Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in
Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).Aims
Methods
Osteoporosis is common and the health and financial
cost of fragility fractures is considerable. The burden of cardiovascular
disease has been reduced dramatically by identifying and targeting
those most at risk. A similar approach is potentially possible in
the context of fragility fractures. The World Health Organization
created and endorsed the use of FRAX, a fracture risk assessment
tool, which uses selected risk factors to calculate a quantitative,
patient-specific, ten-year risk of sustaining a fragility fracture.
Treatment can thus be based on this as well as on measured bone
mineral density. It may also be used to determine at-risk individuals,
who should undergo bone densitometry. FRAX has been incorporated
into the national
Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.Aims
Methods
Elective surgery has been severely curtailed as a result of the COVID-19 pandemic. There is little evidence to guide surgeons in assessing what processes should be put in place to restart elective surgery safely in a time of endemic COVID-19 in the community. We used data from a stand-alone hospital admitting and operating on 91 trauma patients. All patients were screened on admission and 100% of patients have been followed-up after discharge to assess outcome.Aims
Methods
Sickle cell disease (SCD) is an autosomal recessive inherited condition that presents with a number of clinical manifestations that include musculoskeletal manifestations (MM). MM may present differently in different individuals and settings and the predictors are not well known. Herein, we aimed at determining the predictors of MM in patients with SCD at the University Teaching Hospital, Lusaka, Zambia. An unmatched case-control study was conducted between January and May 2019 in children below the age of 16 years. In all, 57 cases and 114 controls were obtained by systematic sampling method. A structured questionnaire was used to collect data. The different MM were identified, staged, and classified according to the Standard Orthopaedic Classification Systems using radiological and laboratory investigations. The data was entered in Epidata version 3.1 and exported to STATA 15 for analysis. Multiple logistic regression was used to determine predictors and predictive margins were used to determine the probability of MM.Aims
Methods
This study aims to define the epidemiology of trauma presenting to a single centre providing all orthopaedic trauma care for a population of ∼ 900,000 over the first 40 days of the COVID-19 pandemic compared to that presenting over the same period one year earlier. The secondary aim was to compare this with population mobility data obtained from Google. A cross-sectional study of consecutive adult (> 13 years) patients with musculoskeletal trauma referred as either in-patients or out-patients over a 40-day period beginning on 5 March 2020, the date of the first reported UK COVID-19 death, was performed. This time period encompassed social distancing measures. This group was compared to a group of patients referred over the same calendar period in 2019 and to publicly available mobility data from Google.Aims
Methods
Salubrinal is a synthetic agent that elevates phosphorylation
of eukaryotic translation initiation factor 2 alpha (eIF2α) and
alleviates stress to the endoplasmic reticulum. Previously, we reported
that in chondrocytes, Salubrinal attenuates expression and activity
of matrix metalloproteinase 13 (MMP13) through downregulating nuclear
factor kappa B (NFκB) signalling. We herein examine whether Salubrinal
prevents the degradation of articular cartilage in a mouse model
of osteoarthritis (OA). OA was surgically induced in the left knee of female mice. Animal
groups included age-matched sham control, OA placebo, and OA treated
with Salubrinal or Guanabenz. Three weeks after the induction of
OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At
three and six weeks, the femora and tibiae were isolated and the sagittal
sections were stained with Safranin O.Objectives
Methods
The ability of mesenchymal stem cells (MSCs)
to differentiate Despite their increasing application in clinical trials, the
origin and role of MSCs in the development, repair and regeneration
of organs have remained unclear. Until recently, MSCs could only
be isolated in a process that requires culture in a laboratory;
these cells were being used for tissue engineering without understanding
their native location and function. MSCs isolated in this indirect
way have been used in clinical trials and remain the reference standard
cellular substrate for musculoskeletal engineering. The therapeutic
use of autologous MSCs is currently limited by the need for In this annotation we provide an update on the recent developments
in the understanding of the identity of MSCs within tissues and
outline how this may affect their use in orthopaedic surgery in
the future. Cite this article:
There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and toughness of the
tibial diaphysis were calculated following four-point bending tests.Objectives
Methods
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement Cite this article:
Drug therapy forms an integral part of the management
of many orthopaedic conditions. However, many medicines can produce
serious adverse reactions if prescribed inappropriately, either
alone or in combination with other drugs. Often these hazards are
not appreciated. In response to this, the European Union recently
issued legislation regarding safety measures which member states
must adopt to minimise the risk of errors of medication. In March 2014 the Medicines and Healthcare products Regulatory
Agency and NHS England released a Patient Safety Alert initiative
focussed on errors of medication. There have been similar initiatives
in the United States under the auspices of The National Coordinating
Council for Medication Error and The Joint Commission on the Accreditation
of Healthcare Organizations. These initiatives have highlighted
the importance of informing and educating clinicians. Here, we discuss common drug interactions and contra-indications
in orthopaedic practice. This is germane to safe and effective clinical
care. Cite this article:
We evaluated the top 13 journals in trauma and
orthopaedics by impact factor and looked at the longer-term effect regarding
citations of their papers. All 4951 papers published in these journals during 2007 and 2008
were reviewed and categorised by their type, subspecialty and super-specialty.
All citations indexed through Google Scholar were reviewed to establish
the rate of citation per paper at two, four and five years post-publication.
The top five journals published a total of 1986 papers. Only three
(0.15%) were on operative orthopaedic surgery and none were on trauma.
Most (n = 1084, 54.5%) were about experimental basic science. Surgical
papers had a lower rate of citation (2.18) at two years than basic science
or clinical medical papers (4.68). However, by four years the rates
were similar (26.57 for surgery, 30.35 for basic science/medical),
which suggests that there is a considerable time lag before clinical
surgical research has an impact. We conclude that high impact journals do not address clinical
research in surgery and when they do, there is a delay before such
papers are cited. We suggest that a rate of citation at five years
post-publication might be a more appropriate indicator of importance
for papers in our specialty. Cite this article:
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article: