Advertisement for orthosearch.org.uk
Results 1 - 50 of 227
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 601 - 605
1 May 2006
Pitto RP Graydon AJ Bradley L Malak SF Walker CG Anderson IA

The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement navigation system in legs with normal or abnormal mechanical axes. A phantom leg was constructed with simulated hip and knee joints and provided a means to locate the centre of the ankle joint. Additional joints located at the midshaft of the tibia and femur allowed deformation in the flexion/extension, varus/valgus and rotational planes. Using a digital caliper unit to measure the coordinates precisely, a software program was developed to convert these local coordinates into a determination of actual leg alignment. At specific points in the procedure, information was compared between the digital caliper measurements and the image-free navigation system. Repeated serial measurements were undertaken. In the setting of normal alignment the mean error of the system was within 0.5°. In the setting of abnormal plane alignment in both the femur and the tibia, the error was within 1°. This is the first study designed to assess the accuracy of a clinically-validated navigation system. It demonstrates in vitro accuracy of the image-free navigation system in both normal and abnormal leg alignment settings


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1052 - 1061
1 Aug 2014
Thienpont E Schwab PE Fennema P

We conducted a meta-analysis, including randomised controlled trials (RCTs) and cohort studies, to examine the effect of patient-specific instruments (PSI) on radiological outcomes after total knee replacement (TKR) including: mechanical axis alignment and malalignment of the femoral and tibial components in the coronal, sagittal and axial planes, at a threshold of > 3º from neutral. Relative risks (RR) for malalignment were determined for all studies and for RCTs and cohort studies separately. Of 325 studies initially identified, 16 met the eligibility criteria, including eight RCTs and eight cohort studies. There was no significant difference in the likelihood of mechanical axis malalignment with PSI versus conventional TKR across all studies (RR = 0.84, p = 0.304), in the RCTs (RR = 1.14, p = 0.445) or in the cohort studies (RR = 0.70, p = 0.289). The results for the alignment of the tibial component were significantly worse using PSI TKR than conventional TKR in the coronal and sagittal planes (RR = 1.75, p = 0.028; and RR = 1.34, p = 0.019, respectively, on pooled analysis). PSI TKR showed a significant advantage over conventional TKR for alignment of the femoral component in the coronal plane (RR = 0.65, p = 0.028 on pooled analysis), but not in the sagittal plane (RR = 1.12, p = 0.437). Axial alignment of the tibial (p = 0.460) and femoral components (p = 0.127) was not significantly different. We conclude that PSI does not improve the accuracy of alignment of the components in TKR compared with conventional instrumentation. Cite this article: Bone Joint J 2014; 96-B:1052–61


Bone & Joint Research
Vol. 4, Issue 1 | Pages 1 - 5
1 Jan 2015
Vázquez-Portalatín N Breur GJ Panitch A Goergen CJ

Objective . Dunkin Hartley guinea pigs, a commonly used animal model of osteoarthritis, were used to determine if high frequency ultrasound can ensure intra-articular injections are accurately positioned in the knee joint. Methods. A high-resolution small animal ultrasound system with a 40 MHz transducer was used for image-guided injections. A total of 36 guinea pigs were anaesthetised with isoflurane and placed on a heated stage. Sterile needles were inserted directly into the knee joint medially, while the transducer was placed on the lateral surface, allowing the femur, tibia and fat pad to be visualised in the images. B-mode cine loops were acquired during 100 µl. We assessed our ability to visualise 1) important anatomical landmarks, 2) the needle and 3) anatomical changes due to the injection. . Results. From the ultrasound images, we were able to visualise clearly the movement of anatomical landmarks in 75% of the injections. The majority of these showed separation of the fat pad (67.1%), suggesting the injections were correctly delivered in the joint space. We also observed dorsal joint expansion (23%) and patellar tendon movement (10%) in a smaller subset of injections. Conclusion. The results demonstrate that this image-guided technique can be used to visualise the location of an intra-articular injection in the joints of guinea pigs. Future studies using an ultrasound-guided approach could help improve the injection accuracy in a variety of anatomical locations and animal models, in the hope of developing anti-arthritic therapies. Cite this article: Bone Joint Res 2015;4:1–5


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 903 - 906
1 Jul 2009
Trickett RW Hodgson P Forster MC Robertson A

We aimed to determine the reliability, accuracy and the clinical role of digital templating in the pre-operative work-up for total knee replacement. Initially a sample of ten pre-operative digital radiographs were templated by four independent observers to determine the inter- and intra-observer reliability of the process. Digital templating was then performed on the radiographs of 40 consecutive patients undergoing total knee replacement by a consultant surgeon not involved with the operation, who was blinded to the size of the implant inserted. The Press Fit Condylar Sigma Knee system was used in all the patients. The size of the implant as judged by templating was then compared to that of the size used. Good inter- and intra-observer agreement was demonstrated for both femoral and tibial templating. However, the correct size of the implant was predicted in only 48% of the femoral and 55% of the tibial components. Albeit reproducible, digital templating does not currently predict the correct size of component often enough to be of clinical benefit


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 366 - 371
1 Apr 2004
Nabeyama R Matsuda S Miura H Mawatari T Kawano T Iwamoto Y

Our study evaluated the accuracy of an image-guided total knee replacement system based on CT with regard to preparation of the femoral and tibial bone using nine limbs from five cadavers. The accuracy was assessed by direct measurement using an extramedullary alignment rod without radiographs. The mean angular errors of the femur and tibia, which represent angular gaps from the real mechanical axis in the coronal plane, were 0.3° and 1.1°, respectively. The CT-based system, provided almost perfect alignment of the femoral component with less than 1° of error and excellent alignment with less than 3° of error for the tibial component. Our results suggest that standardisation of knee replacement by the use of this system will lead to improved long-term survival of total knee arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1045 - 1048
1 Aug 2008
Shetty AA Tindall AJ James KD Relwani J Fernando KW

The diagnosis of a meniscal tear may require MRI, which is costly. Ultrasonography has been used to image the meniscus, but there are no reliable data on its accuracy. We performed a prospective study investigating the sensitivity and specificity of ultrasonography in comparison with MRI; the final outcome was determined at arthroscopy. The study included 35 patients with a mean age of 47 years (14 to 73). There was a sensitivity of 86.4% (95% confidence interval (CI) 75 to 97.7), a specificity of 69.2% (95% CI 53.7 to 84.7), a positive predictive value of 82.6% (95% CI 70 to 95.2) and a negative predictive value of 75% (95% CI 60.7 to 81.1) for ultrasonography. This compared favourably with a sensitivity of 86.4% (95% CI 75 to 97.7), a specificity of 100.0%, a positive predictive value of 100.0% and a negative predictive value of 81.3% (95% CI 74.7 to 87.9) for MRI. Given that the sensitivity matched that of MRI we feel that ultrasonography can reasonably be applied to confirm the clinical diagnosis before undertaking arthroscopy. However, the lower specificity suggests that there is still a need to improve the technique to reduce the number of false-positive diagnoses and thus to avoid unnecessary arthroscopy


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives

We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting.

Methods

A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency.


Bone & Joint Open
Vol. 4, Issue 11 | Pages 881 - 888
21 Nov 2023
Denyer S Eikani C Sheth M Schmitt D Brown N

Aims. The diagnosis of periprosthetic joint infection (PJI) can be challenging as the symptoms are similar to other conditions, and the markers used for diagnosis have limited sensitivity and specificity. Recent research has suggested using blood cell ratios, such as platelet-to-volume ratio (PVR) and platelet-to-lymphocyte ratio (PLR), to improve diagnostic accuracy. The aim of the study was to further validate the effectiveness of PVR and PLR in diagnosing PJI. Methods. A retrospective review was conducted to assess the accuracy of different marker combinations for diagnosing chronic PJI. A total of 573 patients were included in the study, of which 124 knees and 122 hips had a diagnosis of chronic PJI. Complete blood count and synovial fluid analysis were collected. Recently published blood cell ratio cut-off points were applied to receiver operating characteristic curves for all markers and combinations. The area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values were calculated. Results. The results of the analysis showed that the combination of ESR, CRP, synovial white blood cell count (Syn. WBC), and polymorphonuclear neutrophil percentage (PMN%) with PVR had the highest AUC of 0.99 for knees, with sensitivity of 97.73% and specificity of 100%. Similarly, for hips, this combination had an AUC of 0.98, sensitivity of 96.15%, and specificity of 100.00%. Conclusion. This study supports the use of PVR calculated from readily available complete blood counts, combined with established markers, to improve the accuracy in diagnosing chronic PJI in both total hip and knee arthroplasties. Cite this article: Bone Jt Open 2023;4(11):881–888


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1047 - 1051
1 Sep 2022
Balato G Dall’Anese R Balboni F Ascione T Pezzati P Bartolini G Quercioli M Baldini A

Aims. The diagnosis of periprosthetic joint infection (PJI) continues to present a significant clinical challenge. New biomarkers have been proposed to support clinical decision-making; among them, synovial fluid alpha-defensin has gained interest. Current research methodology suggests reference methods are needed to establish solid evidence for use of the test. This prospective study aims to evaluate the diagnostic accuracy of high-performance liquid chromatography coupled with the mass spectrometry (LC-MS) method to detect alpha-defensin in synovial fluid. Methods. Between October 2017 and September 2019, we collected synovial fluid samples from patients scheduled to undergo revision surgery for painful total knee arthroplasty (TKA). The International Consensus Meeting criteria were used to classify 33 PJIs and 92 aseptic joints. LC-MS assay was performed to measure alpha-defensin in synovial fluid of all included patients. Sensitivity, specificity, positive predictive value, negative predictive value, and the area under the receiver operating characteristic curve (AUC) were calculated to define the test diagnostic accuracy. Results. The AUC was 0.99 (95% confidence interval (CI) 0.98 to 1.00). Receiver operating characteristic (ROC) analysis showed that the optimal cut-off value of synovial fluid alpha-defensin was 1.0 μg/l. The sensitivity of alpha-defensin was 100% (95% CI 96 to 100), the specificity was 97% (95% CI 90 to 98), the positive predictive value was 89.2% (95% CI 82 to 94), and negative predictive value was 100% (95% CI 96 to 100). ROC analysis demonstrated an AUC of 0.99 (95% CI 0.98 to 1.0). Conclusion. The present study confirms the utility of alpha-defensin in the synovial fluid in patients with painful TKA to select cases of PJI. Since LC-MS is still a time-consuming technology and is available in highly specialized laboratories, further translational research studies are needed to take this evidence into routine procedures and promote a new diagnostic approach. Cite this article: Bone Joint J 2022;104-B(9):1047–1051


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1183 - 1193
14 Sep 2020
Anis HK Strnad GJ Klika AK Zajichek A Spindler KP Barsoum WK Higuera CA Piuzzi NS

Aims. The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Methods. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with root mean square errors (RMSEs) and mean absolute errors (MAEs) for the LOS and PROMs models, and the index of prediction accuracy (IPA), and area under the curve (AUC) for the readmission models. Model accuracies in new patient data sets were assessed with AUC. Results. Within the imputed datasets, the LOS (RMSE 1.161) and PROMs models (RMSE 15.775, 11.056, 21.680 for KOOS pain, function, and QOL, respectively) demonstrated good accuracy. For all models, the accuracy of predicting outcomes in a new set of patients were consistent with the cross-validation accuracy overall. Upon validation with a new patient dataset, the LOS and readmission models demonstrated high accuracy (71.5% and 65.0%, respectively). Similarly, the one-year PROMs improvement models demonstrated high accuracy in predicting ten-point improvements in KOOS pain (72.1%), function (72.9%), and QOL (70.8%) scores. Conclusion. The data-driven models developed in this study offer scalable predictive tools that can accurately estimate the likelihood of improved pain, function, and quality of life one year after knee arthroplasty as well as LOS and 90 day readmission. Cite this article: Bone Joint J 2020;102-B(9):1183–1193


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims. To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA. Methods. Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models. Results. Of the 5,600 patients included in this study, 342 (6.1%) underwent SDD. The random forest (RF) model performed the best overall, with an internally validated AUC of 0.810. The ten crucial factors favoring SDD in the RF model include operating time, anaesthesia type, age, BMI, American Society of Anesthesiologists grade, race, history of diabetes, rTKA type, sex, and smoking status. Eight of these variables were also found to be significant in the MLR model. Conclusion. The RF model displayed excellent accuracy and identified clinically important variables for determining candidates for SDD following rTKA. Machine learning techniques such as RF will allow clinicians to accurately risk-stratify their patients preoperatively, in order to optimize resources and improve patient outcomes. Cite this article: Bone Jt Open 2023;4(6):399–407


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. Methods. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups. Results. Patients undergoing conventional TKA and robotic TKA had comparable changes in the postoperative systemic inflammatory and localized thermal response at six hours, day 1, day 2, and day 28 after surgery. Robotic TKA had significantly reduced levels of interleukin-6 (p < 0.001), tumour necrosis factor-α (p = 0.021), ESR (p = 0.001), CRP (p = 0.004), lactate dehydrogenase (p = 0.007), and creatine kinase (p = 0.004) at day 7 after surgery compared with conventional TKA. Robotic TKA was associated with significantly improved preservation of the periarticular soft tissue envelope (p < 0.001), and reduced femoral (p = 0.012) and tibial (p = 0.023) bone trauma compared with conventional TKA. Robotic TKA significantly improved the accuracy of achieving the planned limb alignment (p < 0.001), femoral component positioning (p < 0.001), and tibial component positioning (p < 0.001) compared with conventional TKA. Conclusion. Robotic TKA was associated with a transient reduction in the early (day 7) postoperative inflammatory response but there was no difference in the immediate (< 48 hours) or late (day 28) postoperative systemic inflammatory response compared with conventional TKA. Robotic TKA was associated with decreased iatrogenic periarticular soft tissue injury, reduced femoral and tibial bone trauma, and improved accuracy of component positioning compared with conventional TKA. Cite this article: Bone Joint J 2021;103-B(1):113–122


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 101 - 106
1 Jun 2020
Shah RF Bini SA Martinez AM Pedoia V Vail TP

Aims. The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance. Methods. A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset. Results. The convolutional neural network we built performed well when detecting loosening from radiographs alone. The first model built de novo with only the radiological image as input had an accuracy of 70%. The final model, which was built by fine-tuning a publicly available model named DenseNet, combining the AP and lateral radiographs, and incorporating information from the patient’s history, had an accuracy, sensitivity, and specificity of 88.3%, 70.2%, and 95.6% on the independent test dataset. It performed better for cases of revision THA with an accuracy of 90.1%, than for cases of revision TKA with an accuracy of 85.8%. Conclusion. This study showed that machine learning can detect prosthetic loosening from radiographs. Its accuracy is enhanced when using highly trained public algorithms, and when adding clinical data to the algorithm. While this algorithm may not be sufficient in its present state of development as a standalone metric of loosening, it is currently a useful augment for clinical decision making. Cite this article: Bone Joint J 2020;102-B(6 Supple A):101–106


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time predictions models, which may lead to improved operating room planning and efficiency. Cite this article: Bone Jt Open 2022;3(5):383–389


Bone & Joint Open
Vol. 2, Issue 3 | Pages 191 - 197
1 Mar 2021
Kazarian GS Barrack RL Barrack TN Lawrie CM Nunley RM

Aims. The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Methods. Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers. Results. When assessing the accuracy of RAUKAs, 91.6% of all alignment measurements and 99.2% of all overhang measurements were within the target range. All alignment and overhang targets were simultaneously met in 68.6% of RAUKAs. When comparing radiological outcomes between the RAUKA and MUKA groups, statistically significant differences were identified for combined outliers in FCA (2.3% vs 12.6%; p = 0.006), FSA (17.4% vs 50.2%; p < 0.001), TCA (5.8% vs 41.5%; p < 0.001), and TSA (8.1% vs 18.6%; p = 0.023), as well as anterior (0.0% vs 4.7%; p = 0.042), posterior (1.2% vs 13.4%; p = 0.001), and medial (1.2% vs 14.2%; p < 0.001) overhang outliers. Conclusion. Robotic system navigation decreases alignment and overhang outliers compared to manual UKA. Given the association between component placement errors and revision in UKA, this strong significant improvement in accuracy may improve implant survival. Level of Evidence: III. Cite this article: Bone Jt Open 2021;2-3:191–197


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis. Methods. A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity. Results. A total of 51 radiographs met the inclusion criteria. There was no significant difference between aHKA-OA and mHKA-N, with a mean angular difference of −0.4° (95% SE −0.8° to 0.1°; p = 0.16). There was no significant sex-based difference when comparing aHKA-OA and mHKA-N (mean difference 0.8°; p = 0.11). Knees with deformities of more than 8° had a greater mean difference between aHKA-OA and mHKA-N (1.3°) than those with lesser deformities (-0.1°; p = 0.009). Conclusion. This study supports the arithmetic HKA algorithm for prediction of the constitutional alignment once arthritis has developed. The algorithm has similar accuracy between sexes and greater accuracy with lesser degrees of deformity. Cite this article: Bone Joint Open 2020;1-7:339–345


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 85 - 90
1 Jun 2020
Blevins JL Rao V Chiu Y Lyman S Westrich GH

Aims. The purpose of this investigation was to determine the relationship between height, weight, and sex with implant size in total knee arthroplasty (TKA) using a multivariate linear regression model and a Bayesian model. Methods. A retrospective review of an institutional registry was performed of primary TKAs performed between January 2005 and December 2016. Patient demographics including patient age, sex, height, weight, and body mass index (BMI) were obtained from registry and medical record review. In total, 8,100 primary TKAs were included. The mean age was 67.3 years (SD 9.5) with a mean BMI of 30.4 kg/m. 2. (SD 6.3). The TKAs were randomly split into a training cohort (n = 4,022) and a testing cohort (n = 4,078). A multivariate linear regression model was created on the training cohort and then applied to the testing cohort . A Bayesian model was created based on the frequencies of implant sizes in the training cohort. The model was then applied to the testing cohort to determine the accuracy of the model at 1%, 5%, and 10% tolerance of inaccuracy. Results. Height had a relatively strong correlation with implant size (femoral component anteroposterior (AP) Pearson correlation coefficient (ρ) = 0.73, p < 0.001; tibial component mediolateral (ML) ρ = 0.77, p < 0.001). Weight had a moderately strong correlation with implant size, (femoral component AP ρ = 0.46, p < 0.001; tibial ML ρ = 0.48, p < 0.001). There was a significant linear correlation with height, weight, and sex with implant size (femoral component R. 2. = 0.607, p < 0.001; tibial R. 2. = 0.695, p < 0.001). The Bayesian model showed high accuracy in predicting the range of required implant sizes (94.4% for the femur and 96.6% for the tibia) accepting a 5% risk of inaccuracy. Conclusion. Implant size was correlated with basic demographic variables including height, weight, and sex. The linear regression and Bayesian models accurately predicted required implant sizes across multiple manufacturers based on height, weight, and sex alone. These types of predictive models may help improve operating room and implant supply chain efficiency. Level of Evidence: Level IV. Cite this article: Bone Joint J 2020;102-B(6 Supple A):85–90


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1033 - 1042
1 Aug 2018
Kayani B Konan S Pietrzak JRT Huq SS Tahmassebi J Haddad FS

Aims. The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA. Patients and Methods. This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (. sd. 6.8) vs 64.1 years (. sd. 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (. sd. 2.7) vs 28.1 kg.m2 (. sd. 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications. Results. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time (p < 0.001) and surgical team confidence levels (p < 0.001). Cumulative robotic experience did not affect accuracy of implant positioning (p = 0.52), posterior condylar offset ratio (p = 0.71), posterior tibial slope (p = 0.68), native joint line preservation (p = 0.55), and postoperative limb alignment (p = 0.65). Robotic-arm assisted UKA improved accuracy of femoral (p < 0.001) and tibial (p < 0.001) implant positioning with no additional risk of postoperative complications compared to conventional jig-based UKA. Conclusion. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time and surgical team confidence levels but no learning curve for accuracy of implant positioning. Cite this article: Bone Joint J 2018;100-B:1033–42


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims. Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique. Methods. Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm. Results. There was a higher rate of tibial under-sizing posteriorly in the conventional group compared to robotic-assisted groups (47.3% (n = 44) in conventional group, 29% (n = 27) in Image-Free group, 6.5% (n = 6) in Image-Based group; p < 0.001), as well as a higher rate of femoral under-sizing posteriorly (30.1% (n = 28) in conventional group, 7.5% (n = 7) in Image-Free group, 12.9% (n = 12) in Image-Based group; p < 0.001). The posterior femoral offset was more often increased in the conventional group, especially in comparison to the Image-Based group (43% (n = 40) in conventional group, 30.1% (n = 28) in Image-Free group, 8.6% (n = 8) in Image-Based group; p < 0.001). There was no significant overhang of the femoral or tibial implant in any groups. Conclusion. Robotic-assisted surgical techniques for medial UKA decrease the risk of tibial and femoral under-sizing, particularly with an image-based system using a preoperative CT scan. Cite this article: Bone Joint J 2021;103-B(4):610–618


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 196 - 204
1 Jun 2021
Chen JS Buchalter DB Sicat CS Aggarwal VK Hepinstall MS Lajam CM Schwarzkopf RS Slover JD

Aims. The COVID-19 pandemic led to a swift adoption of telehealth in orthopaedic surgery. This study aimed to analyze the satisfaction of patients and surgeons with the rapid expansion of telehealth at this time within the division of adult reconstructive surgery at a major urban academic tertiary hospital. Methods. A total of 334 patients underging arthroplasty of the hip or knee who completed a telemedicine visit between 30 March and 30 April 2020 were sent a 14-question survey, scored on a five-point Likert scale. Eight adult reconstructive surgeons who used telemedicine during this time were sent a separate 14-question survey at the end of the study period. Factors influencing patient satisfaction were determined using univariate and multivariate ordinal logistic regression modelling. Results. A total of 68 patients (20.4%) and 100% of the surgeons completed the surveys. Patients were “Satisfied” with their telemedicine visits (4.10/5.00 (SD 0.98)) and 19 (27.9%) would prefer telemedicine to in-person visits in the absence of COVID-19. Multivariate ordinal logistic regression modelling revealed that patients were more likely to be satisfied if their surgeon effectively responded to their questions or concerns (odds ratio (OR) 3.977; 95% confidence interval (CI) 1.260 to 13.190; p = 0.019) and if their visit had a high audiovisual quality (OR 2.46; 95% CI 1.052 to 6.219; p = 0.042). Surgeons were “Satisfied” with their telemedicine experience (3.63/5.00 (SD 0.92)) and were “Fairly Confident” (4.00/5.00 (SD 0.53)) in their diagnostic accuracy despite finding the physical examinations to be only “Slightly Effective” (1.88/5.00 (SD 0.99)). Most adult reconstructive surgeons, seven of eight (87.5%) would continue to use telemedicine in the future. Conclusion. Telemedicine emerged as a valuable tool during the COVID-19 pandemic. Patients undergoing arthroplasty and their surgeons were satisfied with telemedicine and see a role for its use after the pandemic. The audiovisual quality and the responsiveness of physicians to the concerns of patients determine their satisfaction. Future investigations should focus on improving the physical examination of patients through telemedicine and strategies for its widespread implementation. Cite this article: Bone Joint J 2021;103-B(6 Supple A):196–204


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims

Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.


Bone & Joint Open
Vol. 4, Issue 12 | Pages 914 - 922
1 Dec 2023
Sang W Qiu H Xu Y Pan Y Ma J Zhu L

Aims

Unicompartmental knee arthroplasty (UKA) is the preferred treatment for anterior medial knee osteoarthritis (OA) owing to the rapid postoperative recovery. However, the risk factors for UKA failure remain controversial.

Methods

The clinical data of Oxford mobile-bearing UKAs performed between 2011 and 2017 with a minimum follow-up of five years were retrospectively analyzed. Demographic, surgical, and follow-up data were collected. The Cox proportional hazards model was used to identify the risk factors that contribute to UKA failure. Kaplan-Meier survival was used to compare the effect of the prosthesis position on UKA survival.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims

Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.

Methods

This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


Bone & Joint Open
Vol. 5, Issue 11 | Pages 984 - 991
6 Nov 2024
Molloy T Gompels B McDonnell S

Aims

This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders.

Methods

This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 758 - 765
12 Sep 2024
Gardner J Roman ER Bhimani R Mashni SJ Whitaker JE Smith LS Swiergosz A Malkani AL

Aims

Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction.

Methods

This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 202 - 209
11 Mar 2024
Lewin AM Cashman K Harries D Ackerman IN Naylor JM Harris IA

Aims

The aim of this study was to describe and compare joint-specific and generic health-related quality of life outcomes of the first versus second knee in patients undergoing staged bilateral total knee arthroplasty (BTKA) for osteoarthritis.

Methods

This retrospective cohort study used Australian national arthroplasty registry data from January 2013 to January 2021 to identify participants who underwent elective staged BTKA with six to 24 months between procedures. The primary outcome was Oxford Knee Score (OKS) at six months postoperatively for the first TKA compared to the second TKA, adjusted for age and sex. Secondary outcomes compared six-month EuroQol five-dimension five-level (EQ-5D-5L) domain scores, EQ-5D index scores, and the EQ visual analogue scale (EQ-VAS) between knees at six months postoperatively.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 28 - 37
1 Jan 2024
Gupta S Sadczuk D Riddoch FI Oliver WM Davidson E White TO Keating JF Scott CEH

Aims

This study aims to determine the rate of and risk factors for total knee arthroplasty (TKA) after operative management of tibial plateau fractures (TPFs) in older adults.

Methods

This is a retrospective cohort study of 182 displaced TPFs in 180 patients aged ≥ 60 years, over a 12-year period with a minimum follow-up of one year. The mean age was 70.7 years (SD 7.7; 60 to 89), and 139/180 patients (77.2%) were female. Radiological assessment consisted of fracture classification; pre-existing knee osteoarthritis (OA); reduction quality; loss of reduction; and post-traumatic OA. Fracture depression was measured on CT, and the volume of defect estimated as half an oblate spheroid. Operative management, complications, reoperations, and mortality were recorded.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims

Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear.

Methods

A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.


Aims

Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications.

Methods

In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 682 - 688
6 Sep 2023
Hampton M Balachandar V Charalambous CP Sutton PM

Aims

Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA), and has been linked to poor cementation technique. We aimed to develop a consensus on the optimal technique for component cementation in TKA.

Methods

A UK-based, three-round, online modified Delphi Expert Consensus Study was completed focusing on cementation technique in TKA. Experts were identified as having a minimum of five years’ consultant experience in the NHS and fulfilling any one of the following criteria: a ‘high volume’ knee arthroplasty practice (> 150 TKAs per annum) as identified from the National joint Registry of England, Wales, Northern Ireland and the Isle of Man; a senior author of at least five peer reviewed articles related to TKA in the previous five years; a surgeon who is named trainer for a post-certificate of comletion of training fellowship in TKA.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims

Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies.

Methods

In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 971 - 976
1 Sep 2023
Bourget-Murray J Piroozfar S Smith C Ellison J Bansal R Sharma R Evaniew N Johnson A Powell JN

Aims

This study aims to determine difference in annual rate of early-onset (≤ 90 days) deep surgical site infection (SSI) following primary total knee arthroplasty (TKA) for osteoarthritis, and to identify risk factors that may be associated with infection.

Methods

This is a retrospective population-based cohort study using prospectively collected patient-level data between 1 January 2013 and 1 March 2020. The diagnosis of deep SSI was defined as per the Centers for Disease Control/National Healthcare Safety Network criteria. The Mann-Kendall Trend test was used to detect monotonic trends in annual rates of early-onset deep SSI over time. Multiple logistic regression was used to analyze the effect of different patient, surgical, and healthcare setting factors on the risk of developing a deep SSI within 90 days from surgery for patients with complete data. We also report 90-day mortality.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

Methods

The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims

While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA.

Methods

A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims

In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

Methods

This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.


Bone & Joint Open
Vol. 4, Issue 11 | Pages 889 - 898
23 Nov 2023
Clement ND Fraser E Gilmour A Doonan J MacLean A Jones BG Blyth MJG

Aims

To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA).

Methods

This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.