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Aims
This study aimed to explore the biological and clinical importance of dysregulated key genes
in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets
for diagnosing and treating OA.

Methods
Six sets of gene expression profiles were obtained from the Gene Expression Omnibus
database. Differential expression analysis, weighted gene coexpression network analysis
(WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in
osteoarthritic cartilage, and genome enrichment and functional annotation analyses were
used to decipher the related categories of gene function. Single-sample gene set enrichment
analysis was performed to analyze immune cell infiltration. Correlation analysis was used to
explore the relationship among the hub genes and immune cells, as well as markers related
to articular cartilage degradation and bone mineralization.

Results
A total of 46 genes were obtained from the intersection of significantly upregulated genes
in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional
annotation analysis revealed that these genes were closely related to pathological responses
associated with OA, such as inflammation and immunity. Four key dysregulated genes
(cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-rela-
ted protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after
using machine-learning algorithms. These genes had high diagnostic value in both the
training cohort and external validation cohort (receiver operating characteristic > 0.8). The
upregulated expression of these hub genes in osteoarthritic cartilage signified higher levels
of immune infiltration as well as the expression of metalloproteinases and mineralization
markers, suggesting harmful biological alterations and indicating that these hub genes play
an important role in the pathogenesis of OA. A competing endogenous RNA network was
constructed to reveal the underlying post-transcriptional regulatory mechanisms.
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Conclusion
The current study explores and validates a dysregulated key gene set in osteoarthritic cartilage that is capable of accurately
diagnosing OA and characterizing the biological alterations in osteoarthritic cartilage; this may become a promising indicator
in clinical decision-making. This study indicates that dysregulated key genes play an important role in the development and
progression of OA, and may be potential therapeutic targets.

Article focus
• To explore the biological and clinical importance of

dysregulated key genes in osteoarthritis (OA) patients at
the cartilage level to find potential biomarkers and targets
for diagnosis and treatment.

Key messages
• We identified a dysregulated key gene set that is capable of

accurately diagnosing OA and characterizing the biological
alterations in osteoarthritic cartilage.

• These dysregulated key genes are associated with the
activation of related pathways and biological processes
such as immunoinflammatory processes, extracellular
matrix hypermetabolism, and bone formation and minerali-
zation, which implies a high risk for cartilage damage and
aggravation.

• A competing endogenous RNA (ceRNA) regulatory network
was constructed to provide a new research direction for a
clear understanding of the post-transcriptional regulatory
mechanism and targeted therapy.

Strengths and limitations
• Various algorithms were combined in this study to multidi-

mensionally analyze the critical genes in the pathogenesis
of OA.

• To reduce the deviation introduced by a single method,
both microarray and RNA-sequencing methods were used
to validate the dysregulated key gene set in OA.

• The biological roles of the four crucial genes in OA and the
ceRNA regulatory network are worth further analysis and
verification by more experiments.

Introduction
Osteoarthritis (OA) is a common degenerative joint disease
with a high prevalence in the elderly population, and the
knee is a common site of involvement. The global prevalence
of knee OA is 22.9% in individuals aged 40 years and over.
In 2020, worldwide, there were approximately 86.7 million
individuals with knee OA aged 20 years and older.1 The typical
symptoms of OA include pain, swelling, and stiffness, often
accompanied by dysfunction and limited activity. Without
timely intervention and treatment, OA can lead to disability
and pose a serious threat to human health. Articular car-
tilage injury and degeneration are the major pathological
manifestations of OA, and are accompanied by a series of
complex pathological changes, such as synovitis, subchondral
bone sclerosis, and osteophyte formation. However, the exact
pathogenesis of OA remains unclear. Reversing or reducing
the progressive destruction of cartilage is the primary purpose

of OA treatment. The current clinical therapy for OA is mainly
based on anti-inflammatory and pain-relieving drugs. These
drugs can reduce synovial inflammation and improve the
symptoms of patients. Nevertheless, they cannot reverse the
destruction of cartilage, and some may even increase the
degradation and reduce the differentiation of cartilage to
a certain extent,2,3 implying that disease progression is not
prevented. At present, there are no effective clinical drugs
that can prevent cartilage destruction and progression of this
disease.4-7 Therefore, for an in-depth understanding of the
pathological characteristics of OA, it is particularly important
to systematically explore the expression profile and activation
status of related key characteristic genes at the cartilage level.
These studies will also be conducive to advances in research
on molecular diagnosis and therapeutic targets.

In recent years, microarray and RNA-seq technol-
ogy have made great progress in OA molecular diagno-
sis, classification, and potential therapeutic target discovery.
Transcriptomics analysis combined with machine-learning
methods can reveal potentially critical genes and signalling
pathways closely related to the development of OA. These
analyses will not only help in understanding the complex
pathogenesis of OA, but also providing more valuable options
and research directions for the diagnosis of the disease.8,9

Quick and accurate diagnosis of OA is important
for improving its prognosis. A recent large study identified
CRTAC1 in plasma as a novel promising candidate biomarker
that is both associated with the development of OA and
can predict the progression of arthroplasty.10 This study
also supports previous findings suggesting that COMP is
a likely biomarker for OA,11,12 although cartilage oligomeric
matrix protein (COMP) is a significantly weaker biomarker
than cartilage acidic protein 1 (CRTAC1). In addition, uri-
nary C-terminal cross-linked telopeptides of type II collagen
(CTX-II), a degradation product of type II collagen, was also
found to be a potential biomarker for OA and correlated
with both disease occurrence and progression.13,14 CRTAC1 is
a glycosylated extracellular matrix (ECM) protein found in the
interterritorial matrix of articular deep zone cartilage; COMP
is a non-collagenous protein of articular cartilage that plays
a role in the structural integrity of cartilage; and CTX-II is
a fragment of type II collagen that mainly exists in cartilagi-
nous tissues. These candidate biomarkers are all molecules
and/or fragments produced by cartilage tissue and released
into joint fluid, blood, or eventually urine, which have the
unique properties of dynamic change and high sensitivity
that may overcome some limitations of the current methods
for assessing OA. Therefore, screening key molecules at the
cartilage level may be helpful for the molecular diagnosis
of OA, and may be applied to clinical practice decisions.
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However, due to ethical issues, normal human cartilage is
usually difficult to obtain, resulting in a number of studies with
small sample sizes. By contrast, integrating multiple datasets
through databases can increase the sample size of studies and
provide more accurate results.

In this study, we applied transcriptomic analyses
and machine-learning methods to screen the key gene
set closely related to the development of OA through
microarray and RNA-seq data. In addition, protein‒protein
interaction (PPI) network analysis,  functional annotation
analysis,  immune infiltration  analysis,  and the construc-
tion of a competing endogenous RNA (ceRNA) network
targeting critical genes were combined to provide a
reference for exploring the pathogenesis of,  finding  suitable
targets for, understanding the post-transcriptional regula-
tory mechanism of, and identifying potential molecular
therapeutic options for OA.

Methods
Data collection and processing
Six datasets, namely the microarray datasets GSE169077,
GSE57218,15,16 and GSE174049, and the RNA-seq datasets
GSE114007,17 GSE168505,18 and GSE143514,19 were collected
from the Gene Expression Omnibus (GEO) database (Supple-
mentary Table i). The GSE174049 dataset was applied for
the long noncoding RNA (lncRNA) study, and the AnyProbe
R package was used for annotation. Due to the lack of
OA cartilage datasets for micro RNA (miRNA) study, synovial
tissue from OA was selected for analysis (GSE143514). All
other datasets were genome expression data for human knee
and hip OA cartilage and healthy cartilage tissue. Because
of the different sources of data production, we used microar-
ray data for further analysis to screen for dysregulated key
gene sets, and RNA-seq data were applied as an external
validation set. Microarray data were quantile normalized and
log2 transformed if necessary. RNA-seq data were normalized
to variance stable transformation values via the DESeq2 R
package. The limma R package was used to identify differen-
tially expressed genes (DEGs) between disease and control
samples in the integrated dataset, and the threshold for DEGs
was set at a log2-fold change (logFC) > 1 and adjusted p-value
< 0.05, indicating upregulated expression of DEGs. Genes that
were significantly upregulated between the two groups were
investigated.

Weighted gene coexpression network analysis
Weighted gene coexpression network analysis (WGCNA) is
used to effectively explore the relationship between genes
and phenotypes.20 The WGCNA package in R was applied
to establish the weighted coexpression network of the
expression data for the integrated dataset. The optimum
soft threshold of the scale-free network was detected and
determined by the PickSoftThreshold function. The matrix
data were transformed into an adjacency matrix and clustered,
and then modules were found by topological overlap. The
module eigengene was calculated, and the related modules in
the module eigengene-based tree were merged to generate a
clustering dendrogram. The criteria for key module selection
were designated as the module with the highest module
member correlation and p < 0.05. The gene information of
the corresponding module was used for further investigation.

Functional annotation analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses are widely used methods
for annotating genes and gene products that can be
used to understand information about gene function and
biological pathways.21,22 The ClusterProfiler R package was
used for GO and KEGG annotation analysis of the overlap-
ping genes obtained from the intersection of DEGs and
key module genes. Terms and pathways with a false dis-
covery rate (FDR) < 0.05 were considered statistically sig-
nificant. In addition, we performed gene set enrichment
analysis (GSEA) to analyze whether a particular gene set
had statistically significant differences in biological processes
between different subgroups. The cutoff criterion for statistical
significance was set as the absolute value of normalized
enrichment score > 1, p < 0.05, and FDR < 0.25 according to
the GSEA user guide.

Characteristic gene selection and model construction
The Boruta algorithm is a wrapper based on the random forest
algorithm, and the results of the Boruta algorithm usually
require multiple iterations and therefore are more stable than
the results produced by feature selection methods based on
a single random forest algorithm. The goal of Boruta fea-
ture selection is to select all the feature sets related to the
dependent variable, rather than selecting the feature set that
can minimize the cost function of the model for a specific
model. This process helps identify the influencing factors of
the dependent variable more comprehensively for better and
more efficient feature selection.23 Support vector machine–
recursive feature elimination (SVM-RFE) is a regression or
classification supervised machine-learning technique that
avoids overfitting by training a subset of features from
different classes to shrink down the feature set and filter out
the most predictive features.24 LASSO is a regression-based
method that allows for a large number of covariates in the
model and, importantly, has the unique feature of penalizing
the absolute values of regression coefficients.25 We first used
the Boruta algorithm to calculate all the characteristic gene
sets related to the study variables from the overlapping genes
obtained from the intersection of DEGs and key module genes.
SVM-RFE and LASSO regression were then performed to select
the key characteristic genes. The key characteristic genes
obtained were applied as the feature variables to construct
the LASSO model. The model index for each sample, defined
as a risk score, was used to weight the expression values
of the selected genes using regression coefficients from the
LASSO analysis. Index = Exp_Genel * Coef_Genel + Exp_Gene2
* Coef_Gene2 +…+ Exp_Gene * Coef_Gene. “Exp” represents
the expression value of the gene, and “Coef”, derived from
LASSO regression, is the regression coefficient of the gene.
Finally, to evaluate the diagnostic ability of each candidate
genetic biomarker, we evaluated the area under the receiver
operating characteristic (ROC) curve, sensitivity, and specific-
ity. Decision curve analysis (DCA) was also performed, and
clinical impact curves were drawn to evaluate the potential
clinical utility.

Protein-protein interaction network
The protein-protein interaction (PPI) network system analyzes
the interaction between proteins in biological systems, which
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is helpful for understanding the reaction mechanism of
biological signals and energy and substance metabolism
under special physiological conditions such as diseases. This
system can also provide a better understanding of the
functional connections between proteins. GeneMANIA is a
website for constructing PPI networks that can be used to
generate hypotheses about gene function, analyze gene lists,
and prioritize genes for functional analysis.26 This website can

be used to discover functionally similar genes based on a
large amount of genomic and proteomic data. Therefore, a PPI
network was constructed for the identified key genes.

Assessment and correlation of disease immune infiltration
cells
Analysis of immune cell infiltration plays an important guiding
role in predicting the course of the disease and treatment

Fig. 1
Identification of overlapping characteristic genes. a) Volcano plot of differentially expressed genes (DEGs) between osteoarthritis (OA) samples and
control samples (logFC > 1 and adjusted p-value < 0.05). b) Soft-threshold power for weighted gene coexpression network analysis (WGCNA). The red
line in the left panel indicates scale-free topological fit index = 9. c) Clustering dendrograms of all expressed genes with dissimilarity based on the
topological overlap along with the different assigned modules. d) Heatmap of the correlations between modules and clinical traits. Red represents
positive correlations, and blue represents negative correlations. e) A scatterplot of gene significance versus module membership in the green-yellow
module. f ) Venn diagram of the intersection of the overlapping characteristic genes obtained from upregulated DEGs and key module genes. g)
Heatmap of the overlapping characteristic genes.
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response. First, the estimated immune score was used to
evaluate whether there was a difference in the level of
immune infiltration between OA and healthy tissues. Then,
the single-sample gene set enrichment analysis (ssGSEA)
algorithm was used to estimate the infiltration abundance of
immune cells in OA and normal cartilage. To further investi-
gate the association between key genes and immune cells,
Spearman correlation analysis was performed. A p-value <
0.05 was considered statistically significant.

Construction of a competing endogenous RNA regulatory
network
First, differentially expressed lncRNAs and miRNAs were
identified by analyzing the GSE174049 and GSE143514
datasets. An absolute value of logFC greater than 1 and
a p-value less than 0.05 were set as cutoff criteria. Sec-
ond, miRNAs targeting key genes were predicted by miR-
Walk27 with a threshold of miRWalk Score = 1. Third, the
significantly downregulated miRNAs were intersected with
the miRNAs predicted via miRWalk to obtain miRNA-mRNA
interaction pairs. Fourth, the upstream lncRNAs of these
miRNAs were predicted according to LncBase v.3,28 filtering
with direct as the validation type and Homo sapiens as the
species. Fifth, the significantly upregulated lncRNAs were
intersected with the lncRNAs predicted by LncBase to obtain
lncRNA-miRNA interaction pairs. Finally, the miRNA-mRNA and
lncRNA-miRNA interaction pairs obtained from the above

steps were constructed to form a ceRNA network consisting
of multiple lncRNA-miRNA-mRNA regulatory axes that were
visualized using Cytoscape (v3.9.0).

Statistical analysis
R4.1.0 software (R Foundation for Statistical Computing,
Austria) was used for data processing, statistical analysis, and
plotting. Independent-samples t-test was used for normally
distributed variables, and the Mann-Whitney U test was
applied for non-normally distributed variables. A p-value <
0.05 was considered statistically significant.

Results
Identification of differentially expressed genes in OA tissue
The overall key steps of this study are illustrated in Supple-
mentary Figure a. The datasets obtained from GEO were
standardized, and then the batch effects were corrected to
obtain the integrated dataset (Supplementary Figure b). A
total of 173 DEGs were identified between OA and healthy
samples, including 100 that were upregulated and 73 that
were downregulated (Figure 1a).

Weighted gene coexpression network analysis
To identify the key modules associated with OA, all genes
were analyzed in the integrated dataset using WGCNA. When
the soft threshold was set to 5, the scale-free topological
model fitting index (R2) nearly reached 0.9, and the mean

Fig. 2
Functional annotation of the overlapping characteristic genes. a) Gene Ontology functional analysis of the overlapping characteristic genes. b) Kyoto
Encyclopedia of Genes and Genomes pathway analysis of the overlapping characteristic genes.
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connectivity was < 100 (Figure 1b). By analyzing the similarity
and adjacencies of coexpression of module-clinical features,
WGCNA revealed ten coexpression modules (Figures 1c and
1d). The green-yellow module showed a significant positive
correlation with OA (r = 0.77, p < 0.001) and was identified
as the clinically meaningful module. Additionally, a highly
positive correlation was observed between the green-yellow
modules and module-related genes (r = 0.67, p < 0.001)
(Figure 1e). Subsequently, the critical module genes were
intersected with the upregulated DEGs, and a total of 46
overlapping characteristic genes were identified (Figures 1f
and 1g).

Functional annotation of overlapping characteristic genes
To further investigate the biological functions of these
overlapping characteristic genes, we performed functional
analysis. GO and KEGG analyses revealed that these
genes were mainly enriched in macrophage activation,

myeloid leucocyte differentiation, regulation of mononuclear
cell migration, regulation of monocyte chemotaxis, B-cell
differentiation, regulation of inflammatory response, thyroid
hormone generation, bone remodelling, complement and
coagulation cascades, and ECM-receptor interaction (Figures
2a and 2b). These results indicate that these genes were not
only significantly upregulated in OA cartilage and positively
correlated with clinical features but also closely related to
pathological responses associated with OA, such as inflam-
mation and immunity. Therefore, these genes are promising
potential therapeutic targets and biomarkers for OA and merit
further analysis.

Identification of the key gene set
First, 38 characteristic genes that were closely related to the
study group were screened by the Boruta algorithm (Figure
3a, Supplementary Table ii); then, SVM-RFE arithmetic was
employed to screen feature gene variables. When the number

Fig. 3
Identification of key characteristic genes. a) Characteristic genes that were closely related to the study group were screened with the Boruta
algorithm (green and yellow). b) Validation of the optimal gene expression signature by support vector machine–recursive feature elimination
(SVM–RFE) algorithm selection. The colours in the figure represent the corresponding model accuracy for different gene numbers. c) The optimal
lambda value was determined when the misclassification reached the minimum through the lasso regression algorithm. d) Venn diagram of the key
characteristic genes intersected by the SVM–RFE and LASSO algorithms.
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of variables was equal to 11, the classification accuracy
reached 0.983 for the first time; thus, 11 of 38 variables
were selected as optimal genes (Figure 3b). Through LASSO

regression analysis, the lambda value that minimized the error
in cross validation was determined, and nine of 38 variables
were obtained as candidate genes (Figure 3c). Ultimately, by

Fig. 4
Diagnostic value of the key characteristic genes. a) Receiver operating characteristic (ROC) analysis of the independent diagnostic efficacy of the
four key genes in the training cohort (GSE169077, GSE57218). b) ROC analysis of the overall diagnostic efficacy of the four key genes in the training
cohort. c) ROC analysis of the independent diagnostic efficacy of the four key genes in the external validation cohort (GSE89408, GSE143514). d) ROC
analysis of the overall diagnostic efficacy of the four key genes in the external validation cohort. e) Decision curve analysis to evaluate the potential
clinical value in the training cohort. f ) Decision curve analysis to evaluate the potential clinical value in the external validation cohort. g) Differential
expression levels of the four key genes between the osteoarthritis (OA) and normal groups in the external validation cohort (Mann–Whitney U test).
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intersecting the optimal genes extracted via SVM-RFE and
candidate genes selected by LASSO regression, we identified
a total of four key characteristic genes (CRTAC1, iodothyr-
onine deiodinase 2 (DIO2), angiopoietin-related protein 2

(ANGPTL2), and MAGE family member D1 (MAGED1)) (Figure
3d).

Fig. 5
Potential effect of key genes in osteoarthritis (OA). a) Coexpression network of the characterized genes. b) Gene Ontology functional (GO) analysis of
the coexpressed genes. c) Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) of the coexpressed genes. d) Boxplots of the risk score
between OA and healthy controls in the training cohort (Mann-Whitney U test).

Fig. 6
e) Boxplots of the risk score between osteoarthritis (OA) and healthy controls in the external validation cohort (Mann–Whitney U test). f ) to i) Gene set
enrichment analysis conducted between high- and low-risk groups. Specific f ) Gene Ontology (GO) biological processes and g) Kyoto encyclopedia of
Genes and Genomes (KEGG) pathways in the high-risk group of the training cohort (GSE169077, GSE57218). Specific h) GO biological processes and i)
KEGG pathways in the high-risk group of the external validation cohort (GSE89408, GSE143514).
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Diagnostic value of the key gene set
ROC curve analysis was investigated to validate the diagnostic
value (GSE169077, GSE57218), and the results indicated the
high diagnostic efficacy of all four hub genes (Figures 4a and
4b). Furthermore, RNA-seq datasets (GSE89408, GSE143514)
were introduced as an external validation cohort to verify
the diagnostic power of the hub genes, and the results also
demonstrated a high accuracy for diagnosing the occurrence
of OA (Figures 4c and 4d). The results also showed that the
ROC curve of the integrated four hub candidate genes was
higher than that of a candidate gene alone. According to
DCA, the composite genetic model curve and four single

gene model curves were all above the grey line, and the
composite genetic model was better than the four single gene
models. These results implied that decision-making based on
the composite genetic model provides greater clinical benefit
and may be more beneficial for patients with OA (Figure 4e).
Assessment of the validation cohort also corroborated these
findings (Figure 4f). In addition, consistent with the expres-
sion trend in the training cohort (GSE169077, GSE57218), the
expression levels of four key genes were significantly higher
in the OA group than in the normal group in the validation
cohort (GSE89408, GSE143514) (Figure 4g), indicating the

Fig. 7
Correlations of key genes with pathological changes in osteoarthritis (OA). a) Correlation analysis among the four key genes; darker red indicates
stronger positive correlations. b) The correlations of four key genes with matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase
with thrombospondin motifs 5 (ADAMTS-5), ACAN, alkaline phosphatase (ALPL), and collagen type I alpha 1 (COL1A1); darker red indicates stronger
positive correlations and darker blue indicates stronger negative correlations. c) The specific value of the correlation and statistical significance of the
four key genes with MMPs, ADAMTS-5, ACAN, ALPL, and COL1A1 (Spearman correlation analysis; *p < 0.05, **p < 0.01, and ***p < 0.001).
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good stability and accuracy of the four crucial genes that
could play an important role in disease.

Potential effect of key genes in OA
To further explore the underlying molecular mechanisms for
the dysregulated key genes, we created a PPI network for
the four crucial genes through the GeneMANIA database
and analyzed the roles of these functionally similar genes
(Figure 5). KEGG/GO analysis indicated that these genes were
enriched in the neurotrophin signalling pathway, thyroid
hormone signalling pathway, apoptosis, PI3K-Akt signalling
pathway, thyroid hormone generation, positive regulation of
apoptotic signalling pathway, stress-activated MAPK cascade,
positive regulation of mitochondrion organization, and so on.
Additionally, based on the median expression value of the four
key genes, we introduced GSEA to classify all samples into two
categories (high- and low-expression groups). The findings
revealed that the four highly expressed gene subgroups
activated the PI3K-Akt signalling pathway, ECM-receptor
interaction, oxidative phosphorylation, complement and
coagulation cascades, lysosome, phagosome, apelin signal-
ling pathway, collagen metabolic process, biomineralization,
ossification, and thyroid hormone generation, implying that
the roles among these four genes were relatively similar in

OA cartilage (Supplementary Figures c to j). In addition, a risk
score was calculated for each patient based on the expression
of four hub characteristic genes using the following formula:
risk score = CRTAC1*3.870+ DIO2*1.787+ MAGED1*1.232+
ANGPTL2*0.410. The results indicated that risk score was
significantly higher in OA patients than healthy controls in
both the training cohort and validation cohort (Figure 6). All
samples were then divided into high- and low-risk subgroups
according to the median risk score, and GSEA was performed
on both the training cohort and validation cohortto fur-
ther explore the potential biological mechanism of dysregu-
lated key genes in OA. Pathways and functions related to
ECM metabolism, immune inflammatory activation, and bone
formation and mineralization, such as ECM-receptor interac-
tion, PI3K-Akt signalling pathway, complement and coagula-
tion cascades, leucocyte transendothelial migration, Hippo
signalling pathway, collagen catabolic process, macrophage
activation, neutrophil activation, immune response, inflam-
matory response, biomineralization, bone mineralization,
endochondral ossification, and osteoblast differentiation, were
activated in the high-risk group. These results indicated that
high expression of hub genes and high risk scores were
closely related to the main pathological changes mediating
cartilage damage and degeneration in OA. Therefore, further

Fig. 8
The landscape of immune infiltration in association with osteoarthritis (OA). a) Violin plot exhibiting the estimated immune score between OA and
healthy controls (Mann–Whitney U test). b) Boxplots of the different immune cell infiltration profiles of OA and healthy controls (Mann–Whitney U
test). c) The relationship between the four key genes and immune cell abundance (Spearman correlation analysis; *p < 0.05, **p < 0.01, and ***p <
0.001).
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analyses of the correlation between key genes and immune
cells as well as ECM metabolism and mineralization-relevant
markers are warranted. MMP1, MMP2, MMP3, MMP9, MMP13,
and ADAMTS-5 are vital enzymes related to ECM metabolism
in OA,29-33 and aggrecan (ACAN) is the main component of
the ECM in cartilage tissue. Through the external validation
cohort, we further demonstrated significant positive corre-
lations among the key gene set (Figure 7a). In addition,
correlation analysis suggested that there were significant
positive correlations between four crucial genes and met-
alloproteinases, and except for ANGPTL2, all other crucial
genes were negatively correlated with ACAN (Figure 7c). This
finding indicated that these four crucial genes with significant
functional similarity had the capacity to reflect the level of
ECM catabolism to a certain extent. In addition, our analysis
also indicated that four hub genes were significantly and
positively correlated with markers of mineralization (ALPL,
COL1A1)34 (Figure 7c), which suggested the ability of four
crucial genes to reflect mineralization of articular cartilage
during the progression of OA. To further explore whether OA is
associated with immune infiltration, we applied the estimated
immune score to evaluate the difference in immune infiltra-
tion levels between OA and healthy tissues. OA presented
elevated immune scores, suggesting that OA might possess a
more dominant level of immune infiltration (Figure 8a). The
ssGSEA algorithm was used to further evaluate the infiltra-
tion abundance of immune cell subpopulations between OA
cartilage and healthy controls. The findings revealed that
OA cartilage had significantly higher levels of infiltration
abundance of most immune cells, which suggested activation
of the immune microenvironment (Figure 8b). In addition,
correlation analysis revealed positive correlations between
infiltration of multiple innate and adaptive immune cell types,
such as macrophages, γ δ T cells, immature dendritic cells,
natural killer (NK) cells, natural killer T cells, regulatory T cells,
T follicular helper cells, type 2 T helper cells and effector
memory CD4 T cells, and the expression of all four key genes
(Figure 8c), implying that the four key genes were capable of
reflecting the increased level of immune cell infiltration during
the progression of OA.

According to the above analysis, the dysregulation
of these key genes is not only associated with the activa-
tion of related pathways and biological processes such as
immunoinflammatory processes, ECM hypermetabolism, and
bone formation and mineralization, but also significantly
and positively correlated with multiple metalloproteinases,
inflamed immune cells, and markers of mineralization, which
implies a high risk for cartilage damage and aggravation.
Therefore, these crucial genes may be potential molecular
diagnostic biomarkers and therapeutic targets, and more
attention should be given.

Construction of a competing endogenous RNA regulatory
network for the four hub genes
To understand the potential post-transcriptional regulatory
mechanisms of the four key genes in detail and to pro-
vide a reference for the selection of potential noncoding
RNA therapeutic drugs for the four key genes, a ceRNA
regulatory network was constructed. A total of 23 miRNA–
mRNA pairs were obtained after intersection with the miRNAs
predicted by miRWalk targeting the four key genes and

downregulated differentially expressed miRNAs (Supplemen-
tary Figure ka). Overall, 68 lncRNA–miRNA pairs were obtained
after intersection with the lncRNAs predicted by LncBase and
upregulated differentially expressed lncRNAs (Supplementary
Figure kb). Subsequently, miRNA‒mRNA and lncRNA‒miRNA
binding pairs were integrated to construct a complete ceRNA
regulatory network (Supplementary Figure kc, Supplementary
Table iii).

Discussion
In the present study, we integrated machine learning and
multiple algorithms to analyze the pathological altera-
tions associated with OA cartilage from multiple dimen-
sions, including gene expression, biological pathways, and
immune cell infiltration.  The high expression of four
crucial characteristic genes in OA cartilage was ultimately
identified.  These dysregulated genes showed not only
accurate diagnostic performance but also the potential to
characterize the biological characteristics of OA cartilage. A
ceRNA network was also constructed targeting the four key
genes, contributing to further understanding post-transcrip-
tional regulatory mechanisms and the selection of potential
molecular therapeutic agents. Previous studies also analyzed
arthritis by integrating public datasets.35-40  However, a
number of studies analyzed OA based on synovial tissues,
and several studies, in order to increase the sample size,
mixed OA and rheumatoid arthritis or cartilage, meniscus,
synovial,  and subchondral bone tissues for analysis,  which
may negatively affect  the reliability of the final  results. In
this study, both microarray and RNA-seq data from OA and
normal human cartilage were comprehensively investigated,
which increased its accuracy.

In  this  analysis,  a  total  of  100  upregulated DEGs
were  identified,  and after  intersecting the  critical  module
genes  obtained from WGCNA,  a  total  of  46  characteris-
tic  genes  were  identified.  Functional  annotation  analysis
indicated that  pathological  responses,  such as  immune
inflammation,  were  caused by  the  dysregulation of  these
characteristic  genes  in  OA cartilage.  It  is  thus  neces-
sary  to  screen critical  genes  for  further  investigation.
Through multiple  iterations  of  Boruta’s  algorithm,  as  well
as  SVM-SEF  and LASSO regression algorithms,  CRTAC1,
ANGPTL2,  DIO2,  and  MAGED1 were  finally  identified  as
key  genes  in  OA  cartilage.  Evaluation  of  the  external
cohort  validated that  these  four  key  genes  were  signif-
icantly  highly  expressed in  OA  cartilage.  In  addition,
through diagnostic  value  analysis  in  both  the  training
and  validation cohorts,  we found that  the  four  key
genes  had high accuracy  and stability  for  the  diagno-
sis  of  OA.  Notably,  the  integration  of  the  four  crucial
genes  exhibited higher  diagnostic  performance than the
four  candidate  genes  alone and provided greater  clinical
benefit,  consistent  with  the  multimolecular  driving nature
of  OA.  This  implies  that  studies  based on the  expression
and translation  levels  of  these  four  hub genes  in  synovial
fluid,  blood,  and urine  possess  clinical  importance,  and
that  changes  in  these  candidate  biomarkers  may play  a
vital  role  in  the  detection of  OA.41

To further explore the potential molecular mecha-
nisms of the four key genes in OA, we constructed a
PPI network based on these crucial genes through the
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GeneMANIA database. Annotation of the gene functions
through KEGG and GO analyses revealed that the neuro-
trophin signalling pathway, the thyroid hormone signalling
pathway, the PI3K-Akt signalling pathway, thyroid hormone
generation, the positive regulation of apoptotic signalling
pathway, and the stress-activated mitogen-activated protein
kinase (MAPK) cascade were the most important functional
categories. In addition, we conducted GSEA and detected
that the high-expression subgroup of the four hub genes,
and the high-risk subgroup, activated relevant functions and
pathways such as ECM metabolism, immune inflammation,
and bone formation and mineralization. The activation of
these functions and pathways strongly implies the progression
of OA. As the marker enzyme of cartilage metabolism, an
increase in MMP and ADAMTS-5 expression usually indicates
an increase in cartilage catabolism. Decreased expression of
ACAN, a major component of the ECM, implies decreased
cartilage synthesis. Correlation analysis was conducted for
the key characteristic genes and indicated that these four
key genes with similar functions were significantly positively
correlated with MMPs and ADAMTS-5. CRTAC1, DIO2, and
MAGED1 showed a negative correlation with ACAN, among
which CRTAC1 showed a significant difference. Furthermore,
these four crucial genes were also significantly positively
correlated with markers of mineralization. In patients with
OA, osteochondral mineralization leads to increased thicken-
ing in adjacent subchondral bone as well as loss of cartilage
structural and functional integrity.42-44 The size of cartilage
lesions and osteophytes correlated with the severity of joint
pain and the progression of OA.45 In addition, the estima-
ted immune scores and immune cell infiltration were also
significantly increased in OA tissues compared with healthy
control tissues. The four key genes also showed significant
positive correlations with a variety of immune cells, such as
macrophages, regulatory T cells, effector memory CD4 T cells,
T follicular helper cells, and NK cells. In OA, immune responses
are primarily activated by endogenous stimuli released from
tissue damage or stressed cells, leading to sterile inflamma-
tion. Under normal circumstances, this immune response
can be well controlled, thereby facilitating the repair of the
injury. If left unchecked, however, chronic immune responses
can lead to pathological manifestations, such as cartilage
degeneration and excessive tissue repair (e.g. heterotopic
bone formation).46,47 It has been suggested that activated
macrophages are present in the vast majority of OA cases,
and their number is significantly correlated with the severity
of OA pain, the formation of osteophytes, and the narrow-
ing of the joint space.48 Proinflammatory cytokines produced
by macrophages include IL-1β and TNF-α, which can induce
cartilage damage.49 The pathological role of T cells in OA
remains uncertain, but they may be involved in the produc-
tion of proinflammatory cytokines and may be related to the
recognition of the breakdown products of cartilage matrix
proteoglycans.50,51 One study found that T follicular helper cells
and interleukin (IL)-21 play an important role in the progres-
sion of OA, and their expression in OA patients was signifi-
cantly correlated with the level of inflammation, knee function
score, and OA disease activity.52 Jaime et al53 indicated that a
subset of NK cells (CD56(+)brightCD16(-) cells) is associated with
increased levels of proinflammatory cytokines in the synovial
fluid of OA patients, which may contribute to the progression

of chronic inflammation. In conclusion, the role of these four
key genes in OA deserves further analysis.

CRTAC1, also known as cartilage expressing protein
68 (cep68) or lateral olfactory tract usher substance (LOTUS),
was first identified as a marker that could be used to dis-
tinguish chondrocytes, osteoblasts, and mesenchymal stem
cells.54 Recent studies have shown that CRTAC1 in plasma
is associated with OA and is a novel promising candidate
biomarker for OA.10,55,56 A new study found that adding two
other proteins, ACAN and NCAN, to CRTAC1 could improve
the prediction of OA over CRTAC1 alone.56 ACAN is the major
proteoglycan in articular cartilage and has important effects
on cartilage strength and biology. NCAN, similar to ACAN, is
a chondroitin sulfate proteoglycan, but its specific function
is uncertain. Therefore, it is of great significance to screen
OA-related biomarkers at the cartilage level. In addition, OA
is a multimolecule-driven disease, and functionally intercon-
nected genes can play a role together at a certain point
in cellular life activity. Therefore, identifying a set of gene
signatures may be more conducive to the diagnosis of OA.
Our analysis also showed that the diagnostic performance
(including ROC curve analysis and DCA) of integrating four
key genes (gene set) was better than that of a key gene alone.
Apart from the potential value of CRTAC1 in the diagnosis
of OA, one study also found that CRTAC1 is an important
regulator of OA pathogenesis. Genetic deletion of CRTAC1
in female mice can protect against cartilage degradation,
osteophyte formation, and gait abnormalities (reduction of
pain response) in a model of post-traumatic OA.57 However,
at present, there are few studies of the effect of CRTAC1
on the pathogenesis of OA. How CRTAC1 specifically affects
OA progression remains unclear. Ge et al57 speculated that
CRTAC1 presumably mediates the effects of cytokines during
OA, including promoting inflammation, increasing catabolism,
and inhibiting the anabolic activity of chondrocytes, which
is consistent with the results of our correlation analysis,
which also found that CRTAC1 was positively correlated with
multiple inflammatory immune cells and metalloproteinases
and negatively correlated with ACAN. It has been sugges-
ted that the NOGO-A/NGR1 pathway, the downstream target
of CRTAC1, is essential for osteoclastogenesis.58 Therefore,
increased levels of CRTAC1 in OA may antagonize NOGO/
NGR1 signalling to inhibit osteoclast formation as well as
promote subchondral bone sclerosis and cartilage mineraliza-
tion, which may exacerbate OA progression.59-62 We also found
that CRTAC1 was positively correlated with mineralization
markers. GSEA in our study indicated that the high-expression
subgroup of CRTAC1 could activate relevant functions and
pathways such as ECM metabolism, immune inflammation,
and bone formation and mineralization. Moreover, CRTAC1 is
a glycosylated ECM protein in articular cartilage, and upregu-
lation of this protein in articular cartilage of OA may perturb
cartilage homeostasis and matrix turnover, thereby altering
the biophysical properties and physical remodelling of the
cartilage ECM. Changes in the cartilage ECM may intensify
the progression of OA.63-66 Therefore, synthesizing the above
analysis, CRTAC1 probably serves as a potential key therapeu-
tic target for OA, but further research is warranted.

The proteins encoded by DIO2 belong to the iodothyr-
onine deiodinase family. DIO2 is an OA susceptibility gene
that encodes a deiodinase type 2 protein, which catalyzes
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the conversion of thyroxinogen (T4) to biologically active
thyroid hormone (T3) via exocyclic 5'-deiodination.67 Active
T3 subsequently signals chondrocyte terminal maturation,
leading to cell hypertrophy, degradation and mineralization of
the cartilage matrix, and bone formation.68-70 This is consistent
with the results of our correlation analysis, which indicated
that DIO2 showed a positive correlation with a variety of
metalloproteinases and mineralization markers. In addition,
DIO2 was associated with multiple inflammatory immune
cells in our analysis. Studies have indicated that upregulation
of DIO2 expression may be responsible for OA pathogene-
sis by enhancing inflammatory responses and chondrocyte
hypertrophy, and the inhibition of deiodinase during in
vitro cartilage formation contributes to prolonged endochon-
dral homeostasis, as reflected by significantly attenuated
upregulation of matrix-degrading enzymes and increased
ECM deposition.34,71 Bomer et al found that DIO2(-/-) mice
could prevent cartilage damage and significantly reduce
synovial inflammatory symptoms under excessive mechani-
cal stress.72 A recent study detected no signs of OA in
DIO2Ala92 mutant mice, suggesting a protective effect of the
Ala92 polymorphism.73 The Ala92 variant impaired conver-
sion of the prohormone T4 to the active hormone T3,
consequently decreasing local thyroid hormone signalling.74

providing further evidence that reducing thyroid hormone
signalling can prevent OA.73 Our study also indicated that the
high expression of the DIO2 subgroup activated the thyroid
hormone signalling pathway, and the high-risk subgroup
could upregulate thyroid hormone generation. Together, these
analyses demonstrate that DIO2 activity can be a therapeutic
target for OA.

ANGPTL2 protein is a secreted glycoprotein homol-
ogous to angiopoietin and may act on endothelial cells
through autocrine or paracrine pathways. Hyperfunction of
ANGPTL2 can cause chronic inflammation, which contributes
to the progression of a variety of diseases.75,76 ANGPTL2
was reported to promote the nuclear translocation of NF-κB
and induce IL-6 secretion and expression in synovial tissue.77

Okada et al78 suggested that adipose tissue-derived ANGPTL2
activates the inflammatory cascade of endothelial cells and
induces chemotaxis of monocytes/macrophages, leading to
the initiation and proliferation of inflammation. Angptl2 mRNA
and protein are abundantly expressed in the proliferating
rheumatoid synovium of RA patients, especially in fibro-
blast-like and macrophage-like synoviocytes. Integrin α5β1,
a receptor for ANGPTL2, is induced under stress conditions
and is involved in the development and progression of
inflammation-based pathology.79,80 Leucocyte immunoglobu-
lin-like receptor subfamily B member 2 (LILRB2) is also an
ANGPTL2 receptor, which is highly expressed on the surface
of immune cells, including macrophages, monocytes, and
dendritic cells.81-83 An in vitro study found that ANGPTL2 can
induce the expression of inflammatory factors in synovial cells
through LILRB2.84 Another in vitro study showed that ANGPTL2
upregulation accelerated human chondrocyte damage via
integrin α5β1 activation of the NF-κB and p38/MAPK sig-
nalling pathways.85 These studies also support our find-
ings that ANGPTL2 was highly positively correlated with a
variety of immune inflammatory cells and metalloproteina-
ses, and the highly expressed ANGPTL2 subgroup activated
the positive regulation of the apoptotic signalling pathway,

collagen metabolic process, and oxidative phosphorylation. In
conclusion, ANGPTL2 may be a potential therapeutic target
in OA. However, it is worth noting that most of the current
studies on ANGPTL2 in arthritis are in vitro studies, and more
in vivo studies are necessary for verification.

MAGED1, also known as NRAGE or DLXIN-1, is an
X-linked member of the MAGE gene family. MAGED1 is a
multifunctional adaptor protein that participates in transcrip-
tional regulation, cell cycle regulation, apoptotic signalling,
and cell differentiation.86–88 Matluk et al89 showed that NRAGE
can activate the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) signalling pathway through the
non-canonical BMP pathway, thus promoting the inflamma-
tory response. Liu et al90 demonstrated that MAGED1 can
regulate osteogenic differentiation and mineralization, and
that MAGED1 deficiency in mice promoted osteopenia and
reduced bone mineral density. Therefore, highly expressed
MAGED1 may promote cartilage mineralization and osteo-
phyte formation, contributing to the progression of OA.
In addition, our study indicated that MAGED1 was not
only significantly positively correlated with the other three
key genes but also with MMP9, MMP13, and ADAMTS5 as
well as multiple immune-inflammatory cell and mineraliza-
tion markers. Thus, we speculate that MAGED1 might be a
potential new therapeutic target for OA. However, there is a
lack of research on the pathological mechanism of MAGED1 in
OA, and the potential pathogenesis of MAGED1 in OA remains
to be elucidated.

Based on the above analysis, the four hub genes
not only have good diagnostic ability for OA but also
may be potential therapeutic targets for OA. With advan-
ces in drug delivery technology, molecular targeted therapy
appears to be a potential therapeutic approach for early
intervention of OA,91,92 where noncoding RNAs (especially
lncRNAs and miRNAs) and their regulatory interactors may
play an important role in both joint health and disease, affect
biological processes and be considered key gene expression
modulators.93,94 MiR-486 promotes more catabolic phenotypes
of chondrocyte-like cells by targeting SIRT6.95 MiR-210-3 p can
inhibit subchondral angiogenesis by targeting TGFBR1 and
ID4 to prevent OA.96 MiR-92a-3p regulates chondrogene-spe-
cific gene expression by directly targeting histone deacety-
lase 2 during chondrogenesis and degradation.97 Linc34 can
promote abnormal metabolic dysfunction and inflammation
in OA chondrocytes by targeting miR-140-5p.98 Stelcer et al99

identified key miRNAs that could regulate early chondrogen-
esis, such as hsa-miR-520c-3p and hsa-miR-525-5p. However,
there is still a lack of regulatory molecules targeting the four
key genes, so we constructed a potential ceRNA regulatory
network based on these four genes. Considering the therapeu-
tic potential of noncoding RNAs in preclinical studies of OA,
the construction of a ceRNA regulatory network can provide
a new reference for a clear understanding of the molecular
mechanism and research on targeted therapy.

The fact that we did not obtain a sufficient number
of human normal cartilage samples for experiments due to
ethical requirements is a limitation of this study. However,
our study combined multiple datasets using both microar-
ray and RNA-seq methods to screen and analyze critical
genes in OA cartilage to maximize sample size, and reduce
the deviation introduced by a single method and exhibited
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accurate results. However, these results still need to be verified
with large-sample validation. Fortunately, two recent large
sample size studies both found plasma CRTAC1 as a specific
candidate biomarker for OA and a predictor of OA risk and
joint arthroplasty progression,10,56 which reflects the reliability
and further clinical research value of our screened key genes
to a certain degree. However, the efficacy of plasma CRTAC1
in other ethnic populations and the optimal cutoff value need
to be investigated further before clinical translation. Addition-
ally, due to the limitation of the OA cartilage datasets, the
dataset for studying miRNA was derived from knee synovial
tissue. Although cartilage tissue is proximal to synovial tissue
in the knee joint, both are covered by synovial fluid, and
the expression trends of related molecules in OA and normal
tissues may be similar, the accuracy of the final ceRNA results
needs to be validated. Finally, we identified four key genes that
may be potential therapeutic targets for OA, and this finding
was supported by a number of studies. Nevertheless, the
biological roles of the four crucial genes in OA and the ceRNA
regulatory network are worth further analysis and verification
by more experiments.

In conclusion, the current study explores and vali-
dates a dysregulated key gene set in osteoarthritic cartilage
that is capable of accurately diagnosing OA and characteriz-
ing biological alterations in osteoarthritic cartilage; this may
become a promising indicator to assist with clinical decision-
making. In addition, this study indicates that dysregulated
key genes play an important role in the development and
progression of OA and are potential therapeutic targets.

Supplementary material
Figures showing the primary flow chart in the study, principal
component analysis between datasets before and after debatching,
and gene set enrichment analysis conducted for four key genes.
Tables detailing the datasets of gene expression profiles, the
final decision list of Boruta algorithm, and the list of competing
endogenous RNA regulatory networks.
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