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Aims
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an
important issue in total knee arthroplasty (TKA). The purpose of this study was to compare
SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment
(FA) strategies.

Methods
In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections
were measured. The primary outcome was the proportion and magnitude of medial and lateral
SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion
of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as
reference.

Results
FA showed significantly lower rates of medial and lateral SPI (2.9% and 2.2%) compared to KA
(45.3%; p < 0.001, and 25.5%; p < 0.001) and compared to MA (52.6%; p < 0.001 and 29.9%; p
< 0.001). There was no difference in medial and lateral SPI between KA and MA (p = 0.228 and
p = 0.417, respectively). FA showed significantly lower rates of severe medial and lateral SPI (0
and 0%) compared to KA (8.0%; p < 0.001 and 7.3%; p = 0.001) and compared to MA (10.2%; p
< 0.001 and 4.4%; p = 0.013). There was no difference in severe medial and lateral SPI between
KA and MA (p = 0.527 and p = 0.307, respectively). MA resulted in thinner resections than KA in
medial extension (mean difference (MD) 1.4 mm, SD 1.9; p < 0.001), medial flexion (MD 1.5 mm,
SD 1.8; p < 0.001), and lateral extension (MD 1.1 mm, SD 1.9; p < 0.001). FA resulted in thinner
resections than KA in medial extension (MD 1.6 mm, SD 1.4; p < 0.001) and lateral extension
(MD 2.0 mm, SD 1.6; p < 0.001), but in thicker medial flexion resections (MD 0.8 mm, SD 1.4; p <
0.001).

Conclusion
Mechanical and kinematic alignment (measured resection techniques) result in high rates of SPI.
Pre-resection angular and translational adjustments with functional alignment, with typically
smaller distal than posterior femoral resection, address this issue.

Take home message
• Functional alignment technique in total

knee arthroplasty has significantly lower

rates of sagittal plane imbalance compared
to other contemporary techniques.
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• The study’s findings challenge the paradigm of "putting
back in what has been resected" by demonstrating the
limitations of measured resection techniques in achieving
sagittal plane balance.

Introduction
Aiming for uniform tension in the periarticular soft-tissues
through creation of equal flexion and extension gap heights is
considered an important goal in total knee arthroplasty (TKA).1

A balanced TKA has been associated with improved postoper-
ative outcomes,2-4 with coronal (or frontal) plane balance being
the most extensively studied.5-12 Balance in the sagittal plane,
when viewing the knee from the side, is defined by the relative
heights of extension and flexion gaps. Despite receiving
comparatively less attention, sagittal plane imbalance (SPI) has
been reported to result in stiffness, instability, and abnormal
loading conditions on prosthetic implants and bone.13-17

Differences in tibial slope, posterior condylar offset,
and distal and posterior condyle resection thickness have
all been associated with SPI.4 Most of these studies have
been performed in the context of mechanical alignment
(MA). In this fixed alignment strategy, a measured resection
technique guides osseous resections with the aim of ach-
ieving a neutral mechanical axis and joint line.18 A more
recent alignment technique is kinematic alignment (KA),
which replicates constitutional alignment, but once again with
measured but equal osseous resections.19,20 These measured
alignment techniques do not account for individual variations,
such as in posterior condylar offset,21 asymmetrical cartilage
loss, and soft-tissue laxities,22 and therefore risk an extension-
flexion gap mismatch, or SPI.2,4,23

Functional alignment (FA), a gap-balancing technique,
does not adhere to strict measured resection but employs
pre-resection adjustments of implant position based on
constitutional laxities to deliver balanced coronal and sagittal
gaps.24-26 Although FA has been shown to improve coronal gap
balance and decrease bone resection thicknesses compared
to other alignment strategies,27-29 research on how different
alignment strategies produce SPI is lacking.

Therefore, this study aimed to determine the propor-
tion and magnitude of SPI for KA, MA, and FA. The primary
hypothesis was that in patients undergoing robotic-assisted
TKA, SPI would be greatest in MA and least in FA. Secondary
hypotheses were that FA would have the smallest proportion
of severe SPI, and that FA would result in correction of SPI
by reduced resections. The results will aim to enhance our
understanding of how different alignment strategies affect SPI
in TKA.

Methods
Study group
A prospective cohort study of consecutive patients under-
going Mako robotic arm-assisted primary TKA with a cru-
ciate-retaining (CR) Triathlon knee system (Stryker, USA)
was performed. Two knee surgeons (SJM, DBC) performed
the operations at a single centre (St George Private Hos-
pital, Kogarah, Australia) between July and December
2020. Exclusions were requirements for increased prosthetic
constraint more than CR stability. The study group comprised
137 knees in 116 patients who had a mean age of 66.6 years
(SD 8.3) and a mean BMI of 29.5 kg/m2 (SD 4.9). In the cohort,

51.1% (n = 70) were female and 46.0% (n = 63) of TKAs were
performed on the left knee. A total of 40 knees (37 patients)
were excluded because a different implant was used (n = 27),
there was a data recording error (n = 11), a higher constraint
insert was used (n = 8), or no consent was obtained (n = 5).
Ethics approval was granted by Ramsay Health Care Research
Ethics and Governance (#2023/ETH/0029).

Surgical technique
CT imaging with rendering and segmentation was obtained
preoperatively to develop a 3D bone model for each patient,
allowing for determination of implant sizes, implant align-
ments, and bone resection depths. All procedures were
performed via a medial parapatellar approach. The anterior
cruciate ligament (ACL) and anterior portion of the lateral
meniscus were excised to gain access to the knee. CT-based
validation was then completed with optical motion-capture
tracking by registration of osseous landmarks. Osteophytes
were removed and the joint capsule temporarily closed prior
to the gap measurements.

Implants were then virtually positioned according to
three alignment philosophies. For all 137 TKAs, the three
alignment strategies were applied consecutively. The first was
MA with measured resections off the intact medial side of the
femur and lateral side of the tibia. Next, the knee was aligned
as per KA with measured and matched resections of the femur
and tibia. Finally, we then assessed balance with pre-resection
FA using a restricted KA start plan. In the FA group, final
coronal, axial, and sagittal virtual adjustments were performed
to achieve symmetrical medial and lateral laxities. The femoral
and tibial implants in the FA group were then virtually
translated in the proximal-distal and anterior-posterior planes
to create equal sagittal gap heights in flexion and exten-
sion, while avoiding anterior cortical notching and optimizing
trochlear fit. The boundary conditions are provided in Table
I. Initial posterior referencing was used in all three alignment
scenarios. The patella was maintained in a reduced position
during all gap measurements to improve accuracy.30 Final
insert thickness was determined by the surgeon’s assessment
of optimal laxity and range of motion (ROM).

Laxity measurements
Stressed gap laxity measurements were recorded for all
three strategies by applying maximal varus and valgus
stress in near-extension (10° of knee flexion to de-tension
the posterior capsule and minimize the effect of posterior
osteophytes),24,32,33 and at 90°. For MA and KA, these were
pre-resection laxity measurements. For the FA group, these
were post-resection measurements with the trial implants in
situ.

From the four gap laxities recorded, the following were
determined: 1) medial sagittal gap differential: the difference
between medial extension and medial flexion laxities; and 2)
lateral sagittal gap differential: the difference between lateral
extension and lateral flexion laxities.

Outcomes
The primary outcome was the proportion and magnitude of
SPI, defined as a gap differential > 2.0 mm,34 for KA, MA,
and FA. These were independently measured for medial and
lateral sagittal gap differentials. Secondary outcomes were: 1)

682 Bone & Joint Open  Volume 5, No. 8  August 2024



the proportion of knees with severe SPI, defined as a gap
differential > 4.0 mm for KA, MA, and FA; and 2) resection
thicknesses for the different alignment strategies. As KA is
a measured and matched resection technique resulting in
equal medial and lateral extension and flexion resections (13.5
mm), KA was used as reference for comparison to the other
strategies’ thicknesses.

Statistical analysis
Continuous data were presented as means and SDs, and
discrete data as frequencies with percentages. The distribu-
tion of data was evaluated with histograms, Q-Q plots, and
the Shapiro-Wilk test for group sizes < 50 and the Kolgo-
morov-Smirnov test for group sizes ≥ 50. Differences between
groups for categorical data were analyzed with chi-squared
tests. Differences between groups for normally distributed
continuous data were analyzed with independent-samples
t-test, and for non-parametric continuous data with Mann-
Whitney U tests. Level of statistical significance was set at p ≤
0.05. Statistical analyses were performed using SPSS Statistics
v. 27 (IBM, USA).

Results
Primary outcome
For medial SPI, FA had significantly lower rates of imbalance
(2.9%) compared to KA (45.3%; p < 0.001) and MA (52.6%; p
< 0.001), but there was no statistically significant difference
between KA and MA (45.3 vs 52.6%; p = 0.228). For lateral SPI,
FA had significantly lower rates of imbalance (2.2%) compared
to KA (25.5%; p < 0.001) and MA (29.9%; p < 0.001), but there
was no statistically significant difference between KA and MA
(25.5 vs 29.9%; p = 0.417, all chi-squared test).

Medial gaps were on average 2.4 mm (SD 1.5), 2.4 mm
(SD 1.8), and 0.7 mm (SD 0.9) larger in extension than flexion

for KA, MA, and FA, respectively. Lateral gaps were on average
1.2 mm (SD 2.3), 0.4 mm (2.4), and 0.1 mm (SD 1.1) larger in
extension than flexion for KA, MA, and FA, respectively.

Secondary outcomes
For severe medial SPI, FA had significantly lower rates of
imbalance (0%) compared to KA (8.0%; p < 0.001) and MA
(10.2%; p < 0.001), but there was no statistically significant
difference between KA and MA (8.0% vs 10.2%; p = 0.527). For
severe lateral SPI, FA had significantly lower rates of imbalance
(0%) compared to KA (7.3%; p = 0.001) and MA (4.4%; p
= 0.013), but there was no statistically significant difference
between KA and MA (7.3 vs 4.4%; p = 0.307, all chi-squared
test).

MA resulted in thinner resections than KA in medial
extension (mean difference (MD) 1.4 mm thinner, SD 1.9; p <
0.001), medial flexion (MD 1.5 mm thinner, SD 1.8; p < 0.001),
and lateral extension (MD 1.1 mm thinner, SD 1.9; p < 0.001),
but similar lateral flexion resections (MD 0.1 mm thinner, SD
1.5; p = 0.306, all independent-samples t-test).

FA resulted in thinner resections than KA in medial
extension (MD 1.6 mm thinner, SD 1.4; p < 0.001) and lateral
extension (MD 2.0 mm thinner, SD 1.6; p < 0.001) in similar
lateral flexion resections (MD 0.1 mm thinner, SD 1.3; p =
0.265), but in thicker medial flexion resections (MD 0.8 mm
thicker, SD 1.4; p < 0.001, all independent-samples t-test).
Overall resection thicknesses are presented in Figure 1. The
absolute overall, femoral, and tibial resections for the different
alignment strategies are presented in Table II.

Discussion
This study found that when CR TKA is performed with KA
or MA, medial SPI occurs in approximately half of all knees,
and lateral SPI in one-quarter of knees. The rate of severe

Table I. Alignment strategies.

Parameters MA protocol* Unrestricted KA protocol† FA protocol‡

Coronal Neutral to mechanical axes:

• 8.0 mm from most distal and
posterior points of MFC

• 7.0 mm from highest point of
tibia

Constitutional, symmetrical measured resections:

• 6.5 mm from most distal and
posterior MFC and LFC

• 7.0 mm from medial and lateral
tibial plateau

Constitutional adjusted to laxities,
boundaries for coronal alignments:

• HKA angle: 6.0° varus to 3.0°
valgus

• Tibial coronal alignment:
6.0° varus to 3.0° valgus

• Femoral coronal alignment:
6.0° valgus to 3.0° varus

Femoral rotation
Parallel to sTEA Parallel to PCA

6.0° internal to 6.0° external rotation from the
sTEA

Tibial rotation Akagi’s line1 Akagi’s line1 Akagi’s line1

Femoral flexion 0.0 to 6.0° to optimize sizing 0.0 to 6.0° to optimize sizing 0.0 to 6.0° to optimize sizing

Tibial slope 0.0 to 6.0° to match LTP slope 0.0 to 6.0° to match LTP slope 0.0 to 6.0° to match LTP slope

Combined component flexion Not to exceed 10.0° Not to exceed 10.0° Not to exceed 10.0°

*MA protocol: simulation of measured resection technique for MA TKA.
†KA protocol: simulation of measured and matched-resection technique for KA TKA.
‡FA protocol: based on restricted KA boundaries capturing 85.4% of native alignment types.31 Implant positioning after laxity measurements: balanced
gaps between medial and lateral compartments (defined as implant alignment within restricted boundaries and compartment gap differential ≤ 2.0 mm
in extension and flexion).30

MA, mechanical alignment; KA, kinematic alignment; FA, functional alignment; MFC, medial femoral condyle; LTP, lateral tibia plateau; LFC, lateral femoral
condyle; HKA, hip-knee-ankle angle; sTEA, surgical trans-epicondylar axis; PCA, posterior condylar axis.
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SPI (gap differential more than 4 mm) was up to 8% in KA
knees, and up to 10% in MA knees. The mean medial gap
in extension was 2.4 mm larger than the medial flexion gap
with both MA and KA. Comparatively, FA nearly eliminated
SPI by employing pre-resection component adjustments that
balanced sagittal plane gaps. Although there were fewer
distal femoral resections with FA, greater posterior femo-
ral resections were required to avoid SPI, partly rejecting
our secondary hypothesis. Combined, the results question
the validity of the ‘measured resection’ technique, whether
performed with MA or KA, due to the high incidence of medial
SPI.

In recent years, much research in TKA has focused on
different alignment strategies targeting recreation of patients’
constitutional coronal anatomy,25 yet the sagittal plane
remains underexplored. Studies that measured gaps with an
intact ACL and in full extension reported a larger flexion than
extension gap, and an increasing gap in initial flexion.35,36 In
the present study, in which the extension gaps were larger
than the flexion gaps, gaps were measured after ACL resection.
ACL resection predominantly increases the medial extension

gap.37 While ACL resection thus changes the native sagittal
laxity,37 most modern TKA designs require resection of the
ACL. Therefore, our findings replicate the prosthetic condition,
which we believe is more clinically relevant. Additionally, gaps
in the present study were measured in 10° of knee flexion,
thereby de-tensioning the posterior capsule and mitigating
the influence of posterior osteophytes, resulting in larger gaps
than when measured in full extension.38

In the native knee, there are variations in medial and
lateral coronal laxities. While medial laxities remain relatively
constant throughout the ROM, lateral laxities typically increase
with greater flexion.38-40 This facilitates a medial pivot motion
and lateral femoral rollback.41 Therefore, achieving sagittal
medial stability is crucial for replicating a physiological medial
pivot motion and ensuring stable movement throughout the
ROM.41-43 However, it is crucial to recognize the differences in
soft-tissue balance of a native knee compared to a prosthetic
knee. KA implant position, by definition, reflects constitutional
balance after resection of ACL, menisci, and osteophytes and
assuming no bone loss has occurred. Hence, the SPI results for
KA represent the constitutional SPI present in the prosthetic

Fig. 1
Overall mean resection depths in mm for the different alignment strategies. FA, functional alignment; KA, kinematic alignment; MA, mechanical
alignment.

Table II. Absolute resections in mm for the different alignment strategies. All values are presented as means and SDs.

Variable MA KA FA

Distal
medial

Distal
lateral

Posterior
medial

Posterior
lateral

Distal
medial Distal lateral

Posterior
medial

Posterior
lateral

Distal
medial

Distal
lateral

Posterior
medial

Posterior
lateral

Overall
resection 12.1 (1.9) 12.4 (1.9) 12.0 (1.8) 13.4 (1.5) 13.5 (0.0) 13.5 (0.0) 13.5 (0.0) 13.5 (0.0) 11.9 (1.4) 11.5 (1.6) 14.3 (1.4) 13.4 (1.3)

• Femur 7.9 (0.4) 5.6 (1.7) 7.9 (0.3) 6.5 (1.3) 6.5 (0.0) 6.5 (0.0) 6.5 (0) 6.5 (0.0) 5.8 (1.2) 4.9 (1.4) 8.3 (1.2) 6.7 (1.0)

• Tibia 4.2 (1.8) 6.8 (0.7) 4.2 (1.8) 6.8 (0.7) 7.0 (0.0) 7.0 (0.0) 7.0 (0.0 7.0 (0.0) 6.0 (1.0) 6.6 (1.0) 6.0 (1.0) 6.6 (1.0)

FA, functional alignment; JLO, joint line obliquity; KA, kinematic alignment; MA, mechanical alignment.
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state. Both measured and matched resections techniques, by
design, do not correct for pre-existing medial and/or lateral
imbalances, as was confirmed by this study.

SPI can result from overtight gaps, resulting in stiffness
and a reduced ROM; loose gaps, leading to instability or
asymmetrical gaps; or asymmetrical gaps, resulting in implant
issues such as asymmetrical poly wear and delamination
from paradoxical sliding motion. SPI may negatively affect
kinematics, patient-reported outcomes, and implant durabil-
ity,2,44-50 highlighting the importance of achieving balance in
the sagittal plane during TKA. It is imperative to optimize
bone resection, because both over-zealous and insufficient
resection have been associated with SPI.4 Manual measured
resection techniques, however, only rely on post-resection
measures to address SPI. This risks altering the patient’s
anatomy and kinematics, and should be performed cau-
tiously, especially when undertaken with manual instrumenta-
tion.27 FA enables pre-resection adjustments and optimization
of balance, thereby eliminating unnecessary bone resec-
tions.27-29,51 While our results demonstrate limitations of MA
or KA in achieving sagittal plane balance, further research is
needed to determine the impact of these proportions of SPI
on patient-reported outcomes and overall patient satisfaction
in TKA.

This study has several limitations. First, SPI is not
only determined by extension and flexion laxities. Other
factors, including sagittal implant orientation and tibial slope,
contribute to SPI.52-56 Unique to this study, however, is that
we replicated the patient’s native tibial slope for each patient.
Hence, it is likely that SPI is worse with a fixed alignment
approach where all patients have the same tibial slope.
Second, laxity was manually measured without quantifying
the applied stress, utilizing navigation-based measurements.
Nevertheless, previous studies have demonstrated a high
degree of concordance between stressed laxities and sensor-
derived compartmental loads, confirming the reliability of
this technique.57 Third, the present study only looked at CR
implants and may not be generalizable to other constraint
implants. Although the flexion gap is increased in a posterior-
stabilizing design, this is at the cost of higher constraint.53,58

Fourth, constitutional soft-tissue laxities are highly variable
and there is no universally accepted gold standard for their
normative values nor for optimal targets. Fifth, this study
employed pre-resection or simulated laxity measurements
for MA and KA strategies, compared to post-resection laxity
measurements for the FA strategy. While acknowledging that
differences can exist between pre-resection and final gaps,
the decision to obtain multiple measurements from different
strategies within each individual was deliberate, aiming to
capture their unique laxity profiles.

This study highlights the significance of also viewing
the knee from the side in the pursuit of achieving a bal-
anced TKA. It provides insights into the prevalence of SPI
both with MA and KA, and ultimately challenges the para-
digm of putting back in what has been resected. Further-
more, it demonstrates that FA with pre-resection balance
assessment and implant position adjustments most effectively
achieves sagittal balance. Hence, if sagittal balance is a primary
objective, FA appears superior to MA and KA. Nonetheless,
future research should identify precise targets for balance,
accounting for constitutional laxity and implant design.

Social media
Follow S. J. Macdessi on X @samuelmacdessi
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