Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MARGIN QUALITY WITH PATIENT-SPECIFIC INSTRUMENTS (PSI) FOR BONE TUMOUR RESECTION

International Society of Computer-Assisted Orthopaedic Surgery (CAOS), 17th Annual Scientific Meeting, Aachen, June 2017



Abstract

INTRODUCTION

Bone tumour resection and subsequent reconstruction remains challenging for the surgeon. Obtaining adequate margins is mandatory to decrease the risk of local recurrence. Improving surgical margins quality without excessive resection, reducing surgical time and increasing the quality of the reconstruction are the main goals of today's research in bone tumour surgical management. With the outstanding improvements in imaging and computerised planning, it is now a standard. However, surgical accuracy is essential in orthopaedic oncologic surgery (Grimmer 2005). Patient specific instruments (PSI) may greatly improve the surgeon's ability to achieve the targeted resection. Thanks to its physical support, PSI can physically guide the blade yielding to a better control over the cutting process (Wong, 2014). Surgical time might significantly be reduced as well when compared to conventional method or navigated procedure. Finally, reconstruction may gain in rapidity and quality especially when allograft is the preferred solution as PSI can be designed as well for allograft cutting (Bellanova, 2013). Since 2011, PSI have systematically been used in our institution for bone tumour resection and when applicable allograft reconstruction. This paper reports the mid- to long-term medical outcomes on a large series.

MATERIALS AND METHODS

Between 2011 and 2016, we systematically used PSI to remove bone tumours in 30 patients. The pre-operative planning involved the tumour delineation drawn on MRI by the surgeon. The MRI and obtained tumour volume were transferred to the CT-scan by image fusion (co- registration). Cutting planes were positioned around the tumour including a safe margin. The PSI were designed to ensure a sufficient stability but kept thin enough to limit the bone exposure. The PSI was manufactured by 3D-printing in a biocompatible and sterilisable material. PSI has been intraoperatively to cut the bone with predetermined margins. Medical files were reviewed for large data collection: type, size and site of the tumour, pre-and post-operative metastatic status, bone and soft tissues resection margins, local recurrence, use of an allograft and a PSI for graft adjustment or not for the reconstruction, the fusion of the allograft when applicable, the follow-up time and early/late complications.

RESULTS

Over a period of 5 years, 30 patients were operated on with PSI (10 osteosarcomas, 4 chondrosarcomas, 10 Ewing sarcomas and 6 other types of bone tumours). Mean follow-up was 27±20 months. 18 cases out of 30 have more than 2 years follow-up and 13 out of 30 have more than 3 years of follow-up. Mean operating time was 6h02±3h44. Mean size of the tumours was 8,4±4,7cm and location was the upper limb in 5 cases, inferior limb in 15 cases and the pelvis in 10 occurrences. Metastatic disease developed postoperatively in 5 patients. Surgical margins in the bone were R0 in all cases but one case where a R1 surgery was planned to preserve a nerve root. We did not observe any local recurrence in the bone. Within soft tissues, margins were classified as R0 in 28 patients and R1 in 2 patients. In 26 cases, an allograft was used to reconstruct the bone defect. In 23 of those patients, the allograft was selected by CT scan and cut using a PSI. In the 3 allografts cut free-handily, only one demonstrated a fusion. Of the 23 cut with a guide, 12 fused completely, 2 demonstrated a partial fusion and 9 were not fused at the last follow-up. At the last follow-up, 2 patients were dead of disease, 5 were alive with metastatic disease and 23 were alive without disease.

DISCUSSION

Oncology is probably the field where PSI can bring the largest advantage when compared to the conventional procedure. Several papers have reported the use of PSI for bone tumour resection. All of them have shown very promising results on in-vitro experiments (Cartiaux 2014), cadaver experiment (Wong 2012) or small clinical series (Bellanova 2013, Gouin, 2014). None of these papers report a large patient series associated with a clinically relevant follow-up. This series is the first mid- to long-term follow-up series involving PSI tumour surgery. These results are showing strong evidences of clinical improvements. It comes into contradiction with PSI for total knee arthroplasty where controversial results on the patient's outcome has been reported (Thienpont 2014). R0 margin has been systematically obtained for all bone cuttings, and local recurrence has been strongly decreased (3%) when compared to the usual recurrence rates published in the literature (from 15% to 35% according to the location). Allograft fusion seems improved as well thanks to the shape-matching of the selected allograft and a close contact between host and allograft at bony junctions. With a longer follow-up, these evidences should be stronger to definitely make PSI the best option for bone tumour resection.