alignment and “normal” rotational alignment may not be the same position. Because of natural tibial plateau has average 3° varus but classical TKA method make tibial cut perpendicularly to tibial mechanical axis. Consequently femoral rotational compensation to 3° becomes necessary. While anatomical TKA method performed tibial cut in 3° varus. Then posterior femoral cut will be parallel to posterior condylar axis and component rotation theoretically should be aligned in natural anatomy. This study compares the rotational alignment between two methods.

Study conducted on 80 navigated TKAs with modified gap technique. Intraoperative femoral rotation retrieved from navigation. Rotational alignment was calculated using the Berger protocol with postoperative computerised tomography scanning. The alignment parameters measured were tibial and femoral component rotations and the combined component rotations.

57 knees with PS design can be classified into 35 knees as anatomical group and 22 knees as classical group. 23 knees with CR design had 12 knees as anatomical group and 11 knees as classical group. The intraoperative femoral rotation in anatomical group had less external rotation than classical group significantly in PS design (0.77°±1.03° vs 2.86°±1.49°, p = 0.00) and also had the same results in CR design (1.33°±1.37°vs 2.64°±0.81°, p = 0.012). However, the postoperative excessive femoral and tibial component rotation compared with native value and combined rotation had no significant differences between classical and anatomical method in both implant design.

Using CAS TKA with gap technique showed no difference in postoperative rotational alignment between classical and anatomical method.


H. Esfandiari C. Anglin J. Street P. Guy A.J. Hodgson

Pedicle screw fixation is a technically demanding procedure with potential difficulties and reoperation rates are currently on the order of 11%. The most common intraoperative practice for position assessment of pedicle screws is biplanar fluoroscopic imaging that is limited to two- dimensions and is associated to low accuracies. We have previously introduced a full-dimensional position assessment framework based on registering intraoperative X-rays to preoperative volumetric images with sufficient accuracies. However, the framework requires a semi-manual process of pedicle screw segmentation and the intraoperative X-rays have to be taken from defined positions in space in order to avoid pedicle screws' head occlusion. This motivated us to develop advancements to the system to achieve higher levels of automation in the hope of higher clinical feasibility.

In this study, we developed an automatic segmentation and X-ray adequacy assessment protocol. An artificial neural network was trained on a dataset that included a number of digitally reconstructed radiographs representing pedicle screw projections from different points of view. This model was able to segment the projection of any pedicle screw given an X-ray as its input with accuracy of 93% of the pixels. Once the pedicle screw was segmented, a number of descriptive geometric features were extracted from the isolated blob. These segmented images were manually labels as ‘adequate’ or ‘not adequate’ depending on the visibility of the screw axis. The extracted features along with their corresponding labels were used to train a decision tree model that could classify each X-ray based on its adequacy with accuracies on the order of 95%.

In conclusion, we presented here a robust, fast and automated pedicle screw segmentation process, combined with an accurate and automatic algorithm for classifying views of pedicle screws as adequate or not. These tools represent a useful step towards full automation of our pedicle screw positioning assessment system.


M. Verstraete S. Van Onsem J. Victor

INTRODUCTION

Thorough understanding and feedback of the post-operative implant position relative to the pre-operative anatomy is missing in today's clinical practice. However, three dimensional insights in the local under or oversizing of the implant can provide important feedback to the surgeon. For the knee for instance, to identify a shift in the sagittal joint line that potentially links to mid-flexion instability or to identify zones at risk for soft tissue impingement.

Despite a proven inferior outcome, clinical post-operative implant evaluation remains primarily based on bi-planar, static 2D x-rays rather than 3D imaging. Along with the cost, a possible reason is the increased radiation dose and/or metal artifact scatter in computed tomography (CT) and/or magnetic resonance imaging (MRI). These detrimental effects are now avoided by using recently released x-ray processing software. This technique uses standard-of-care post-operative x-rays in combination with a pre-operative CT and 3D file of the implant to determine the implant position relative to the pre-operative situation. The accuracy of this new technique is evaluated in this paper using patient cases. Therefore, the obtained implant position is benchmarked against post-operative CT scans.

MATERIALS & METHODS

Retrospectively, 19 patients were selected who underwent total knee arthroplasty and received pre- and post-operative CT of their diseased knee. The CT scans were performed with a pixel size of 0.39 mm and slice spacing of 0.60 mm (Somatom, Siemens, München, Germany). All patients underwent TKA surgery using the same bi-cruciate substituting total knee (Journey II, Smith&Nephew, Memphis, USA). Following surgery, standard bi-planar standing x-rays of the operated knee was additionally performed as standard of care. To evaluate the implant position relative to the pre-operative situation, the 3D implants are first positioned on the post-operative CT slices. Using Mimics (Materialise NV, Leuven, Belgium), the pre-operative bone was subsequently automatically matched onto the post-operative scan to identify the implant location relative to the reconstructed pre-operative bone. This has been independently repeated by three observers to assess the inter-observer variability. Second, the post-operative bi-planar x-rays are combined with the reconstructed pre-operative bone and 3D file of the implant. This combination is performed using the 2D-to-3D conversion integrated in the recently launched X-ray module of Mimics. This module uses a contour based registration method to determine the implant and bone position using the post-operative x-rays. For both reconstruction methods, the implant position has been evaluated in six degrees of freedom using an automated Matlab routine; resulting in three translations and three rotations.


M. Verstraete N. Arnout P. De Baets T. Vancouillie T. Van Hoof J. Victor

INTRODUCTION

To assess and compare the effect of new orthopedic surgical procedures, in vitro evaluation remains critical during the pre-clinical validation. Focusing on reconstruction surgery, the ability to restore normal kinematics and stability is thereby of primary importance. Therefore, several simulators have been developed to study the kinematics and create controlled boundary conditions.

To simultaneously capture the kinematics in six degrees of freedom as outlined by Grood & Suntay, markers are often rigidly connected to the moving bone segments. The position of these markers can subsequently be tracked while their position relative to the bones is determined using computed tomography (CT) of the test specimen with the markers attached. Although this method serves as golden standard, it clearly lacks real-time feedback. Therefore, this paper presents the validation of a newly developed real-time framework to assess knee kinematics at the time of testing.

MATERIALS & METHODS

A total of five cadaveric fresh frozen lower limb specimens have been used to quantitatively assess the difference between the golden standard, CT based, method and the newly developed real-time method. A schematic of the data flow for both methods. Prior to testing, both methods require a CT scan of the full lower limb. During the tests, the proximal femur and distal tibia are necessarily resected to fit the knees in the test setup, thus also removing the anatomical landmarks needed to evaluate their mechanical axis. Subsequently, a set of three passive markers are rigidly attached to the femur and tibia, referred to as M3F and M3T respectively. For the CT based method, the marker positions are captured during the tests and a second CT scan is eventually performed to link the marker positions to the knee anatomy. Using in-house developed software, this allowed to offline evaluate the knee kinematics in six degrees of freedom by combining both CT datasets with the tracked marker positions. For the newly developed real-time method, a calibration procedure is first performed. This calibration aims to link the position of the 3D reconstructed bone and landmarks with the attached markers. A set of bone surface points is therefore registered. These surface points are obtained by tracking the position of a pen while touching the bone surface. The pen's position is thereby tracked by three rigidly attached markers, denoted M3P. The position of the pen tip is subsequently calculated from the known pen geometry. The iterative closest point (ICP) algorithm is then used to match the 3D reconstructed bone to the registered surface points. Two types of 3D reconstructions have therefore been considered. First, the original reconstructions were used, obtained from the CT data. Second, a modified reconstruction was used. This modification accounted for the finite radius (r = 1.0 mm) of the registration pen, by shifting the surface nodes 1.0 mm along the direction of the outer surface normal. During the tests, the positions of the femur and tibia markers are tracked and streamed in real-time to an in-house developed, Matlab based software framework (MathWorks Inc., Natick, Massachussets, USA). This software framework simultaneously calculates the bone positions and knee kinematics in six degrees of freedom, displaying this information to the surgeons and operators. To assess the accuracy, all knee specimens have been subjected to passive flexion-extension movement ranging from 0 to 120 degrees of flexion. For each degree of freedom, the average root mean square (RMS) difference between both measurement methods has been evaluated during this movement. In addition, the distribution of the registered surface points has been assessed along the principal directions of the uniformly meshed 3D reconstructions (average mesh size of 1.0 mm).


V. Zakeri F. Fabri M. Karasawa A. J. Hodgson

Bone drilling is conducted in many surgical disciplines such as orthopedics, maxillofacial, and spine surgery. Most of these procedures involve drilling of different bone materials including hard (cortical) and soft (cancellous) tissues. Identifying these tissues is essential for surgeons to minimise damage to underlying nerves and vessels.

The sound signal generated during drilling is a valuable source of information that could potentially be employed. Such sounds can be captured readily and easily through non-contact sensors. Therefore, our goal in this preliminary study is to investigate whether drilling sounds can enable us to distinguish between cortical and cancellous tissues.

A bovine tibial bone was drilled, and the cortical and cancellous drilling sounds were captured. Each sound record was divided into small windows with a length of 50 ms and a 50% overlap. The window length was selected small, because our intended longer-term application is to provide the surgeon with near-real-time feedback. Short time Fourier Transform (STFT) coefficients were extracted from each window and were averaged accordingly to obtain p features. A support vector machine (SVM) algorithm was used for classification, and its accuracy was evaluated for different number of features (p). Two training/testing scenarios were considered, atlas (ATL) and leave- one-out (LOO).

The total accuracies for ATL and LOO were 100% and 93.8% respectively obtained for p=128. Our study on a single specimen demonstrated that it is possible to discriminate between cortical and cancellous bones based on relatively short 50 ms windows of drilling sounds.


M. Touchette C. Anglin P. Guy M. Amlani A. Hodgson

Fluoroscopic C-arms are operated by medical radiography technologists (RTs) in Canadian operating rooms (ORs). While they do receive formal, accredited training, most of it is theoretical, rather than hands-on. During their first encounters in the OR, new RTs can experience difficulty achieving the radiographic views required by surgeons, often needing several scout X-rays during C-arm positioning. Furthermore, ambiguous language by surgeons often inadequately conveys their request. The result is often frustration, unnecessary radiation exposure, and added OR time. The purpose of this study was to evaluate the value of artificial X-rays in improving C-arm positioning performance, with inexperienced C-arm users.

We developed an Artificial X-ray Imaging System (AXIS) that generates Digitally Reconstructed Radiographs (DRRs), or artificial X-ray images, based on the relative position of a C-arm and manikin. 30 participants were enrolled in the user study and performed four activities: an introduction session, an AXIS-guided evaluation, a non-AXIS-guided evaluation, and a questionnaire. The main goal of the study was to assess C-arm positioning performance with and without AXIS guidance. For each evaluation, the participants had to replicate a set of target X-ray images by taking real radiographs of the manikin with the C-arm. During the AXIS evaluation, artificial X-rays were generated at 2 Hz for guidance, while in the non-AXIS evaluation, the participants had to acquire real scout X-rays to guide them toward the correct view.

For each imaging task the number of real X-rays and time required per task was recorded, and the C-arm's pose was tracked and compared to the target pose to determine positioning accuracy; these were averaged for each participant and condition. Hypothesis testing on the means and paired t-tests were carried out using a significance level of α=0.05.

On average, users took significantly fewer real scout X-ray images (53% fewer (2.8 vs 6.0), p<0.001) when guided by AXIS. Lateral distance accuracy was improved by 10% for final C- arm positions and by 26% for the most accurate intermediate C-arm positions when guided by AXIS (p<0.05). There was no significant difference in average task time or angular accuracies between the AXIS and non-AXIS evaluations. Overall, we are encouraged by these findings and plan to further develop this system with the goal of deploying it both for training and intraoperative uses.


D. Cucchi R. Compagnoni P. Ferrua A. Menon P. Randelli

Patient specific instrumentation (PSI) for total knee arthroplasty (TKA) may improve component position and sizing. However, little has been reported about the accuracy of the default plan created by the manufacturer. The purpose of the study was to evaluate the reliability of the manufacturer plan and the impact of surgeon's changes on the final accuracy of the cutting guide sizes.

The planned sizes of 45 TKAs were prospectively recorded from the in the initial manufacturer's proposal and from the final plan modified after surgeon's evaluation and compared to the actually implanted sizes.

The manufacturer's initial proposal differed from the final implant in 20% of the femoral and 51.11% of the tibial components, while the surgeon's plan in 13.33% of the femoral and 26.67% of the tibial components. Surgeon's modifications in the pre-operative were carried out for 11.11% of the femoral components and 51.11% of the tibial ones (p = 0.0299). Appropriate modification occurred in of 88% and 76% of femoral and tibial changes respectively.

The surgeon's accuracy to predict the final component size was significantly different from that of the manufacturer and changes on the manufacturer's plan were necessary to get an accurate preoperative plan of the implant sizes. Careful evaluation by an experienced knee surgeon is mandatory when planning TKA with PSI. Collaboration between surgeons and manufacturers may help obtain improved accuracy in PSI size planning.


K Niu V Sluiter A Sprengers J Homminga N Verdonschot

Improving the accuracy of measuring 6 degree of freedom tibiofemoral kinematics is a crucial step in gait analysis, but skin-marker estimated kinematics are subject to soft tissue artefacts. Fluoroscopic systems have been reported to achieve high accurate kinematics, but their induced irradiation, limited field of view, and high cost hampers routine usage on large patient cohorts. The aim of this study is to assess the feasibility of measuring tibiofemoral kinematics using multi-channel A-mode ultrasound system in cadaver experiment and to assess its achievable accuracy.

A full cadaver was placed with its back on a surgery table while its legs were overhanging the edge of the table. Upper body was fixated and right leg was moved by means of pulling a rope. Two bone pins with optical markers were mounted to the femur and tibia separately to measure the ground truth of motion. Six custom holders containing 30 A-mode ultrasound transducers and 18 optical markers were mounted to six anatomical regions. By measuring the bone to ultrasound transducer distance and using the spatial information of the optical markers on the holders, 30 bone surface points were determined. The corresponding bones (femur and tibia) were registered to these acquired points after which the tibiofemoral kinematics were determined.

This study presents a multi-channel A-mode ultrasound system and the first results have shown its feasibility of reconstructing tibiofemoral kinematics in cadaver experiment. Although the reconstructed tibiofemoral kinematics is less accurate than a fluoroscopic system, it outperforms a skin-mounted markers system. Thus, this A-mode Ultrasound approach could provide a non-invasive and non-radiative method for measuring tibiofemoral kinematics, which may be used in clinic gait analysis or even computer-aided orthopaedic surgery.


J. Henckel M. Durand-Hill S. Noory J. Skinner A. Hart

Additive manufacturing has enabled a radical change in how surgeons reconstruct massive acetabular defects in revision hip surgery. We report on the early clinical and radiological results from our methods for surgical planning, design, and implantation of 3D printed trabecular titanium implants in a cohort of patients with large unclassifiable pelvic defects.

We set up a prospective investigation involving 7 consecutive patients. Inclusion criteria was the following: 1) A history of previous total hip replacement; and 2) Current imaging showing at least a Paprosky 3B defect. Planned acetabular inclination and version was 40° and 20° respectively. Post operatively all patients had a CT scan which was analysed with software to determine component position and compared to planned. Outpatient review was done at 2 weeks (For wound), 6 weeks (for weight bearing and fixation) and 52 weeks (for fixation and infection) post-operative.

The median age at surgery was: 65 years (40–78). The median bone defect volume was 140cm3. Median surgery length was 5.2 hours (3–6.25). Median blood loss was 1300mL (450– 2000). Radiologically, components were stable and no screw breakages were identified. Achieved inclination was 41.0° (29.0–55.6) and achieved version was 15.8° (3.8–43.6). Median Oxford Hip score improved from 9 (2–44) to 25 (18–32).

We have demonstrated a new series of pre, intra and post-operative methods for reconstruction of unclassifiable acetabular bony defects. Initial clinical and radiological results are excellent considering the severity of the bony defects. We recommend the use of our or similar methods when trying to reconstruct these defects.


J. Hsu M. de la Fuente K. Radermacher

Proper component alignment is crucial for a successful total hip arthroplasty (THA). Some studies found safe cup orientations and corresponding stem antetorsions based on a defined desired range of motion (ROM) suitable for activities of daily living. These studies either used complex and time consuming 3D simulations or more simple mathematical formulas which cannot be extended to combined motions.

With the method introduced in this work, any arbitrary motion can be applied. The ROM specified as the ROM of the femur relative to the pelvis is transformed into the ROM of the prosthesis neck relative to the cup for each cup orientation. For this transformation, the orientation and design of the stem are considered. The comparison of the neck and cup orientations is done using a 2D mapping of a 3D spherical surface which reduces the complexity of the calculation.

We found that the femoral antetorsion as well as the neutral stem flexion and adduction have an influence on the resulting safe zone. The result is not just a combined anteversion but a combined orientation. For validating the plausibility of the algorithm, the resulting safe zones are compared to literature. Same results can be achieved using the same input data. Using this technique, a patient-specific safe zone based on the ROM can be derived and adjusted to the stem orientation.


S. Andreß U. Eck C. Becker A. Greiner B. Rubenbauer C. Linhart S. Weidert

Achieving precise open reduction and fixation of acetabular fractures by using a plate osteosynthesis is a complex procedure. Increasing availability of affordable 3D printing devices and services now allow to actually print physical models of the patient's anatomy by segmenting the patient's CT image. The data processing and printing of the model however still take too much time and usually the resulting model is rigid and doesn't allow fracture reduction on the model itself.

Our proposed solution automatically detects relevant structures such as the fracture gaps and cortical bone while eliminating irrelevant structures such as debris and cancellous bone. This is done by approximating a sphere to the exterior surface of a classic segmented STL model. Stepwise, these approximated vertices are projected deeper into any structure such as the acetabular socket or fractures, following a specific set of rules. The resulting surface model finally is adapted precisely to the primary segmented model.

Creating an enhanced surface reconstruction model from the primary model took a median time of 42 sec. The whole workflow from DICOM to enhanced printable 3D file took a median time of 13:25 min. The median time and material needed for the prints without the process was 32:25:36 h and 241,04 g, with the process 09:41:33 h and 65,89 g, which is 70% faster. The price of material was very low with a median of 2,18€ per case. Moreover, fracture reduction becomes possible, allowing a dry-run of the procedure and allowing more precise plate placement.

Pre-contouring of osteosynthesis plates by using these 3D printouts was done for eleven patients prior to surgery. These printouts were validated to be accurate by three experiences surgeons and compared to classic segmented models regarding printing time, material cost and reduction ability. The pre-contouring of the plates was safely achievable. Our results show that improving the operative treatment with the help of enhanced 3D printed fracture models seems feasible and needs comparably little time and cost, thus making it a technique that can easily integrated into the clinical workflow.


N. DePaolis C. Romagnoli M. Romantini T. Frisoni D. Donati

Reconstruction of pelvic bone defect after resection for bone tumours is a challenging procedure especially when the hip joint is involved due to the anatomy and the complex biomechanical and structural function of the pelvic ring. This surgery is associated to high complication rate. The additive 3D printing technology allows us to produce trabecular titanium custom based implants with an accurate planning of resection using bone cutting jigs.

From August 2013 to January 2017, we treated 8 patients for bone pelvic sarcoma with custom-made osteotomy jigs (Nylon) and custom-made trabecular titanium prosthesis produced through rapid prototyping technology based on mirroring of the contralateral hemipelvis. Mean follow up time was 18 months (range 2–30) Wide margins were obtained in all cases, in one a local recurrence developed. Surgical time was 4 hours average (from 180 to 250 mins). No postoperative complications were reported.

Rapid prototyping is a promising technique in order to achieve wide surgical margins and restore the anatomy in pelvic bone tumour resection as well as reducing complications.


F. Péan F. Carrillo P. Fürnstahl O. Goksel

The Interosseous Membrane (IOM) of the forearm is made up of ligaments, which are involved in load balancing of the radioulnar joint and the shaft. Motion models of the forearm are necessary for planning orthopedic surgeries, such as osteotomies, which aim at solving limit of the range of motion or instabilities. However, existing models focus on a pure kinematic approach, omitting the physical properties of the ligaments, thus limiting the range of application by missing dynamical effects.

We developed a model that takes into account the mechanical properties of the IOM. We simulated the pro-supination by creating an elastic coupling to the desired motion around the standard axis of rotation. We tested our model on a healthy subject, using CT-reconstructed bone models, and literature data for the ligaments. Multiple parameters, including forces of ligaments and positions of landmarks, are output for analysis.

The length of the ligaments over pro-supination was in agreement with the literature. Their rest lengths must be recorded in future anatomical studies. The IOM helps in maintaining the contact with cartilage, except in late pronation. Scarring of the central band increases the force generated along the axis of rotation toward the wrist, while scarring of the proximal part does the opposite in pronation.

In contrast to kinematic models, the proposed model is helpful to study the effect of physical properties of the IOM, such scarring, on the forearm motion. Future work will be to apply our model to pathological cases, and to compare to clinical observations.


H. Liu S. Bowyer E. Auvinet F. Rodriguez y Baena

In robot-assisted orthopaedic surgery, registration is a key step, which defines the position of the patient in the robot frame so that the preoperative plan can be performed. Current registration methods have their limitations, such as the requirement of immobilisation of the limbs or the line of sight (LOS) issues. These issues cause inconvenience for the surgeons and interrupt the surgical workflow in the operating room.

Targetting these issues of current registration methods, we propose a camera-robot registration system for joint replacement. The bone geometry, which is measured directly by a depth camera, is aligned to a preoperatively obtained bone model to calculate the pose of the target. Simultaneously, in order to avoid registration failure caused by LOS interruptions, the depth camera tracks objects that may occlude the target bone, and a robot manipulator is used to move the camera away from the nearest obstacle. The optimal camera motion is calculated based on the position and velocity of the obstacle, which avoids the occlusion efficiently without changing the target position in the camera frame. Inverse kinematics of the robot is used to project the Cartesian velocity of the end-effector into the joint space, with kinematic singularities considered for stable robotic control. An admittance controller is designed as the human-robot interface so that the surgeon can directly set the robot configuration by hand according to the actual environment.

Simulations and experiments were conducted to test the performance. The results show that the proposed obstacle avoidance method can effectively increase the distance between the obstacle and the LOS, which lowers the risk of registration failure due to obstacle occlusion. This pilot study is promising in reducing distractions to the surgeon and can help achieve a fluent and surgeon-centred workflow.


W. Theodore J. Little D. Liu J. Bare D. Dickison M. Taylor B. Miles

Despite of the high success of TKA, 20% of recipients remain dissatisfied with their surgery. There is an increasing discordance in the literature on what is an optimal goal for component alignment. Furthermore, the unique patient specific anatomical characteristics will also play a role. The dynamic characteristic of a TKR is a product of the complex interaction between a patient's individual anatomical characteristics and the specific alignment of the components in that patient knee joint. These interactions can be better understood with computational models. Our objective was to characterise ligament characteristics by measuring knee joint laxity with functional radiograph and with the aid of a computational model and an optimisation study to estimate the subject specific free length of the ligaments.

Pre-operative CT and functional radiographs, varus and valgus stressed X-rays assessing the collateral ligaments, were captured for 10 patients. CT scan was segmented and 3D–2D pose estimation was performed against the radiographs. Patient specific tibio-femoral joint computational model was created. The model was virtually positioned to the functional radiograph positions to simulate the boundary conditions when the knee is stressed. The model was simulated to achieve static equilibrium. Optimisation was done on ligament free length and a scaling coefficient, flexion factor, to consider the ligaments wrapping behaviour.

Our findings show the generic values for reference strain differ significantly from reference strains calculated from the optimised ligament parameters, up to 35% as percentage strain. There was also a wide variation in the reference strain values between subjects and ligaments, with a range of 37% strain between subjects. Additionally, the knee laxity recorded clinically shows a large variation between patients and it appears to be divorced from coronal alignment measured in CT. This suggests the ligaments characteristics vary widely between subjects and non-functional imaging is insufficient to determine its characteristics. These large variations necessitate a subject-specific approach when creating knee computational models and functional radiographs may be a viable method to characterise patient specific ligaments.


J. Twiggs W. Theodore A Ruys J. Roe D. Dickison B. Fritsch B. Miles

Component alignment cannot fully explain total knee arthroplasty [TKA] performance with regards to patient reported outcomes and pain. Patient specific variations in musculoskeletal anatomy are one explanation for this. Computational simulations allow for the impact of component alignment and variable patient specific musculoskeletal anatomy on dynamics to be studied across populations. This study aims to determine if simulated dynamics correlate with Patient Reported Outcomes.

Landmarking of key anatomical points and 3D registration of implants was performed on 96 segmented post-operative CT scans of TKAs. A cadaver rig validated platform for generating patient specific rigid body musculoskeletal models was used to assess the resultant motions. Resultant dynamics were segmented and tested for differentiation with and correlation to a 6 month postoperative Knee injury and Osteoarthritis Outcome Score (KOOS).

Significant negative correlations were found between the postoperative KOOS symptoms score and the rollback occurring in midflexion (p<0.001), quadriceps force in mid flexion (p=0.025) and patella tilt throughout flexion (p=0.009, p=0.005, p=0.010 at 10°, 45° and 90° of flexion). A significant positive correlation was found between lateral shift of the patella through flexion and the symptoms score. (p=0.012) Combining a varus/valgus angular change from extension to full flexion between 0° and 4° (long leg axis) and measured rollback of no more than 6mm without roll forward forms a ‘kinematic safe zone’ of outcomes in which the postoperative KOOS score is 11.5 points higher (p=0.013).

The study showed statistically significant correlations between kinematic factors in a simulation of postoperative TKR and post-operative KOOS scores. The presence of a ‘kinematic safe zone’ in the data suggests a patient specific optimisation target for any given individual patient and the opportunity to preoperatively determine a patient specific alignment target.


E. Bogue J. Twiggs D. Liu

Provision of prehabilitation prior to total knee arthroplasty (TKA) through a digital mobile application is a novel concept. Our research evaluates a resource effective and cost effective method of delivering prehabilitation. The primary aim of our research is to determine whether provision of prehabilitation through a mobile digital application impacts inpatient LOS after TKA. The secondary objective is to understand the effect of digital prehabilitation on hospital costs.

An observational, retrospective analysis was performed on a consecutive case series of 64 patients who underwent TKA by a single surgeon over a 21 month period. Exercise provision varied from 3 months to 2 weeks prior to TKA. The outcomes of rehabilitation length of stay, total length of stay and total hospital costs were statistically significantly at p=0.5. The rehabilitation length of stay was 3.79 days in the experimental and 7.33 days in the control group (p = 0.045), the total length of stay was 12.00 days in the control and 8.04 days in the experimental group (p=0.03) and the total cost of the hospital stay was $6357.35AUD for the control and $4343.22AUD for the experimental group (p=0.029).

Our research shows a cost saving with this intervention, as measured by a reduction in rehabilitation length of stay. To our knowledge, this is the first piece of research that analyses the impact of the use of a digital mobile application providing prehabilitation prior to TKA.


O. Paserin N. Quader K. Mulpuri A. Cooper E. Schaeffer A. J Hodgson R. Abugharbieh

Although physical and ultrasound (US)-based screening for congenital deformities of the hip (developmental dysplasia of the hip, or DDH) is routinely performed in most countries, one of the most commonly performed manoeuvres done under ultrasound observation - dynamic assessment - has been shown to be relatively unreliable and is associated with significant misdiagnosis rates, on the order of 29%.

Our overall research objective is to develop a quantitative method of assessing hip instability, which we hope will standardise diagnosis across different raters and health-centres, and may perhaps improve reliability of diagnosis. To quantify dynamic assessment, we propose to use the variability in femoral head coverage (FHC) measurements within multiple US scans collected during a dynamic assessment. In every US scan, we use our recently-developed automatic FHC measuring tool which leverages phase symmetry features to approximate vertical cortex of ilium and a random forest classifier to identify approximate location of the femoral head. Having estimated FHC in each scan, we estimate the change in FHC across all the US scans during a dynamic assessment and compare this change with variability of FHC found in previous studies.

Our findings - in a dynamic assessment on an infant done by an orthopaedic surgeon, the femoral centre moved by up to 19% of its diameter during distraction, from 55% FHC to 74% FHC. This variability is similar to the variability of FHC in static US scans reported in previous studies, so the variability in FHC readings we found are not indicative of any subluxation or dislocation of the infant's femoral head. Our clinician's qualitative assessment concluded the hip to be normal and not indicative of instability. This suggests that our technique likely has sufficient resolution and repeatability to quantify differences in laxity between stable and unstable hips, although this presumption will have to be confirmed in a subsequent study with additional subjects. The long-term significance of this approach to evaluating dynamic assessments may lie in increasing early diagnostic sensitivity in order to prevent dysplasia remaining undetected prior to manifesting itself in early adulthood joint disease.


M. Asseln M. Verjans D. Zanke K. Radermacher

Total knee arthroplasty (TKA) is widely accepted as a successful surgical intervention to treat osteoarthritis and other degenerative diseases of the knee. However, present statistics on limited survivorship and patient-satisfaction emphasise the need for an optimal endoprosthetic care. Although, the implant design is directly associated with the clinical outcome comprehensive knowledge on the complex relationship between implant design (morphology) and function is still lacking.

The goal of this study was to experimentally analyse the relationship between the trochlear groove design of the femoral component (iTotal CR, ConforMIS, Inc., Bedford, MA, USA) and kinematics in an in vitro test setup based on rapid prototyping of polymer-based replica knee implants.

The orientation of the trochlear groove was modified in five different variations in a self-developed computational framework. On the basis of the reference design, one was medially tilted (−2°) and four were laterally tilted (+2°, +4°, +6°, +8°). For manufacturing, we used rapid prototyping to produce synthetic replicates made of Acrylnitril-Butadien-Styrol (ABS) and subsequent post-processing with acetone vapor. The morpho-functional analysis of the replicates was performed in our experimental knee simulator. Tibiofemoral and patellofemoral kinematics were recorded with an optical tracking system during a semi-active flexion/extension (∼10° to 90°) motion.

Looking at the results, the patellofemoral kinematics, especially the medial/lateral translation and internal/external rotation were mainly affected. During low flexion, the patella had a more laterally position relative to the femur with increasing lateral trochlear orientation. The internal/external rotation initially differentiated and converged with flexion. Regarding the tibiofemoral kinematics, only the tibial internal/external rotation showed notable differences between the modified replica implants.

We presented a workflow for an experimental morpho-functional analysis of the knee and demonstrated its feasibility on the example of the trochlear groove orientation which might be used in the future for comprehensive implant design parameter optimisation, especially in terms of image based computer assisted patient-specific implants.


M. Asseln C. Hänisch F. Schick K. Radermacher

In total knee arthroplasty (TKA) the implant design is one key factor for a proper functional restoration of the diseased knee. Therefore, detailed knowledge on the shape (morphology) is essential to guide the design process. In literature, the morphology has been extensively studied revealing differences, e.g. between ethnicity and gender. However, it is still unclear in which way gender-specific morphological differences are sexual dimorphism or explained by differences in size.

The aim of this study was to investigate the morphology of the distal femur under gender-specific aspects for a large group of patients. Statistical analysis was used to reveal significant differences and subsequent correlation analysis to normalise the morphology.

A dataset of n=363 segmented distal femoral bone surface reconstructions (229 female, 134 male) were randomly collected from a database of patients which underwent TKA. In total, 34 morphological features (distances, angles), quantifying the distal femoral geometry, were determined full automatically. Subsequently, graphs and descriptive statistics were used to check normality and gender-specific differences were analysed by calculating the 95% confidence intervals for women and men separately. Finally, significant differences were normalised by dividing each feature by appropriate distance measurements and confidence intervals were recalculated.

Looking at the confidence 95% intervals, 6 of 34 features did not show any significant differences between genders. Remarkably, this primarily involves angular (relative) features whereas distance (absolute) measurements were mostly gender dependent. Then, we normalised all distance measurements and radii according to their direction of measurement: Features defined in medial/lateral (ML) direction were divided by the overall ML width and those following the anterior/posterior direction were normalised based on the overall AP length. The results demonstrated that gender-specific differences mostly disappear by using an adequate normalisation term.

In conclusion, implant sizes (femoral components) should not be linearly scaled according to one dimension. Instead, ML and AP directions should be regarded separately (non-isotropic scaling). Taking this into consideration, gender- specific differences might be neglected.


C. Macke R. Westphal M. Citak N. Hawi E. Liodakis C. Krettek T. Stuebig E. M. Suero

Introduction

High tibial osteotomy (HTO) is a commonly used surgical technique for treating moderate osteoarthritis (OA) of the medial compartment of the knee by shifting the center of force towards the lateral compartment. The amount of alignment correction to be performed is usually calculated prior to surgery and it's based on the patient's lower limb alignment using long-leg radiographs. While the procedure is generally effective at relieving symptoms, an accurate estimation of change in intraarticular contact pressures and contact surface area has not been developed. Using electromyography (EMG), Meyer et al. attempted to predict intraarticular contact pressures during gait patterns in a patient who had received a cruciate retaining force-measuring tibial prosthesis. Lundberg et al. used data from the Third Grand Challenge Competition to improve contact force predictions in total knee replacement. Mina et al. performed high tibial osteotomy on eight human cadaveric knees with osteochondral defects in the medial compartment. They determined that complete unloading of the medial compartment occurred at between 6° and 10° of valgus, and that contact pressure was similarly distributed between the medial and lateral compartments at alignments of 0° to 4° of valgus. In the current study, we hypothesised that it would be possible to predict the change in intra-articular pressures based on extra-articular data acquisition.

Methods

Seven cadavers underwent an HTO procedure with sequential 5º valgus realignment of the leg up to 15º of correction. A previously developed stainless-steel device with integrated load cell was used to axially load the leg. Pressure-sensitive sensors were used to measure intra-articular contact pressures. Intraoperative changes in alignment were monitored in real time using computer navigation. An axial loading force was applied to the leg in the caudal-craneal direction and gradually ramped up from 0 to 550 N. Intra-articular contact pressure (kg) and contact area (mm2) data were collected. Generalised linear models were constructed to estimate the change in contact pressure based on extra-articular force and alignment data.


V. Sabesan G. R. Petersen-Fitts D. J. Lombardo W. Liou

Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimise performance in rotator cuff deficient shoulders. These advancements are not without tradeoff and can have negative biomechanical effects. The objective of this study was to develop an integrated FEA kinematic model to compare the muscle forces and joint reaction force (JRF) of 3 different RSA designs.

A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the OpenSim shoulder model. Static optimisations then allowed for calculation of the individual muscle forces, moment arms and JRF relative to net joint moments. Three dimensional computer models of humeral lateralised design (HLD), glenoid lateral design (GLD), and Grammont design (GD) RSA were integrated and parametric studies were performed.

Overall there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal and external rotation. The joint reactive forces in abduction and flexion decreased similarly for all RSA designs compared to the normal shoulder model, with the greatest decrease seen in the HLD model.

These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in kinematic differences most prominently seen in the deltoid muscle and overall joint reactive forces. Further research utilising this novel integrated model can help guide continued optimisation of RSA design and clinical outcomes.


G. Giordano

INTRODUCTION

The functional and anatomical results of TKA revisions are less good than a primary TKA. The TKA revision frequency increases and we must improve our surgeries and prepare the next standard of these surgeries. The aim of this study was to evaluate the CAOS / one stage strategie to treat the knee PJIs.

MATERIALS

In this prospective study, between September 2011 and December 2014, 41 patients treated for chronic knee PJI in a one stage revision. For all of them, an imageless CAOS system (ExactechGPS, Blue- Ortho, Gieres) was used. A personalised profile of revision was created. All surgeries were performed with the same protocole and by using the same Optetrak CC knee components (Exactech, Gainesville, FL). All operations were performed by a single senior surgeon.

Indications for the revision TKA were (1) revision of a primary TKA or unicondylar knee arthroplasty (n=27) or (2) revision of revisionTKA (n=15).

The measurement of the HKA angle, the Oxford score and the ROM were evaluated pre and post- operatively.


K. Deep F. Picard S. Shankar A. Ewen

Background

The literature quotes up to 20% dissatisfaction rates for total knee replacements (TKR). Swedish registry and national joint registry of England and Wales confirm this with high volumes of patients included. This dissatisfaction rate is used as a basis for improving/changing/modernising knee implant designs by major companies across the world.

Aim

We aimed to compare post TKR satisfaction rates for navigated and non navigated knees.


A. Janß A. Vitting B. Strathen M. Strake K. Radermacher

Nowadays, foot switches are used in almost every operating theatre to support the interaction with medical devices. Foot switches are especially used to release risk-sensitive functions of e.g. the drilling device, the high-frequency device or the X-ray C-arm. In general, the use of foot switches facilitates the work, since they enable the surgeon to use both hands exclusively for the manipulation within the operation procedures. Due to the increasing number of (complex) devices controlled by foot switches, the surgeons face a variety of challenges regarding usability and safety of these human-machine-interfaces.

In the future, the approach of integrated medical devices in the OR on the basis of the open communication standard IEEE 11073 gives the opportunity to provide a central surgical cockpit with a universal foot switch for the surgeon, enabling the interaction with various devices different manufacturers. In the framework of the ongoing OR.NET initiative founded on the basis of the OR.NET research project (2012–2016) a novel concept for a universal foot switch (within the framework of a surgical workstation) has been developed in order to optimise the intraoperative workflow for the OR-personnel.

Here, we developed three wireless functional models of a universal foot switch together with a standardised modular interface for visual feedback via a central surgical cockpit display. Within the development of our latest foot switch, the requirements have been inter alia to provide adequate functionalities to cover the needs for the interventions in the medical disciplines orthopaedic surgery, neurosurgery and ENT.

The evaluation has been conducted within an interaction-centered usability analysis with surgeons from orthopaedics, neurosurgery and ENT. By using the Thinking Aloud technique in a Wizard-of-Oz experiment the usability criteria effectiveness, learnability and user satisfaction have been analysed.

Regarding learnability 83.25% of the subjects stated that the usage of the universal foot switch is easy to learn. An average of 77,2% of users rated the usability of the universal foot switch between good and excellent on the SUS scale. The intuitiveness of the graphical user interface has been approved with 91.75% and the controllability with 83.25%. Finally, 86% of the subjects stated a high user satisfaction.


B. Strathen A. Janß P. Goedde K. Radermacher

Demographic changes will increase the number of surgical procedures in the next years. Therefore, quality assurance of clinical processes, such as the reprocessing of surgical instruments as well as intraoperative workflows will be of increasing importance to ensure patient safety. Surgical procedures are often complex and may involve risks for the patient. For fixation of screws, e.g. in case of pedicle screws, osteosynthesis plates or revision joint replacement surgery implants, the application of defined torques may be crucial in order to achieve optimal therapeutic results and minimal complication rates. In many cases a subjective rating of the surgeon is necessary as no adequate instrumentation is available. With the same subjective feeling, hammering or screwing in are performed to implant e.g. the acetabular component in THA.

Our actual work is dedicated to the implementation of a functional prototypes of sensor- integrated instruments for specific types of intervention (especially in traumatology) and the evaluation of the sensor integrated surgical instruments in combination with RFID technology for smart process optimisation in the operating room as well as for reprocessing of surgical instruments and surgical management in combination with a knowledge-based planning, control and documentation system. Complementary (preferably wireless) sensors such for instrument identification, tracking or more complex measurements such as forces, torques, temperature or impacts during surgery as well as during reprocessing of reusable instruments could enable computer network based quality assurance in a much broader and comprehensive manner.

Within the framework of the OR.NET initiative we follow the approach to integrate wireless sensors for measurement of temperature, force-torque as well as inertial sensors for orientation and impact control, depending on the specific type of application for monitoring of workflows during surgery as well as during reprocessing of reusable instruments and devices. The integration of smart surgical instruments into an open networked operating room based on the open communication standard IEEE 11073 knowledge-based workflow system, can help to improve the process and quality management.


V. Sabesan J. Whaley V. Pathak L. Zhang

Introduction

Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The goal of this study was to identify the optimal augmented glenoid design based on finite element model analysis which will provide key insights into implant loosening mechanisms and stability.

Materials and Methods

Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral contact pressure, the cement stress, the shear stress, and relative micromotions at the bone cement interface.


S. Shalhoub C. Plaskos W. E. Moschetti D. S. Jevsevar L. Dabuzhsky J. M. Keggi

Gap balancing technique aims to achieve equal and symmetric gap at full extension and in flexion; however, little is known about the connection between the native and the replaced knee gaps. In this study, a novel robotic assisted ligament tensioning tool was used to measure the pre- and post- operative gaps to better understand their relationship when aiming for balance gaps in flexion and extension. The accuracy of a prediction algorithm for the post-operative gaps based on the native gap and implant alignment was evaluated in this study. The medial and lateral gap were smallest at full extension. The native gaps increase with flexion until 30 degrees where they plateaued for the remaining flexion range. The native lateral gap was larger than the medial gap throughout the flexion range. Planning for equal gaps at extension and flexion resulted with tightest gaps at these angle; however, the gaps in mid-flexion were 3–4 mm larger. Good agreement was observed between the post-operative results and the predicted gas from the software algorithm. The results showed that the native gaps are neither symmetric nor equal. In addition, aiming for equal gaps reduces the variation at these angles but could result in mid- flexion laxity. Advanced robotics-assisted instrumentation can aid in evaluation of soft-tissue and help in surgical planning of TKA. This allows the surgeon to achieve the targeted outcome as well as record the final implant tension to correlate with clinical outcomes.


K-H. Widmer

Introduction

Computer navigation is a highly sophisticated tool in orthopedic surgery for component placement in total hip arthroplasty (THA). In order to apply it adequately it is of upmost importance that the targets the surgeon is trying to hit are well-defined.

This concept considers all four component orientations: cup inclination (cIncl) and anteversion (cAV), stem antetorsion and neck-to-shaft angle. The optimising goal in this concept is maximising the size of the cSafe-Zone.

Methods

A computerised 3D- model of a total hip prosthesis was used to systematically analyse all combinations of component orientations in automatised batch runs. Component orientations were varied for cup inclination, cup anteversion, neck antetorsion and neck inclination.


W. S. Murphy J. H. Kowal B. Hayden H. Hyun Yun S. B. Murphy

Introduction

Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements.

Methods

Cup orientation in 50 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 184 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured.

Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated.


P. A. Meere G. Salvadore L. Chu P. S. Walker

INTRODUCTION

Soft tissue balancing in knee arthroplasty remains an art. To make it a science reliable quantification and reference values for soft tissue tension and contact loads are necessary. This study intends to prove the concept of a compartmental load safe target zone as a clinical tool for balancing total knee arthroplasties by studying the relationship between post- balancing compartmental load distribution and patient satisfaction at 6 months.

MATERIALS AND METHODS

In this prospective non-randomised clinical series of 102 patients (110 knees), medial and lateral loads were recorded intra-operatively using a tibial liner load sensor system. All knees were balanced using specific algorithm sequences with a goal of equal distribution between compartments. A safe target zone area was defined on a scatterplot graph displaying lateral versus medial loads. Individual points on the graft were coded with their satisfaction score at 6 months.


W. S. Murphy K. Borchard J. H. Kowal S. B. Murphy

Introduction

Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly mal-positioned and that intra-operative radiographic assessment is unreliable. The current study uses postoperative CT to assess the accuracy of a smart mechanical navigation instrument system for cup alignment.

Patients and Methods

Thirty seven hip replacements performed using a smart mechanical navigation device (the HipXpert System) had post-operative CT studies available for analysis. These post-operative CT studies were performed for pre- operative planning of the contralateral side, one to three years following the prior surgery. An application specific software module was developed to measure cup orientation using CT (HipXpert Research Application, Surgical Planning Associates Inc., Boston, Massachusetts). The method involves creation of a 3D surface model from the CT data and then determination of an Anterior Pelvic Plane coordinate system. A multiplaner image viewer module is then used to create an image through the CT dataset that is coincident with the opening plane of the acetabular component. Points in this plane are input and then the orientation of the cup is calculated relative to the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. The actual cup orientation was then compared to the goal of cup orientation recorded when the surgery was performed using the system for acetabular component alignment.


M. Chu-Kay Mak E. Chun-Sing Chui W-L. Tse P-C. Ho

Scaphoid non-union results the typical humpback deformity, pronation of the distal fragment, and a bone defect in the non-union site with shortening. Bone grafting, whether open or arthroscopic, relies on fluoroscopic and direct visual assessment of reduction. However, because of the bone defect and irregular geometry, it is difficult to determine the precise width of the bone gap and restore the original bone length, and to correct interfragmentary rotation. Correction of alignment can be performed by computer-assisted planning and intraoperative guidance. The use of computer navigation in guiding reduction in scaphoid non-unions and displaced fractures has not been reported.

Objective

We propose a method of anatomical reconstruction in scaphoid non-union by computer-assisted preoperative planning combined with intraoperative computer navigation. This could be done in conjunction with a minimally invasive, arthroscopic bone grafting technique.

Methods

A model consisting of a scaphoid bone with a simulated fracture, a forearm model, and an attached patient tracker was used. 2 titanium K-wires were inserted into the distal scaphoid fragment. 3D images were acquired and matched to those from a computed tomography (CT) scan. In an image processing software, the non-union was reduced and pin tracts were planned into the proximal fragment. The K-wires were driven into the proximal fragment under computer navigation. Reduction was assessed by direct measurement. These steps were repeated in a cadaveric upper limb. A scaphoid fracture was created and a patient tracker was inserted into the radial shaft. A post-fixation CT was obtained to assess reduction.