Advertisement for orthosearch.org.uk
Results 1 - 100 of 254
Results per page:
Bone & Joint Research
Vol. 9, Issue 5 | Pages 219 - 224
1 May 2020
Yang B Fang X Cai Y Yu Z Li W Zhang C Huang Z Zhang W

Aims. Preoperative diagnosis is important for revision surgery after prosthetic joint infection (PJI). The purpose of our study was to determine whether reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which is used to detect bacterial ribosomal RNA (rRNA) preoperatively, can reveal PJI in low volumes of aspirated fluid. Methods. We acquired joint fluid samples (JFSs) by preoperative aspiration from patients who were suspected of having a PJI and failed arthroplasty; patients with preoperative JFS volumes less than 5 ml were enrolled. RNA-based polymerase chain reaction (PCR) and bacterial culture were performed, and diagnostic efficiency was compared between the two methods.According to established Musculoskeletal Infection Society (MSIS) criteria, 21 of the 33 included patients were diagnosed with PJI. Results. RNA-based PCR exhibited 57.1% sensitivity, 91.7% specificity, 69.7% accuracy, 92.3% positive predictive value, and 55.0% negative predictive value. The corresponding values for culture were 28.6%, 83.3%, 48.5%, 75.0%, and 40.0%, respectively. A significantly higher sensitivity was thus obtained with the PCR method versus the culture method. Conclusion. In situations in which only a small JFS volume can be acquired, RNA-based PCR analysis increases the utility of preoperative puncture for patients who require revision surgery due to suspected PJI. Cite this article:Bone Joint Res. 2020;9(5):219–224


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 311 - 320
1 Mar 2022
Cheok T Smith T Siddiquee S Jennings MP Jayasekera N Jaarsma RL

Aims. The preoperative diagnosis of periprosthetic joint infection (PJI) remains a challenge due to a lack of biomarkers that are both sensitive and specific. We investigated the performance characteristics of polymerase chain reaction (PCR), interleukin-6 (IL6), and calprotectin of synovial fluid in the diagnosis of PJI. Methods. We performed systematic search of PubMed, Embase, The Cochrane Library, Web of Science, and Science Direct from the date of inception of each database through to 31 May 2021. Studies which described the diagnostic accuracy of synovial fluid PCR, IL6, and calprotectin using the Musculoskeletal Infection Society criteria as the reference standard were identified. Results. Overall, 31 studies were identified: 20 described PCR, six described IL6, and five calprotectin. The sensitivity and specificity were 0.78 (95% confidence interval (CI) 0.67 to 0.86) and 0.97 (95% CI 0.94 to 0.99), respectively, for synovial PCR;, 0.86 (95% CI 0.74 to 0.92), and 0.94 (95% CI 0.90 to 0.96), respectively, for synovial IL6; and 0.94 (95% CI 0.82 to 0.98) and 0.93 (95% CI 0.85 to 0.97), respectively, for synovial calprotectin. Likelihood ratio scattergram analyses recommended clinical utility of synovial fluid PCR and IL6 as a confirmatory test only. Synovial calprotectin had utility in the exclusion and confirmation of PJI. Conclusion. Synovial fluid PCR and IL6 had low sensitivity and high specificity in the diagnosis of PJI, and is recommended to be used as confirmatory test. In contrast, synovial fluid calprotectin had both high sensitivity and specificity with utility in both the exclusion and confirmation of PJI. We recommend use of synovial fluid calprotectin studies in the preoperative workup of PJI. Cite this article: Bone Joint J 2022;104-B(3):311–320


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives. The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). Methods. The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus. Results. The 16s rDNA test proved to be very robust and was able to provide a result in 97% of all samples within 25 minutes. The 16s rDNA test was able to diagnose PJI with a sensitivity of 87.5% and 82%, and a specificity of 100% and 89%, in the proof-of-principle and validation cohorts, respectively. The microbiological culture of synovial fluid achieved a sensitivity of 80% and a specificity of 93% in the validation cohort. Conclusion. The 16s rDNA test offers reliable intraoperative detection of all bacterial species within 25 minutes with a sensitivity and specificity comparable with those of conventional microbiological culture of synovial fluid for the detection of PJI. The 16s rDNA test performance is independent of possible blood contamination, culture time and bacterial species. Cite this article: V. Janz, J. Schoon, C. Morgenstern, B. Preininger, S. Reinke, G. Duda, A. Breitbach, C. F. Perka, S. Geissler. Rapid detection of periprosthetic joint infection using a combination of 16s rDNA polymerase chain reaction and lateral flow immunoassay: A Pilot Study. Bone Joint Res 2018;7:12–19. DOI: 10.1302/2046-3758.71.BJR-2017-0103.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1097 - 1101
1 Aug 2006
Jambhekar NA Kulkarni SP Madur BP Agarwal S Rajan MGR

A retrospective series of 45 cases of chronic osteomyelitis collected over a period of 14 years was histologically classified into tuberculous osteomyelitis (25) and chronic non-granulomatous osteomyelitis (20). The tuberculous osteomyelitis group was divided into three subgroups: a) typical granulomas (13 cases); b) ill-defined granulomas (seven cases), and c) suspected granulomas (five cases). An in-house polymerase chain reaction amplifying the 245 bp nucleotide sequence, and capable of detecting 10 fg of DNA of Mycobacterium tuberculosis, was used on the DNA extracted from the paraffin blocks. The polymerase chain reaction was positive in 72% of cases (18) of tuberculous osteomyelitis, but when typical cases of tuberculous osteomyelitis with confirmed granulomas were considered (13), this increased to 84.6% (11). The chronic non-granulomatous osteomyelitis group gave positive polymerase chain reaction results in 20% of the cases (4). Our preliminary study on tuberculous osteomyelitis shows that the polymerase chain reaction can be a very useful diagnostic tool, since a good correlation was seen between typical granulomas and polymerase chain reaction with a sensitivity of 84.6% and a specificity of 80%. In addition, our study shows that tuberculous osteomyelitis can be diagnosed in formalin-fixed paraffin-embedded tissues in the absence of typical granulomas


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1366 - 1369
1 Oct 2014
Held M Laubscher M Zar HJ Dunn RN

The lack of an accurate, rapid diagnostic test for mycobacterium tuberculosis (TB) is a major handicap in the management of spinal TB. GeneXpert, a new, rapid molecular diagnostic test is recommended as the first line investigation for suspected pulmonary TB in areas with a high prevalence of HIV or drug resistance, yet it has not been validated for the diagnosis of musculoskeletal TB.

The aim of this study was to assess the accuracy of GeneXpert in diagnosing spinal TB.

A prospective clinical study of 69 consecutive adults with suspected spinal TB was conducted at a tertiary hospital in an area with the highest incidence and prevalence of TB in the world. GeneXpert was used on tissue samples of the enrolled patients and its diagnostic accuracy compared with a reference standard of tissue in liquid culture. A total of 71 spine samples from 69 patients (two re-biopsies) were included in the study.

The GeneXpert test showed a sensitivity of 95.6% and specificity of 96.2% for spinal TB. The results of the GeneXpert test were available within 48 hours compared with a median of 35 days (IQR 15 to 43) for cultures. All cases of multi-drug resistant TB (MDR TB) were diagnosed accurately with the GeneXpert test. The MDR TB rate was 5.8%.

Cite this article: Bone Joint J 2014;96-B:1366–9.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 560 - 568
1 Nov 2016
Peeters M Huang CL Vonk LA Lu ZF Bank RA Helder MN Doulabi BZ

Objectives. Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016;5:560–568. DOI: 10.1302/2046-3758.511.BJR-2016-0033.R3


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 288 - 296
1 Mar 2019
Sigmund IK Holinka J Sevelda F Staats K Heisinger S Kubista B McNally MA Windhager R

Aims. This study aimed to assess the performance of an automated multiplex polymerase chain reaction (mPCR) technique for rapid diagnosis of native joint septic arthritis. Patients and Methods. Consecutive patients with suspected septic arthritis undergoing aseptic diagnostic joint aspiration were included. The aspirate was used for analysis by mPCR and conventional microbiological analysis. A joint was classed as septic according to modified Newman criteria. Based on receiver operating characteristic (ROC) analysis, the area under the ROC curve (AUC) values of the mPCR and the synovial fluid culture were compared using the z-test. A total of 72 out of 76 consecutive patients (33 women, 39 men; mean age 64 years (22 to 92)) with suspected septic arthritis were included in this study. Results. Of 72 patients, 42 (58%) were deemed to have septic joints. The sensitivity of mPCR and synovial fluid culture was 38% and 29%, respectively. No significant differences were found between the AUCs of both techniques (p = 0.138). A strong concordance of 89% (Cohen’s kappa: 0.65) was shown. The mPCR failed to detect Staphylococcus aureus (n = 1) and Streptococcus pneumoniae (n = 1; no primer included in the mPCR), whereas the synovial fluid culture missed six microorganisms (positive mPCR: S. aureus (n = 2), Cutibacterium acnes (n = 3), coagulase-negative staphylococci (n = 2)). Conclusion. The automated mPCR showed at least a similar performance to the synovial fluid culture (the current benchmark) in diagnosing septic arthritis, having the great advantage of a shorter turnaround time (within five hours). Cite this article: Bone Joint J 2019;101-B:288–296


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 26 - 31
4 Jan 2021
Kildow BJ Ryan SP Danilkowicz R Lazarides AL Penrose C Bolognesi MP Jiranek W Seyler TM

Aims. Use of molecular sequencing methods in periprosthetic joint infection (PJI) diagnosis and organism identification have gained popularity. Next-generation sequencing (NGS) is a potentially powerful tool that is now commercially available. The purpose of this study was to compare the diagnostic accuracy of NGS, polymerase chain reaction (PCR), conventional culture, the Musculoskeletal Infection Society (MSIS) criteria, and the recently proposed criteria by Parvizi et al in the diagnosis of PJI. Methods. In this retrospective study, aspirates or tissue samples were collected in 30 revision and 86 primary arthroplasties for routine diagnostic investigation for PJI and sent to the laboratory for NGS and PCR. Concordance along with statistical differences between diagnostic studies were calculated. Results. Using the MSIS criteria to diagnose PJI as the reference standard, the sensitivity and specificity of NGS were 60.9% and 89.9%, respectively, while culture resulted in sensitivity of 76.9% and specificity of 95.3%. PCR had a low sensitivity of 18.4%. There was no significant difference based on sample collection method (tissue swab or synovial fluid) (p = 0.760). There were 11 samples that were culture-positive and NGS-negative, of which eight met MSIS criteria for diagnosing infection. Conclusion. In our series, NGS did not provide superior sensitivity or specificity results compared to culture. PCR has little utility as a standalone test for PJI diagnosis with a sensitivity of only 18.4%. Currently, several laboratory tests for PJI diagnosis should be obtained along with the overall clinical picture to help guide decision-making for PJI treatment. Cite this article: Bone Joint J 2021;103-B(1):26–31


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 584 - 588
1 Mar 2021
Khattak M Vellathussery Chakkalakumbil S Stevenson RA Bryson DJ Reidy MJ Talbot CL George H

Aims. The aim of this study was to determine the extent to which patient demographics, clinical presentation, and blood parameters vary in Kingella kingae septic arthritis when compared with those of other organisms, and whether this difference needs to be considered when assessing children in whom a diagnosis of septic arthritis is suspected. Methods. A prospective case series was undertaken at a single UK paediatric institution between October 2012 and November 2018 of all patients referred with suspected septic arthritis. We recorded the clinical, biochemical, and microbiological findings in all patients. Results. A total of 160 patients underwent arthrotomy for a presumed septic arthritis. Of these, no organism was identified in 61 and only 25 of these were both culture- and polymerase chain reaction (PCR)-negative. A total of 36 patients did not undergo PCR analysis. Of the remaining 99 culture- and PCR-positive patients, K. kingae was the most commonly isolated organism (42%, n = 42). The knee (n = 21), shoulder (n = 9), and hip (n = 5) were the three most commonly affected joints. A total of 28 cases (66%) of K. kingae infection were detected only on PCR. The mean age of K. kingae-positive cases (16.1 months) was significantly lower than that of those whose septic arthitis was due to other organisms (49.4 months; p < 0.001). The mean CRP was significantly lower in the K. kingae group than in the other organism group (p < 0.001). The mean ESR/CRP ratio was significantly higher in K. kingae (2.84) than in other infections (1.55; p < 0.008). The mean ESR and ESR/CRP were not significantly different from those in the 'no organism identified' group. Conclusion. K. kingae was the most commonly isolated organism from paediatric culture- and/or PCR-positive confirmed septic arthritis, with only one third of cases detected on routine cultures. It is important to develop and maintain a clinical suspicion for K. kingae infection in young patients presenting atypically. Routine PCR testing is recommended in these patients. Cite this article: Bone Joint J 2021;103-B(3):584–588


Aims. Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results. The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion. APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression. Cite this article: Bone Joint Res 2023;12(8):476–485


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims. Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67. phox. was involved in suramin-enhanced chondrocyte phenotype maintenance. Results. Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67. phox. ) activity and membrane translocation. Overexpression of p67. phox. but not p67. phox. AD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67. phox. with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67. phox. -induced COL2A1 and ACAN expression was significantly inhibited. Conclusion. Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67. phox. activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression. Results. Tensile strain could decrease the expression of circStrn3 in chondrocytes. CircStrn3 expression was significantly decreased in human and mouse OA cartilage tissues and chondrocytes. CircStrn3 could inhibit matrix metabolism of chondrocytes through competitively ‘sponging’ miRNA-9-5p targeting Kruppel-like factor 5 (KLF5), indicating that the decrease in circStrn3 might be a protective factor in mechanical instability-induced OA. The tensile strain stimulated chondrocytes to secrete exosomal miR-9-5p. Exosomes with high miR-9-5p expression from chondrocytes could inhibit osteoblast differentiation by targeting KLF5. Intra-articular injection of exosomal miR-9-5p alleviated the progression of OA induced by destabilized medial meniscus surgery in mice. Conclusion. Taken together, these results demonstrate that reduction of circStrn3 causes an increase in miR-9-5p, which acts as a protective factor in mechanical instability-induced OA, and provides a novel mechanism of communication among joint components and a potential application for the treatment of OA. Cite this article: Bone Joint Res 2023;12(1):33–45


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims. Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Methods. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p. Results. The expression of PCBP1-AS1 was pre-eminent in OP tissues and decreased throughout the development of human bone marrow-derived mesenchymal stem cells (hBMSCs) into osteoblasts. PCBP1-AS1 knockdown and overexpression respectively promoted and suppressed hBMSC proliferation and osteogenic differentiation capacity. Mechanistically, PCBP1-AS1 sponged miR-126-5p and consequently targeted PAK2. Inhibiting miR-126-5p significantly counteracted the beneficial effects of PCBP1-AS1 or PAK2 knockdown on hBMSCs’ ability to differentiate into osteoblasts. Conclusion. PCBP1-AS1 is responsible for the development of OP and promotes its progression by inducing PAK2 expression via competitively binding to miR-126-5p. PCBP1-AS1 may therefore be a new therapeutic target for OP patients. Cite this article: Bone Joint Res 2023;12(6):375–386


Bone & Joint Research
Vol. 11, Issue 9 | Pages 639 - 651
7 Sep 2022
Zou Y Zhang X Liang J Peng L Qin J Zhou F Liu T Dai L

Aims. To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms. Methods. Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay. Results. A total of 63 RA patients and ten controls were included. Expression of MUC1 was observed in both the synovial lining and sublining layer. The percentage of MUC1+ cells in the lining layer of synovium was significantly higher in RA than that in control, and positively correlated to joint destruction scores of RA. Meanwhile, MUC1+ cells in the sublining layer were positively correlated to the Krenn subscore of inflammatory infiltration. Knockdown of MUC1, rather than GO-203 treatment, ameliorated the expression of proinflammatory cytokines, cell migration, and invasion of rheumatoid synoviocytes. Knockdown of MUC1 decreased expression of RhoA, Cdc42, and Rac1. Treatment with LPA compromised the inhibition of migration and invasion, but not inflammation, of synoviocytes by MUC1 knockdown. Conclusion. Upregulated MUC1 promotes the aggression of rheumatoid synoviocytes via Rho guanosine triphosphatases (GTPases), thereby facilitating synovitis and joint destruction during the pathological process of RA. Cite this article: Bone Joint Res 2022;11(9):639–651


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results. In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion. IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications. Cite this article: Bone Joint Res 2023;12(11):691–701


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry. Results. We demonstrated that mCRP increases nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and Lipocalin 2 (LCN2) expression in human AF and NP cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signalling of mCRP. Finally, we demonstrated the presence of mCRP in human AF and NP tissues. Conclusion. Our results indicate, for the first time, that mCRP can be localized in IVD tissues, where it triggers a proinflammatory and catabolic state in degenerative and healthy IVD cells, and that NF-κβ signalling may be implicated in the mediation of this mCRP-induced state. Cite this article: Bone Joint Res 2023;12(3):189–198


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims. This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. Methods. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry. Results. COMP protein levels were significantly elevated in serum and synovial fluid of knee OA patients, especially those in the advanced stages of the disease. Serum COMP was significantly correlated with radiological severity as well as measures of body composition, physical performance, knee pain, and disability. Receiver operating characteristic curve analysis unveiled a diagnostic value of serum COMP as a biomarker of knee OA (41.64 ng/ml, area under the curve (AUC) = 1.00), with a sensitivity of 99.6% and a specificity of 100.0%. Further analysis uncovered that COMP mRNA expression was markedly upregulated in the inflamed synovium of knee OA, consistent with immunohistochemical staining revealing localization of COMP protein in the lining and sub-lining layers of knee OA inflamed synovium. Most notably, relative COMP mRNA expression in knee OA synovium was positively associated with its protein levels in serum and synovial fluid of knee OA patients. In human knee OA FLSs activated with tumour necrosis factor-alpha, COMP mRNA expression was considerably up-regulated in a time-dependent manner. Conclusion. All results indicate that COMP might serve as a supportive diagnostic marker for knee OA in conjunction with the standard diagnostic methods. Cite this article: Bone Joint Res 2024;13(6):261–271


Bone & Joint Research
Vol. 11, Issue 2 | Pages 61 - 72
15 Feb 2022
Luobu Z Wang L Jiang D Liao T Luobu C Qunpei L

Aims. Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. Methods. In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays. Results. CircSCAPER was highly expressed in OA cartilage tissues and IL-1β-induced chondrocytes. Knockdown of circSCAPER reduced IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes. Mechanistically, circSCAPER directly bound to miR-140-3p, and miR-140-3p inhibition reversed the effects of circSCAPER knockdown on IL-1β-induced chondrocytes. miR-140-3p was verified to target EZH2, and overexpression of miR-140-3p protected chondrocytes against IL-1β-induced dysfunction via targeting EZH2. Additionally, we confirmed that circSCAPER could regulate EZH2 through sponging miR-140-3p, and the circSCAPER/miR-140-3p/EZH2 axis could activate the PI3K/AKT pathway. Conclusion. CircSCAPER promoted IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes via regulating miR-140-3p/EZH2 axis, which gained a new insight into the pathogenesis of OA. Cite this article: Bone Joint Res 2022;11(2):61–72


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims. Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods. The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results. PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion. PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims. Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods. RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results. Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion. Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results. Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion. We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males. Cite this article: Bone Joint Res 2024;13(1):28–39


Bone & Joint Research
Vol. 10, Issue 7 | Pages 459 - 466
28 Jul 2021
Yang J Zhou Y Liang X Jing B Zhao Z

Aims. Osteoarthritis (OA) is characterized by persistent destruction of articular cartilage. It has been found that microRNAs (miRNAs) are closely related to the occurrence and development of OA. The purpose of the present study was to investigate the mechanism of miR-486 in the development and progression of OA. Methods. The expression levels of miR-486 in cartilage were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN), matrix metalloproteinase (MMP)-13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) in SW1353 cells at both messenger RNA (mRNA) and protein levels was determined by qRT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA). Double luciferase reporter gene assay, qRT-PCR, and western blot assay were used to determine whether silencing information regulator 6 (SIRT6) was involved in miR-486 induction of chondrocyte-like cells to a more catabolic phenotype. Results. Compared with osteonecrosis, the expression of miR-486 was significantly upregulated in cartilage from subjects with severe OA. In addition, overexpressed miR-486 promoted a catabolic phenotype in SW1353 cells by upregulating the expressions of ADAMTS4 and MMP-13 and down-regulating the expressions of COL2A1 and ACAN. Conversely, inhibition of miR-486 had the opposite effect. Furthermore, overexpression of miR-486 significantly inhibited the expression of SIRT6, confirming that SIRT6 is a direct target of miR-486. Moreover, SW1353 cells were transfected with small interfering RNA (si)-SIRT6 and it was found that SIRT6 was involved in and inhibited miR-486-induced changes to SW1353 gene expression. Conclusion. Our results indicate that miR-486 promotes a catabolic phenotype in SW1353 cells in OA by targeting SIRT6. Our findings might provide a potential therapeutic target and theoretical basis for OA. Cite this article: Bone Joint Res 2021;10(7):459–466


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims. Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. Methods. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers. Results. C1 subtype is mainly concentrated in the development of skeletal muscle organs, C2 lies in metabolic process and immune response, and C3 in pyroptosis and cell death process. Therefore, we divided OA into three subtypes: bone remodelling subtype (C1), immune metabolism subtype (C2), and cartilage degradation subtype (C3). The number of macrophage M0 and activated mast cells of C2 subtype was significantly higher than those of the other two subtypes. COL2A1 has significant differences in different subtypes. The expression of COL2A1 is related to age, and trafficking protein particle complex subunit 2 is related to the sex of OA patients. Conclusion. This study linked different tissues with gene expression profiles, revealing different molecular subtypes of patients with knee OA. The relationship between clinical characteristics and OA-related genes was also studied, which provides a new concept for the diagnosis and treatment of OA. Cite this article: Bone Joint Res 2023;12(12):702–711


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims. It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. Methods. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs. Results. Mechanical stimulation promoted macrophage M2 polarization in vivo and in vitro. The conditioned media from mechanically stimulated BMDMs (MS-CM) enhanced MSC chondrogenic differentiation, and mechanically stimulated BMDMs generated more TGF-β1. Further, neutralizing TGF-β1 in MS-CM can attenuate its pro-chondrogenic effect. In vivo, mechanical stimulation promoted TGF-β1 generation, MSC chondrogenesis, and T-B healing, which were abolished following macrophage depletion. Conclusion. Macrophages subjected to appropriate mechanical stimulation could polarize toward the M2 phenotype and secrete TGF-β1 to promote MSC chondrogenesis, which subsequently augments T-B healing. Cite this article: Bone Joint Res 2023;12(3):219–230


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Bone & Joint Research
Vol. 13, Issue 2 | Pages 83 - 90
19 Feb 2024
Amri R Chelly A Ayedi M Rebaii MA Aifa S Masmoudi S Keskes H

Aims. The present study investigated receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), and Runt-related transcription factor 2 (RUNX2) gene expressions in giant cell tumour of bone (GCTB) patients in relationship with tumour recurrence. We also aimed to investigate the influence of CpG methylation on the transcriptional levels of RANKL and OPG. Methods. A total of 32 GCTB tissue samples were analyzed, and the expression of RANKL, OPG, and RUNX2 was evaluated by quantitative polymerase chain reaction (qPCR). The methylation status of RANKL and OPG was also evaluated by quantitative methylation-specific polymerase chain reaction (qMSP). Results. We found that RANKL and RUNX2 gene expression was upregulated more in recurrent than in non-recurrent GCTB tissues, while OPG gene expression was downregulated more in recurrent than in non-recurrent GCTB tissues. Additionally, we proved that changes in DNA methylation contribute to upregulating the expression of RANKL and downregulating the expression of OPG, which are critical for bone homeostasis and GCTB development. Conclusion. Our results suggest that the overexpression of RANKL/RUNX2 and the lower expression of OPG are associated with recurrence in GCTB patients. Cite this article: Bone Joint Res 2024;13(2):84–91


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims. To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Methods. Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue. Results. This study revealed 21,060 hypermethylated and 44,472 hypomethylated DMRs, and 13,194 hypermethylated and 22,448 hypomethylated CpG islands for differential global methylation for chondroitin sulphate treatment response. A total of 12,666 DMR-related genes containing DMRs were identified in their promoter regions, such as CHL1 (false discovery rate (FDR) = 2.11 × 10. -11. ), RIC8A (FDR = 7.05 × 10. -4. ), and SOX12 (FDR = 1.43 × 10. -3. ). Additionally, RIC8A and CHL1 were hypermethylated in responders, while SOX12 was hypomethylated in responders, all showing decreased gene expression. The patterns of cell-specific differential global methylation associated with chondroitin sulphate response were observed. Specifically, we found that DMRs located in TESPA1 and ATP11A exhibited differential DNA methylation between responders and non-responders in granulocytes, monocytes, and B cells. Conclusion. Our study identified cell-specific changes in DNA methylation associated with chondroitin sulphate response in KBD patients. Cite this article: Bone Joint Res 2024;13(5):237–246


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims. We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. Methods. Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature. Results. We identified three PMOP-related subtypes and four core modules. The muscle system process, muscle contraction, and actin filament-based movement were more active in the hub genes. We obtained five feature genes related to PMOP. Our analysis verified that the gene signature had good predictive power and applicability. The outcomes of the GSE56815 cohort were found to be consistent with the results of the earlier studies. qRT-PCR results showed that RAB2A and FYCO1 were amplified in clinical samples. Conclusion. The PMOP-related gene signature we developed and verified can accurately predict the risk of PMOP in patients. These results can elucidate the molecular mechanism of RAB2A and FYCO1 underlying PMOP, and yield new and improved treatment strategies, ultimately helping PMOP monitoring. Cite this article: Bone Joint Res 2022;11(8):548–560


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims. Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining. Results. Suramin inhibited IL-1β-induced apoptosis, downregulated matrix metalloproteinase (MMP)-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5, and upregulated collagen 2A (Col2a1) and aggrecan in IL-1β-treated NP cells. IL-1β-induced inflammation, assessed by IL-1β, IL-8, and tumour necrosis factor α (TNF-α) upregulation, was alleviated by suramin treatment. Suramin suppressed IL-1β-mediated proteoglycan depletion and the induction of MMP-3, ADAMTS-4, and pro-inflammatory gene expression in ex vivo experiments. Conclusion. Suramin administration represents a novel and effectively therapeutic approach, which could potentially alleviate IDD by reducing extracellular matrix (ECM) deposition and inhibiting apoptosis and inflammatory responses in the NP cells. Cite this article: Bone Joint Res 2021;10(8):498–513


Bone & Joint Research
Vol. 10, Issue 9 | Pages 602 - 610
24 Sep 2021
Tsoi KM Gokgoz N Darville-O'Quinn P Prochazka P Malekoltojari A Griffin AM Ferguson PC Wunder JS Andrulis IL

Aims. Cell-free DNA (cfDNA) and circulating tumour DNA (ctDNA) are used for prognostication and monitoring in patients with carcinomas, but their utility is unclear in sarcomas. The objectives of this pilot study were to explore the prognostic significance of cfDNA and investigate whether tumour-specific alterations can be detected in the circulation of sarcoma patients. Methods. Matched tumour and blood were collected from 64 sarcoma patients (n = 70 samples) prior to resection of the primary tumour (n = 57) or disease recurrence (n = 7). DNA was isolated from plasma, quantified, and analyzed for cfDNA. A subset of cases (n = 6) underwent whole exome sequencing to identify tumour-specific alterations used to detect ctDNA using digital droplet polymerase chain reaction (ddPCR). Results. Cell-free was present in 69 of 70 samples above 0.5 ng/ml. Improved disease-free survival was found for patients with lower cfDNA levels (90% vs 48% at one-year for ≤ 6 ng/ml and > 6 ng/ml, respectively; p = 0.005). Digital droplet PCR was performed as a pilot study and mutant alleles were detectable at 0.5% to 2.5% of the wild type genome, and at a level of 0.25 ng tumour DNA. Tumour-specific alterations (ctDNA) were found in five of six cases. Conclusion. This work demonstrates the feasibility and potential utility of cfDNA and ctDNA as biomarkers for bone and soft-tissue sarcomas, despite the lack of recurrent genomic alterations. A larger study is required to validate these findings. Cite this article: Bone Joint Res 2021;10(9):602–610


Bone & Joint Research
Vol. 11, Issue 4 | Pages 200 - 209
1 Apr 2022
Liu YD Liu JF Liu B

Aims. The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods. Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results. The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H. +. -ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion. DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209


Bone & Joint Research
Vol. 10, Issue 9 | Pages 558 - 570
1 Sep 2021
Li C Peng Z Zhou Y Su Y Bu P Meng X Li B Xu Y

Aims. Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH. Methods. High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology. Results. More than 1,000 genes were differentially expressed in hip joint capsules between healthy controls and DDH. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that extracellular matrix (ECM) modifications, muscle system processes, and cell proliferation were markedly influenced by the differentially expressed genes. Expression of Collagen Type I Alpha 1 Chain (COL1A1), COL3A1, matrix metalloproteinase-1 (MMP1), MMP3, MMP9, and MMP13 was downregulated in DDH, with the loss of collagen fibres in the joint capsule. Expression of transforming growth factor beta 1 (TGF-β1) was downregulated, while that of TGF-β2, Mothers against decapentaplegic homolog 3 (SMAD3), and WNT11 were upregulated in DDH, and alpha smooth muscle actin (αSMA), a key myofibroblast marker, showed marginal increase. In vitro studies showed that fibroblast proliferation was suppressed in DDH, which was associated with cell cycle arrest in G0/G1 and G2/M phases. Cell cycle regulators including Cyclin B1 (CCNB1), Cyclin E2 (CCNE2), Cyclin A2 (CCNA2), Cyclin-dependent kinase 1 (CDK1), E2F1, cell division cycle 6 (CDC6), and CDC7 were downregulated in DDH. Conclusion. DDH is associated with the loss of collagen fibres and fibroblasts, which may cause loose joint capsule formation. However, the degree of differentiation of fibroblasts to myofibroblasts needs further study. Cite this article: Bone Joint Res 2021;10(9):558–570


Bone & Joint Research
Vol. 9, Issue 11 | Pages 751 - 760
1 Nov 2020
Li Y Lin X Zhu M Xun F Li J Yuan Z Liu Y Xu H

Aims. This study aimed to investigate the effect of solute carrier family 20 member 2 (SLC20A2) gene mutation (identified from a hereditary multiple exostoses family) on chondrocyte proliferation and differentiation. Methods. ATDC5 chondrocytes were cultured in insulin-transferrin-selenium medium to induce differentiation. Cells were transfected with pcDNA3.0 plasmids with either a wild-type (WT) or mutated (MUT) SLC20A2 gene. The inorganic phosphate (Pi) concentration in the medium of cells was determined. The expression of markers of chondrocyte proliferation and differentiation, the Indian hedgehog (Ihh), and parathyroid hormone-related protein (PTHrP) pathway were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results. The expression of SLC20A2 in MUT group was similar to WT group. The Pi concentration in the medium of cells in MUT group was significantly higher than WT group, which meant the SLC20A2 mutation inhibited Pi uptake in ATDC5 chondrocytes. The proliferation rate of ATDC5 chondrocytes in MUT group was greater than WT group. The expression of aggrecan (Acan), α-1 chain of type II collagen (COL2A1), and SRY-box transcription factor 9 (SOX9) were higher in MUT group than WT group. However, the expression of Runt-related transcription factor 2 (Runx2), α-1 chain of type X collagen (COL10A1), and matrix metallopeptidase 13 (MMP13) was significantly decreased in the MUT group. Similar results were obtained by Alcian blue and Alizarin red staining. The expression of Ihh and PTHrP in MUT group was higher than WT group. An inhibitor (cyclopamine) of Ihh/PTHrP signalling pathway inhibited the proliferation and restored the differentiation of chondrocytes in MUT group. Conclusion. A mutation in SLC20A2 (c.C1948T) decreases Pi uptake in ATDC5 chondrocytes. SLC20A2 mutation promotes chondrocyte proliferation while inhibiting chondrocyte differentiation. The Ihh/PTHrP signalling pathway may play an important role in this process. Cite this article: Bone Joint Res 2020;9(11):751–760


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 578 - 583
1 Mar 2021
Coulin B Demarco G Spyropoulou V Juchler C Vendeuvre T Habre C Tabard-Fougère A Dayer R Steiger C Ceroni D

Aims. We aimed to describe the epidemiological, biological, and bacteriological characteristics of osteoarticular infections (OAIs) caused by Kingella kingae. Methods. The medical charts of all children presenting with OAIs to our institution over a 13-year period (January 2007 to December 2019) were reviewed. Among these patients, we extracted those which presented an OAI caused by K. kingae and their epidemiological data, biological results, and bacteriological aetiologies were assessed. Results. K. kingae was the main reported microorganism in our paediatric population, being responsible for 48.7% of OAIs confirmed bacteriologically. K. kingae affects primarily children aged between six months and 48 months. The highest prevalence of OAI caused by K. kingae was between seven months and 24 months old. After the patients were 27 months old, its incidence decreased significantly. The incidence though of infection throughout the year showed no significant differences. Three-quarters of patients with an OAI caused by K. kingae were afebrile at hospital admission, 11% had elevated WBCs, and 61.2% had abnormal CRPs, whereas the ESR was increased in 75%, constituting the most significant predictor of an OAI. On MRI, we noted 53% of arthritis affecting mostly the knee and 31% of osteomyelitis located primarily in the foot. Conclusion. K. kingae should be recognized currently as the primary pathogen causing OAI in children younger than 48 months old. Diagnosis of an OAI caused by K. kingae is not always obvious, since this infection may occur with a mild-to-moderate clinical and biological inflammatory response. Extensive use of nucleic acid amplification assays improved the detection of fastidious pathogens and has increased the observed incidence of OAI, especially in children aged between six months and 48 months. We propose the incorporation of polymerase chain reaction assays into modern diagnostic algorithms for OAIs to better identify the bacteriological aetiology of OAIs. Cite this article: Bone Joint J 2021;103-B(3):578–583


Bone & Joint Research
Vol. 9, Issue 10 | Pages 689 - 700
7 Oct 2020
Zhang A Ma S Yuan L Wu S Liu S Wei X Chen L Ma C Zhao H

Aims. The study aimed to determine whether the microRNA miR21-5p (MiR21) mediates temporomandibular joint osteoarthritis (TMJ-OA) by targeting growth differentiation factor 5 (Gdf5). Methods. TMJ-OA was induced in MiR21 knockout (KO) mice and wild-type (WT) mice by a unilateral anterior crossbite (UAC) procedure. Mouse tissues exhibited histopathological changes, as assessed by: Safranin O, toluidine blue, and immunohistochemistry staining; western blotting (WB); and quantitative real-time polymerase chain reaction (RT-qPCR). Mouse condylar chondrocytes were transfected with a series of MiR21 mimic, MiR21 inhibitor, Gdf5 siRNA (si-GDF5), and flag-GDF5 constructs. The effects of MiR-21 and Gdf5 on the expression of OA related molecules were evaluated by immunofluorescence, alcian blue staining, WB, and RT-qPCR. Results. UAC altered the histological structure and extracellular matrix content of cartilage in the temporomandibular joint (TMJ), and KO of MiR21 alleviated this effect (p < 0.05). Upregulation of MiR21 influenced the expression of TMJ-OA related molecules in mandibular condylar chondrocytes via targeting Gdf5 (p < 0.05). Gdf5 overexpression significantly decreased matrix metalloproteinase 13 (MMP13) expression (p < 0.05) and reversed the effects of MiR21 (p < 0.05). Conclusion. MiR21, which acts as a critical regulator of Gdf5 in chondrocytes, regulates TMJ-OA related molecules and is involved in cartilage matrix degradation, contributing to the progression of TMJ-OA. Cite this article: Bone Joint Res 2020;9(10):689–700


Bone & Joint Research
Vol. 10, Issue 7 | Pages 437 - 444
27 Jul 2021
Yan F Feng J Yang L Shi C

Aims. The aim of our study is to investigate the effect induced by alternated mechanical loading on Notch-1 in mandibular condylar cartilage (MCC) of growing rabbits. Methods. A total of 64 ten-day-old rabbits were randomly divided into two groups according to dietary hardness: normal diet group (pellet) and soft diet group (powder). In each group, the rabbits were further divided into four subgroups by feeding time: two weeks, four weeks, six weeks, and eight weeks. Animals would be injected 5-bromo-2′-deoxyuridine (BrdU) every day for one week before sacrificing. Histomorphometric analysis of MCC thickness was performed through haematoxylin and eosin (HE) staining. Immunochemical analysis was done to test BrdU and Notch-1. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure expression of Notch-1, Jagged-1, and Delta-like 1 (Dll-1). Results. The thickness of MCC in the soft diet group was thinner than the one in normal diet group. Notch-1 was restricted in fibrous layer, proliferative layer, and hypertrophic layer. The expression of Notch-1 increased from two weeks to six weeks and then fell down. Notch-1 in normal diet group was higher than that in soft diet group in anterior part of MCC. The statistical differences of Notch-1 were shown at two, four, and six weeks (p < 0.05). The result of western blot and quantitative real-time PCR (qRT-PCR) showed the expression of Dll-1 and Jagged-1 rose from two to four weeks and started to decrease at four weeks. BrdU distributed in all layers of cartilage and subchondral bone. The number of BrdU-positive cells, which were less in soft diet group, was decreasing along with the experiment period. The significant difference was found at four, six, and eight weeks in anterior and posterior parts (p < 0.05). Conclusion. The structure and proliferation of MCC in rabbits were sensitive to dietary loading changes. The proper mechanical loading was essential for transduction of Notch signalling pathway and development of mandibular condylar cartilage. Cite this article: Bone Joint Res 2021;10(7):437–444


Bone & Joint Research
Vol. 10, Issue 4 | Pages 237 - 249
1 Apr 2021
Chen X Chen W Aung ZM Han W Zhang Y Chai G

Aims. LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. Methods. The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action. Results. LY3023414 attenuated PI3K/protein kinase B (Akt)/GSK3-dependent activation of β-catenin and nuclear factor-activated T cell 1 (NFATc1) during osteogenesis and osteoclastogenesis, respectively. LY3023414 mainly inhibited osteoclast formation instead of mature osteoclast function. Moreover, it suppressed osteogenesis both in the early stage of differentiation and late stage of calcification. Similarly, gene knockdown of Akt isoforms by siRNA downregulated osteogenic and osteoclastogenic processes, indicating that Akt1 and Akt2 acted synergistically. Conclusion. LY3023414 can suppress osteogenesis and osteoclastogenesis through inhibition of the PI3K/Akt/GSK3 signalling pathway, which highlights the potential benefits and side effects of LY3023414 for future clinical applications. Cite this article: Bone Joint Res 2021;10(4):237–249


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives. The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods. In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results. Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion. These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2


Bone & Joint Research
Vol. 8, Issue 7 | Pages 290 - 303
1 Jul 2019
Li H Yang HH Sun ZG Tang HB Min JK

Objectives. The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). Methods. The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both in vitro and in vivo. Results. In total, 739 mRNAs, 1152 lncRNAs, and 42 circRNAs were found to be differentially expressed in OA cartilage tissue. Among these, we identified 18 overlapping DEGs and targets of DELs, and the top ten DELs were screened by expression profile analysis as candidate OA-related genes. WISP2, ATF3, and CHI3L1 were significantly increased in both normal versus OA tissues and normal versus interleukin (IL)-1β-induced OA-like cell models, while ADAM12, PRELP, and ASPN were shown to be significantly decreased. Among the identified DELs, we observed higher expression of ENST00000453554 and MSTRG.99593.3, and lower expression of MSTRG.44186.2 and NONHSAT186094.1 in normal versus OA cells and tissues. Conclusion. This study revealed expression patterns of coding and noncoding RNAs in OA cartilage, which added sets of genes and noncoding RNAs to the list of candidate diagnostic biomarkers and therapeutic agents for OA patients. Cite this article: H. Li, H. H. Yang, Z. G. Sun, H. B. Tang, J. K. Min. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res 2019;8:290–303. DOI: 10.1302/2046-3758.87.BJR-2018-0297.R1


Bone & Joint Research
Vol. 7, Issue 1 | Pages 79 - 84
1 Jan 2018
Tsang STJ McHugh MP Guerendiain D Gwynne PJ Boyd J Simpson AHRW Walsh TS Laurenson IF Templeton KE

Objectives. Nasal carriers of Staphylococcus (S.) aureus (MRSA and MSSA) have an increased risk for healthcare-associated infections. There are currently limited national screening policies for the detection of S. aureus despite the World Health Organization’s recommendations. This study aimed to evaluate the diagnostic performance of molecular and culture techniques in S. aureus screening, determine the cause of any discrepancy between the diagnostic techniques, and model the potential effect of different diagnostic techniques on S. aureus detection in orthopaedic patients. Methods. Paired nasal swabs for polymerase chain reaction (PCR) assay and culture of S. aureus were collected from a study population of 273 orthopaedic outpatients due to undergo joint arthroplasty surgery. Results. The prevalence of MSSA nasal colonization was found to be between 22.4% to 35.6%. The current standard direct culturing methods for detecting S. aureus significantly underestimated the prevalence (p = 0.005), failing to identify its presence in approximately one-third of patients undergoing joint arthroplasty surgery. Conclusion. Modelling these results to national surveillance data, it was estimated that approximately 5000 to 8000 S. aureus surgical site infections could be prevented, and approximately $140 million to $950 million (approximately £110 million to £760 million) saved in treatment costs annually in the United States and United Kingdom combined, by using alternative diagnostic methods to direct culture in preoperative S. aureus screening and eradication programmes. Cite this article: S. T. J. Tsang, M. P. McHugh, D. Guerendiain, P. J. Gwynne, J. Boyd, A. H. R. W. Simpson, T. S. Walsh, I. F. Laurenson, K. E. Templeton. Underestimation of Staphylococcus aureus (MRSA and MSSA) carriage associated with standard culturing techniques: One third of carriers missed. Bone Joint Res 2018;7:79–84. DOI: 10.1302/2046-3758.71.BJR-2017-0175.R1


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims. This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI). Methods. A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR). Results. SCVs can be isolated from samples collected from chronic PJIs intraoperatively. Transmission electron microscopy (TEM) and immunofluorescence (IF) showed that there was more S. aureus in bone samples collected from chronic PJIs, but much less in bone samples from acute PJIs, providing a potential mechanism of PJI. Immunofluorescence results showed that SCVs of S. aureus were more likely to invade osteoblasts in vitro. Furthermore, TEM and IF also demonstrated that SCVs of S. aureus were more likely to invade and colonize in vivo. Cluster analysis and principal component analysis (PCA) showed that there were substantial differences in gene expression profiles between chronic and acute PJI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes were enriched to chemokine-related signal pathways. PCR also verified these results. Conclusion. Our study has shown that the S. aureus SCVs have a greater ability to invade and colonize in bone, resulting in S. aureus remaining in bone tissues long-term, thus explaining the pathogenesis of chronic PJI. Cite this article: Bone Joint Res 2022;11(12):843–853


Bone & Joint Research
Vol. 7, Issue 2 | Pages 139 - 147
1 Feb 2018
Takahara S Lee SY Iwakura T Oe K Fukui T Okumachi E Waki T Arakura M Sakai Y Nishida K Kuroda R Niikura T

Objectives. Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM. Methods. Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint. Results. Microarray analysis showed that there were 14 miRNAs at day five and 17 miRNAs at day 11, with a greater than twofold change in the DM group compared with the control group. Among these types of miRNA, five were selected based on a comparative and extended literature review. Real-time PCR analysis revealed that five types of miRNA (miR-140-3p, miR-140-5p, miR-181a-1-3p, miR-210-3p, and miR-222-3p) were differentially expressed with changing patterns of expression during fracture healing in diabetic rats compared with controls. Conclusions. Our findings provide information to further understand the pathology of impaired fracture healing in a diabetic rat model. These results may allow the potential development of molecular therapy using miRNA for the treatment of impaired fracture healing in patients with DM. Cite this article: S. Takahara, S. Y. Lee, T. Iwakura, K. Oe, T. Fukui, E. Okumachi, T. Waki, M. Arakura, Y. Sakai, K. Nishida, R. Kuroda, T. Niikura. Altered expression of microRNA during fracture healing in diabetic rats. Bone Joint Res 2018;7:139–147. DOI: 10.1302/2046-3758.72.BJR-2017-0082.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically. Results. The total number of PBMNCs was decreased after QQ-culture, however, the number of CD34+ and CD206+ cells were found to have increased as assessed by flow cytometry analysis. In addition, gene expression of angiogenic factors was upregulated in QQMNCs. In the animal model, the rate of bone union was higher in the QQMNC group than in the other groups. Radiographic scores and bone volume were significantly associated with the enhancement of angiogenesis in the QQMNC group. Conclusion. We have demonstrated that QQMNCs have superior potential to accelerate fracture healing compared with PBMNCs. The QQMNCs could be a promising option for fracture nonunion. Cite this article: K. Mifuji, M. Ishikawa, N. Kamei, R. Tanaka, K. Arita, H. Mizuno, T. Asahara, N. Adachi, M. Ochi. Angiogenic conditioning of peripheral blood mononuclear cells promotes fracture healing. Bone Joint Res 2017;6: 489–498. DOI: 10.1302/2046-3758.68.BJR-2016-0338.R1


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1345 - 1351
1 Oct 2018
Kuo F Lu Y Wu C You H Lee G Lee MS

Aims. The aim of this study was to compare the results of 16S/28S rRNA sequencing with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level, and synovial fluid analysis in the diagnosis of prosthetic joint infection (PJI). Patients and Methods. Between September 2015 and August 2016, 214 consecutive patients were enrolled. In the study population, there were 25 patients with a PJI and 189 controls. Of the PJI patients, 14 (56%) were women, and the mean age at the time of diagnosis was 65 years (38 to 83). The ESR and CRP levels were measured, and synovial fluid specimens were collected prospectively. Synovial fluid was subjected to reverse transcription polymerase chain reaction (RT-PCR)/sequence analysis targeting the 16S/28S rRNA, and to conventional culture. Laboratory personnel who were blind to the clinical information performed all tests. The diagnosis of PJI was based on the criteria of the Musculoskeletal Infection Society. Results. A total of 25 patients had a confirmed PJI. In 20 cases of monomicrobial PJI, the PCR products could be perfectly matched with the 16S/28S rRNA genes specific for different species of bacteria provided by sequence analysis. Of the five polymicrobial cases of PJI, 16S/28S rRNA PCR sequence analysis failed to identify the concordant bacteria species. In the 189 control patients, there was one false-positive RT-PCR result. The sensitivity and specificity of the molecular diagnosis method were 100% (95% confidence interval (CI) 85.7 to 100) and 99.5% (95% CI 97.1 to 99.9), respectively, whereas the positive and negative predictive values of PCR were 96.1% (95% CI 79.6 to 99.9) and 100% (95% CI 98.1 to 100), respectively. The PCR results were significantly better than serological diagnostic methods (p = 0.004 and p = 0.010 for ESR and CRP, respectively), the synovial fluid white blood cell (WBC) count (p = 0.036), and percentage of polymorphonuclear cells (PMN%) (p = 0.014). Conclusion. Stepwise RT-PCR and sequence analysis of the 16S/28S rRNA carried out under stringent laboratory conditions achieved highly sensitive and specific results for the differentiation between aseptic and septic joints undergoing arthroplasty. Sequence analysis successfully identified bacterial strains in monomicrobial infections but failed to identify molecular targets in polymicrobial infections. Further refinement of the protocols to identify the bacteria in polymicrobial infections is needed. Cite this article: Bone Joint J 2018;100-B:1345–51


Bone & Joint Open
Vol. 1, Issue 9 | Pages 605 - 611
28 Sep 2020
McKean D Chung SL Fairhead R Bannister O Magliano M Papanikitas J Wong N Hughes R

Aims. To describe the incidence of adverse clinical outcomes related to COVID-19 infection following corticosteroid injections (CSI) during the COVID-19 pandemic. To describe the incidence of positive SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing, positive SARS-COV2 IgG antibody testing or positive imaging findings following CSI at our institution during the COVID-19 pandemic. Methods. A retrospective observational study was undertaken of consecutive patients who had CSI in our local hospitals between 1 February and 30June 2020. Electronic patient medical records (EPR) and radiology information system (RIS) database were reviewed. SARS-CoV-2 RT-PCR testing, SARS-COV2 IgG antibody testing, radiological investigations, patient management, and clinical outcomes were recorded. Lung findings were categorized according to the British Society of Thoracic Imaging (BSTI) guidelines. Reference was made to the incidence of lab-confirmed COVID-19 cases in our region. Results. Overall, 1,656 lab-confirmed COVID-19 cases were identified in our upper tier local authority (UTLA), a rate of 306.6 per 100,000, as of 30June 2020. A total of 504 CSI injections were performed on 443 patients between 1 February and 30June 2020. A total of 11 RT-PCR tests were performed on nine patients (2% of those who had CSI), all of which were negative for SARS-CoV-2 RNA, and five patients (1.1%) received an SARS-CoV-2 IgG antibody test, of which 2 (0.5%) were positive consistent with prior COVID-19 infection, however both patients were asymptomatic. Seven patients (1.6%) had radiological investigations for respiratory symptoms. One patient with indeterminate ground glass change was identified. Conclusion. The incidence of positive COVID-19 infection following corticosteroid injections was very low in our cohort and no adverse clinical outcomes related to COVID-19 infection following CSI were identified. Our findings are consistent with CSI likely being low risk during the COVID-19 pandemic. The results of this small observational study are supportive of the current multi-society guidelines regarding the judicious use of CSI. Cite this article: Bone Joint Open 2020;1-9:605–611


Bone & Joint Research
Vol. 7, Issue 3 | Pages 213 - 222
1 Mar 2018
Tang X Teng S Petri M Krettek C Liu C Jagodzinski M

Objectives. The aims of this study were to determine whether the administration of anti-inflammatory and antifibrotic agents affect the proliferation, viability, and expression of markers involved in the fibrotic development of the fibroblasts obtained from arthrofibrotic tissue in vitro, and to evaluate the effect of the agents on arthrofibrosis prevention in vivo. Methods. Dexamethasone, diclofenac, and decorin, in different concentrations, were employed to treat fibroblasts from arthrofibrotic tissue (AFib). Cell proliferation was measured by DNA quantitation, and viability was analyzed by Live/Dead staining. The levels of procollagen type I N-terminal propeptide (PINP) and procollagen type III N-terminal propeptide (PIIINP) were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the expressions of fibrotic markers were detected by real-time polymerase chain reaction (PCR). Fibroblasts isolated from healthy tissue (Fib) served as control. Further, a rabbit model of joint contracture was used to evaluate the antifibrotic effect of the three different agents. Results. Dexamethasone maintained the viability and promoted the proliferation of AFib. Diclofenac decreased the viability and inhibited the cell proliferation during the first week of cultivation. However, decorin inhibited AFib proliferation and downregulated the expressions of fibrotic markers. Additionally, decorin could improve the flexion contracture angle and inhibit the deposition of interstitial matrix components in the rabbit joint model. Conclusion. Decorin decreased the expression of myofibroblast markers in AFib, inhibited the proliferation of AFib, and prevented the initial procedure of arthrofibrosis in vivo, suggesting that decorin could be a promising treatment to inhibit the development of arthrofibrosis. Cite this article: X. Tang, S. Teng, M. Petri, C. Krettek, C. Liu, M. Jagodzinski. The effect of anti-inflammatory and antifibrotic agents on fibroblasts obtained from arthrofibrotic tissue: An in vitro and in vivo study. Bone Joint Res 2018;7:213–222. DOI: 10.1302/2046-3758.73.BJR-2017-0219.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1301 - 1304
1 Oct 2009
Sidhu AS Singh AP Singh AP

We describe the results of cemented total hip replacement in 23 patients (23 hips) with active tuberculous arthritis of the hip with a mean follow-up of 4.7 years (4 to 7). In two patients the diagnosis was proved by pre-operative biopsy, whereas all others were diagnosed on a clinicoradiological basis with confirmation obtained by histopathological examination and polymerase chain reaction of tissue samples taken at the time of surgery. All patients received chemotherapy for at least three months before surgery and treatment was continued for a total of 18 months. Post-operative dislocation occurred in one patient and was managed successfully by closed reduction. No reactivation of the infection or loosening of the implant was recorded and function of the hip improved in all patients. Total hip replacement in the presence of active tuberculous arthritis of the hip is a safe procedure when pre-operative chemotherapy is commenced and continued for an extended period after operation


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives. This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model. Methods. Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR). Results. The OARSI score was significantly lower in mice treated with SRT1720 than in control mice at eight and 12 weeks associated with the decreased size of osteophytes at four and eight weeks. The delayed OA progression in the mice treated with SRT1720 was also associated with increased SIRT1-positive chondrocytes and decreased MMP-13-, ADAMTS-5-, cleaved caspase-3-, PARP p85-, and acetylated NF-κB p65-positive chondrocytes and decreased synovitis at four and eight weeks. SRT1720 treatment partially rescued the decreases in collagen type II alpha 1 (COL2A1) and aggrecan caused by IL-1β, while also reducing the induction of MMP-13 by IL-1β in vitro. Conclusion. The intraperitoneal injection of SRT1720 attenuated experimental OA progression in mice, indicating that SRT1720 could be a new therapeutic approach for OA. Cite this article: K. Nishida, T. Matsushita, K. Takayama, T. Tanaka, N. Miyaji, K. Ibaraki, D. Araki, N. Kanzaki, T. Matsumoto, R. Kuroda. Intraperitoneal injection of the SIRT1 activator SRT1720 attenuates the progression of experimental osteoarthritis in mice. Bone Joint Res 2018;7:252–262. DOI: 10.1302/2046-3758.73.BJR-2017-0227.R1


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter. . Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment. Cite this article: Bone Joint J 2015; 97-B:1144–51


Bone & Joint Open
Vol. 1, Issue 6 | Pages 229 - 235
9 Jun 2020
Lazizi M Marusza CJ Sexton SA Middleton RG

Aims. Elective surgery has been severely curtailed as a result of the COVID-19 pandemic. There is little evidence to guide surgeons in assessing what processes should be put in place to restart elective surgery safely in a time of endemic COVID-19 in the community. Methods. We used data from a stand-alone hospital admitting and operating on 91 trauma patients. All patients were screened on admission and 100% of patients have been followed-up after discharge to assess outcome. Results. Overall, 87 (96%) patients remained symptom-free and recovered well following surgery. Four (4%) patients developed symptoms of COVID-19, with polymerase chain reaction ribonucleiuc acid (PCR-RNA) testing confirming infection. Conclusion. Based on our findings, we propose that if careful cohorting and screening is carried out in a stand-alone cold operating site, it is reasonable to resume elective operating, in a time of endemic but low community prevalence of SAR-Cov2. Cite this article: Bone Joint Open 2020;1-6:229–235


Bone & Joint Research
Vol. 7, Issue 4 | Pages 298 - 307
1 Apr 2018
Zhang X Bu Y Zhu B Zhao Q Lv Z Li B Liu J

Objectives. The aim of this study was to identify key pathological genes in osteoarthritis (OA). Methods. We searched and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) of joint synovial tissues from OA and normal individuals. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses were used to assess the function of identified DEGs. The protein-protein interaction (PPI) network and transcriptional factors (TFs) regulatory network were used to further explore the function of identified DEGs. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the result of bioinformatics analysis. Electronic validation was performed to verify the expression of selected DEGs. The diagnosis value of identified DEGs was accessed by receiver operating characteristic (ROC) analysis. Results. A total of 1085 DEGs were identified. KEGG pathway analysis displayed that Wnt was a significantly enriched signalling pathway. Some hub genes with high interactions such as USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, and ZNF423 were identified in the PPI and TFs network. The results of qRT-PCR showed that GADD45B, ADAMTS1, and TFAM were down-regulated in joint synovial tissues of OA, which was consistent with the bioinformatics analysis. The expression levels of USP46, CPVL, FOSL2, and PTGS1 in electronic validation were compatible with the bio-informatics result. CPVL and TFAM had a potential diagnostic value for OA based on the ROC analysis. Conclusion. The deregulated genes including USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, ZNF423, ADAMTS1, and TFAM might be involved in the pathology of OA. Cite this article: X. Zhang, Y. Bu, B. Zhu, Q. Zhao, Z. Lv, B. Li, J. Liu. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res 2018;7:298–307. DOI: 10.1302/2046-3758.74.BJR-2017-0245.R1


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives. To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods. A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results. In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion. We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives. Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Materials and Methods. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. Results. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. Conclusion. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1. Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J. Y. Chen. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation. Bone Joint Res 2016;5:523–530. DOI: 10.1302/2046-3758.510.BJR-2016-0074.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1253 - 1258
1 Sep 2011
Alpantaki K Katonis P Hadjipavlou AG Spandidos DA Sourvinos G

It has been proposed that intervertebral disc degeneration might be caused by low-grade infection. The purpose of the present study was to assess the incidence of herpes viruses in intervertebral disc specimens from patients with lumbar disc herniation. A polymerase chain reaction based assay was applied to screen for the DNA of eight different herpes viruses in 16 patients and two controls. DNA of at least one herpes virus was detected in 13 specimens (81.25%). Herpes Simplex Virus type-1 (HSV-1) was the most frequently detected virus (56.25%), followed by Cytomegalovirus (CMV) (37.5%). In two patients, co-infection by both HSV-1 and CMV was detected. All samples, including the control specimens, were negative for Herpes Simplex Virus type-2, Varicella Zoster Virus, Epstein Barr Virus, Human Herpes Viruses 6, 7 and 8. The absence of an acute infection was confirmed both at the serological and mRNA level. To our knowledge this is the first unequivocal evidence of the presence of herpes virus DNA in intervertebral disc specimens of patients with lumbar disc herniation suggesting the potential role of herpes viruses as a contributing factor to the pathogenesis of degenerative disc disease


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1427 - 1432
1 Oct 2012
Chassanidis CG Malizos KN Varitimidis S Samara S Koromila T Kollia P Dailiana Z

Periosteum is important for bone homoeostasis through the release of bone morphogenetic proteins (BMPs) and their effect on osteoprogenitor cells. Smoking has an adverse effect on fracture healing and bone regeneration. The aim of this study was to evaluate the effect of smoking on the expression of the BMPs of human periosteum. Real-time polymerase chain reaction was performed for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from 45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured bones (21 smokers, 39 non-smokers). A hierarchical model of BMP gene expression (BMP-2 > BMP-6 > BMP-4 > BMP-7) was demonstrated in all samples. When smokers and non-smokers were compared, a remarkable reduction in the gene expression of BMP-2, -4 and -6 was noticed in smokers. The comparison of fracture and non-fracture groups demonstrated a higher gene expression of BMP-2, -4 and -7 in the non-fracture samples. Within the subgroups (fracture and non-fracture), BMP gene expression in smokers was either lower but without statistical significance in the majority of BMPs, or similar to that in non-smokers with regard to BMP-4 in fracture and BMP-7 in non-fracture samples. In smokers, BMP gene expression of human periosteum was reduced, demonstrating the effect of smoking at the molecular level by reduction of mRNA transcription of periosteal BMPs. Among the BMPs studied, BMP-2 gene expression was significantly higher, highlighting its role in bone homoeostasis


Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives. Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Methods. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays. Results. After six weeks, the area of mineralisation was significantly higher for the transplanted osteophytes than for the cancellous bone (43803 μm. 2. , . sd. 14660 versus 9421 μm. 2. , . sd. 5032, p = 0.0184, one-way analysis of variance). Compared with cancellous bone, the conditioned medium prepared using osteophytes contained a significantly higher amounts of transforming growth factor (TGF)-β1 (471 pg/ml versus 333 pg/ml, p = 0.0001, Wilcoxon rank sum test), bone morphogenetic protein (BMP)-2 (47.75 pg/ml versus 32 pg/ml, p = 0.0214, Wilcoxon rank sum test) and insulin-like growth factor (IGF)-1 (314.5 pg/ml versus 191 pg/ml, p = 0.0418, Wilcoxon rank sum test). The stronger effects of osteophytes towards osteoblasts in terms of a higher proliferation rate, upregulation of gene expression of differentiation markers such as alpha-1 type-1 collagen and alkaline phosphate, and higher migration, compared with cancellous bone, was confirmed. Conclusion. We provide evidence of favourable features of osteophytes for bone mineralisation through a direct effect on osteoblasts. The acceleration in metabolic activity of the osteophyte provides justification for future studies evaluating the clinical use of osteophytes as autologous bone grafts. Cite this article: K. Ishihara, K. Okazaki, T. Akiyama, Y. Akasaki, Y. Nakashima. Characterisation of osteophytes as an autologous bone graft source: An experimental study in vivo and in vitro. Bone Joint Res 2017;6:73–81. DOI: 10.1302/2046-3758.62.BJR-2016-0199.R1


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 62 - 67
1 Jan 2012
Aurich M Hofmann GO Mückley T Mollenhauer J Rolauffs B

We attempted to characterise the biological quality and regenerative potential of chondrocytes in osteochondritis dissecans (OCD). Dissected fragments from ten patients with OCD of the knee (mean age 27.8 years (16 to 49)) were harvested at arthroscopy. A sample of cartilage from the intercondylar notch was taken from the same joint and from the notch of ten patients with a traumatic cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes were extracted and subsequently cultured. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. Compared with the notch chondrocytes, cells from the dissecate expressed similar levels of collagen types 1 and 2 mRNA. The level of collagen type 10 message was 50 times lower after cell culture, indicating a loss of hypertrophic cells or genes. The high viability, retained capacity to differentiate and metabolic activity of the extracted cells suggests preservation of the intrinsic repair capability of these dissecates. Molecular analysis indicated a phenotypic modulation of the expanded dissecate chondrocytes towards a normal phenotype. Our findings suggest that cartilage taken from the dissecate can be reasonably used as a cell source for chondrocyte implantation procedures.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 753 - 757
1 Jul 2003
Min B Han M Woo JI Park H Park SR

Cryopreserved patellar tendon allografts are often recommended for reconstruction of anterior cruciate ligaments (ACLs) because living donor fibroblasts are thought to promote repair. Animal studies, however, indicate that ligaments regenerate from recipient rather than donor cells. If applicable to man, these observations suggest that allograft cell viability is unimportant. We therefore used short tandem repeat analysis with polymerase chain reaction (PCR) amplification to determine the source of cells in nine human ACLs reconstructed with cryopreserved patellar tendon allografts. PCR amplification of donor and recipient DNA obtained before operation and DNA from the graft obtained two to ten months after transplantation revealed the genotype of cells and showed only recipient cells in the graft area. Rather than preserve the viability of donor cells, a technique is required which will facilitate the introduction of recipient cells into patellar tendon allografts


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 759 - 770
1 Jul 2004
Vermes C Chandrasekaran R Dobai JG Jacobs JJ Andersson GBJ An H Hallab NJ Galante JO Glant TT

Periprosthetic bone loss after total joint arthroplasty is a major clinical problem resulting in aseptic loosening of the implant. Among many cell types, osteoblasts play a crucial role in the development of peri-implant osteolysis. In this study, we tested the effects of calcitriol (1α,25-dihydroxy-vitamin-D. 3. ) and the bisphosphonate pamidronate on titanium-particle- and TNF-α-induced release of interleukin-6 and suppression of osteoblast-specific gene expressions in bone-marrow-derived stromal cells with an osteoblastic phenotype. We monitored the expression of procollagen α1[1], osteocalcin, osteonectin and alkaline phosphatase mRNAs by Northern blots and real-time reverse transcription and polymerase chain reaction analyses. The release of various cytokines was also analysed by ELISA. We found that calcitriol or pamidronate could only partially recover the altered functions of osteoblasts when added alone. Only a combination of these compounds restored all the tested functions of osteoblasts. The local delivery of these drugs may have therapeutic potential to prevent or to treat periprosthetic osteolysis and aseptic loosening of implants


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1082 - 1087
1 Sep 2004
Becker R Pufe T Kulow S Giessmann N Neumann W Mentlein R Petersen W

Our aim was to investigate vascular endothelial growth factor (VEGF) expression after lacerations of a meniscus in a rabbit model. Specimens of meniscus were examined using immunohistochemistry, enzyme-linked immunoassay and the reverse transcription polymerase chain reaction after one, two, five or ten weeks. In the periphery of the meniscus 90% of the lacerations had healed after five and ten weeks, but no healing was observed in the avascular area. Expression of VEGF protein and VEGF mRNA was found in the meniscus of both the operated and the contralateral sites but both were absent in control rabbits which had not undergone operation. The highest expression of VEGF was found in the avascular area after one week (p < 0.001). It then lessened at both the vascular and avascular areas, but still remained greater in comparison with the control meniscus (p < 0.05). Despite greater expression of VEGF, angiogenesis failed at the inner portion. These findings demonstrated the poor healing response in the avascular area which may not be caused by an intrinsic cellular insufficiency to stimulate angiogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 22 - 25
1 Jan 1996
Campbell DG Li P Oakeshott RD

Infection of human cartilage with HIV in vivo has not previously been reported. Specimens of articular cartilage taken at postmortem from ten patients who were HIV-positive were examined. Two had AIDS and eight were believed to have stage-2 disease. The standard polymerase chain reaction (PCR) protocol was modified to allow semiquantitative analysis of the samples. Oligonucleotide primers labelled with . 32. P gamma-ATP were used to detect a segment of HIV DNA and a control DNA gene segment (HLA genome) to estimate the ratio of infected cells. The . 32. P-labelled PCR products were separated on acrylamide gels and visualised directly by autoradiography and computer densitometry. Infection of human cartilage in vivo was demonstrated in nine of the ten samples in which the PCR analysis was positive. The other did not react sufficiently to produce detectable radiolabelled PCR product despite repeated DNA digestion and extraction. Cartilage infected with HIV could be a potential source of HIV when used in operations


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 753 - 757
1 Jul 2002
Suh KT Chang JW Jung JS

We collected 16 samples of the membrane which surrounds loose hip prostheses from patients undergoing revision operations for aseptic loosening. To serve as the control group, samples of the synovial tissue and the fibrous capsular tissue were collected from 11 patients undergoing primary hip arthroplasties. Analyses of the expression levels of inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), and cytosolic phospholipase A. 2. (cPLA. 2. ) mRNAs were performed by a reverse transcription polymerase chain reaction, and the content of nitrite was measured by the Griess reaction using sodium nitrite as the standard. The expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs in the membranes were significantly higher than those in the control samples (p < 0.05). The expression levels of iNOS mRNA and the nitrite content in the membranes significantly correlated with those of TNF-α and cPLA. 2. mRNAs, respectively. In addition, the expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs were significantly higher in membranes from cementless than in those from cemented implants (p < 0.05). Our results suggest that the expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs in the membranes are regulated by closely-related mechanisms and that these have a significant role in aseptic loosening


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 286 - 295
1 Mar 2004
Marlovits S Hombauer M Truppe M Vècsei V Schlegel W

We compared the changes in the ratio of type-I and type-II collagen in monolayer cultures of human articular chondrocytes (HAC). HAC were isolated from samples of cartilage from normal joints and cultivated in monolayer for up to 46 days. Expression of collagen type-I and type-II was determined by immunocytochemistry, Western blotting, and the nested reverse transcription polymerase chain reaction (RT-PCR), and quantified by real-time PCR. The transition from a spherical morphology to the flattened morphology of an anchorage-dependent culture was accompanied by a rapid change in the collagen phenotype with the replacement of collagen type II by collagen type I. This was confirmed by immunocytochemistry and Western blotting between days 21 and 28. Using techniques for the analysis of gene transcription (nested RT-PCR and real-time PCR), a complete switch of collagen gene expression was not observed. Expression of collagen type I increased 100-fold during the culture time. That of collagen type II was found during the entire period and decreased more than 100-fold. The main finding was that expression of the genes encoding collagen type I and II was highly time-dependent and the ratio of collagen type II to I (CII/CI), defined as an index of cell differentiation, was significantly higher (215- to 480-fold) at the beginning of the culture. At the end of the experimental culture time, ratios between 0.1 and 1 were reached


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 701 - 710
1 Jul 1998
Imai S Konttinen YT Jumppanen M Lindy O Čeponis A Kemppinen P Sorsa T Santavirta S Xu J Lopéz-Otín C

A foreign-body-type host response can contribute to the induction and release of collagenolytic tissue-destructive enzymes of pathogenetic significance. Our aim was to analyse collagenase-3 in two conditions with putative involvement of foreign-body reactions. Synovial membrane-like tissue samples were obtained from cases of aseptic loosening of a total hip replacement (THR) and osteoarthritis (OA). The reverse transcription polymerase chain reaction (RT-PCR) disclosed that all the samples from patients contained collagenase-3 mRNA compared with only three out of ten control samples. The identity of the RT-PCR amplification product was confirmed by nucleotide sequencing. Immunohistochemical staining showed that collagenase-3 was present in endothelial cells, macrophages and fibroblasts, including those found in the synovial lining. This finding was confirmed by avidin-biotin-peroxidase complex-alkaline phosphatase-anti-alkaline phosphatase double staining and the specificity of the staining by antigen preabsorption using recombinant human collagenase-3. Collagenase-3 was released into the extracellular space and thus found in the synovial fluid in all patient samples as shown by Western blotting. The similar extent of collagenase-3 expression in aseptic loosening and OA compared with the low expression in control synovial membrane suggests involvement of a similar, foreign-body-based pathogenetic component in both. Comparative analysis of collagenase-3 and of foreign particles indicates that paracrine factors rather than phagocytosis per se are responsible for the induction of collagenase-3. We suggest that due to its localisation and substrate specificity, collagenase-3 may play a significant pathogenetic role in accelerating tissue destruction in OA and in aseptic loosening of a THR


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 768 - 773
1 Jul 2000
Bunker TD Reilly J Baird KS Hamblen DL

Frozen shoulder is a chronic fibrosing condition of the capsule of the joint. The predominant cells involved are fibroblasts and myofibroblasts which lay down a dense matrix of type-I and type-III collagen within the capsule. This subsequently contracts leading to the typical features of pain and stiffness. Cytokines and growth factors regulate the growth and function of the fibroblasts of connective tissue and remodelling of the matrix is controlled by the matrix metalloproteinases (MMPs) and their inhibitors. Our aim was to determine whether there was an abnormal expression or secretion of cytokines, growth factors and MMPs in tissue samples from 14 patients with frozen shoulder using the reverse transcription/polymerase chain reaction (RT/PCR) technique and to compare the findings with those in tissue from four normal control shoulders and from five patients with Dupuytren’s contracture. Tissue from frozen shoulders demonstrated the presence of mRNA for a large number of cytokines and growth factors although the frequency was only slightly higher than in the control tissue. The frequency for a positive signal for the proinflammatory cytokines Il-1β and TNF-α and TNF-β, was not as great as in the Dupuytren’s tissue. The presence of mRNA for fibrogenic growth factors was, however, more similar to that obtained in the control and Dupuytren’s tissue. This correlated with the histological findings which in most specimens showed a dense fibrous tissue response with few cells other than mature fibroblasts and with very little evidence of any active inflammatory cell process. Positive expressions of the mRNA for the MMPs were also increased, together with their natural inhibitor TIMP. The notable exception compared with control and Dupuytren’s tissue was the absence of MMP-14, which is known to be a membrane-type MMP required for the activation of MMP-2 (gelatinase A). Understanding the control mechanisms which play a part in the pathogenesis of frozen shoulder may lead to the development of new regimes of treatment for this common, protracted and painful chronic fibrosing condition


Bone & Joint Research
Vol. 11, Issue 9 | Pages 652 - 668
7 Sep 2022
Lv G Wang B Li L Li Y Li X He H Kuang L

Aims

Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages.

Methods

Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims

Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism.

Methods

In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 486 - 493
4 Aug 2023
Yamanaka Y Tajima T Tsujimura Y Naito T Mano Y Tsukamoto M Zenke Y Sakai A

Aims

Dupuytren’s contracture is characterized by increased fibrosis of the palmar aponeurosis, with eventual replacement of the surrounding fatty tissue with palmar fascial fibromatosis. We hypothesized that adipocytokines produced by adipose tissue in contact with the palmar aponeurosis might promote fibrosis of the palmar aponeurosis.

Methods

We compared the expression of the adipocytokines adiponectin and leptin in the adipose tissue surrounding the palmar aponeurosis of male patients with Dupuytren’s contracture, and of male patients with carpal tunnel syndrome (CTS) as the control group. We also examined the effects of adiponectin on fibrosis-related genes and proteins expressed by fibroblasts in the palmar aponeurosis of patients with Dupuytren’s contracture.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 9 - 21
9 Jan 2023
Lu C Ho C Chen S Liu Z Chou PP Ho M Tien Y

Aims

The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction.

Methods

The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control media.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 594 - 607
17 Aug 2022
Zhou Y Li J Xu F Ji E Wang C Pan Z

Aims

Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA.

Methods

Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Aims

To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs).

Methods

Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 46 - 57
17 Jan 2023
Piñeiro-Ramil M Sanjurjo-Rodríguez C Rodríguez-Fernández S Hermida-Gómez T Blanco-García FJ Fuentes-Boquete I Vaamonde-García C Díaz-Prado S

Aims

After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA.

Methods

Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 353 - 361
10 Jul 2024
Gardete-Hartmann S Mitterer JA Sebastian S Frank BJH Simon S Huber S Löw M Sommer I Prinz M Halabi M Hofstaetter JG

Aims

This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool.

Methods

Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 401 - 410
15 Aug 2024
Hu H Ding H Lyu J Chen Y Huang C Zhang C Li W Fang X Zhang W

Aims

This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment.

Methods

A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 40 - 48
27 Jan 2022
Liao W Sun J Wang Y He Y Su K Lu Y Liao G Sun Y

Aims

In the repair of condylar cartilage injury, synovium-derived mesenchymal stem cells (SMSCs) migrate to an injured site and differentiate into cartilage. This study aimed to confirm that histone deacetylase (HDAC) inhibitors, which alleviate arthritis, can improve chondrogenesis inhibited by IL-1β, and to explore its mechanism.

Methods

SMSCs were isolated from synovium specimens of patients undergoing temporomandibular joint (TMJ) surgery. Chondrogenic differentiation potential of SMSCs was evaluated in vitro in the control, IL-1β stimulation, and IL-1β stimulation with HDAC inhibitors groups. The effect of HDAC inhibitors on the synovium and condylar cartilage in a rat TMJ arthritis model was evaluated.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims

The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold.

Methods

Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 484 - 493
13 Jul 2022
Hayer S Niederreiter B Kalkgruber M Wanic K Maißner J Smolen JS Aletaha D Blüml S Redlich K

Aims

Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss.

Methods

Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old IL1-/-IL6-/-hTNFtg in comparison to IL1-/-hTNFtg, IL6-/-hTNFtg, and hTNFtg mice. µCT bone analysis of single deficient and wild-type mice was also performed.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 548 - 557
25 Aug 2021
Tao Z Zhou Y Zeng B Yang X Su M

Aims

MicroRNA-183 (miR-183) is known to play important roles in osteoarthritis (OA) pain. The aims of this study were to explore the specific functions of miR-183 in OA pain and to investigate the underlying mechanisms.

Methods

Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (CCL2), proinflammatory cytokines (interleukin (IL)-6, IL-1β, and tumour necrosis factor-α (TNF-α)), and pain-related factors (transient receptor potential vanilloid subtype-1 (TRPV1), voltage-gated sodium 1.3, 1.7, and 1.8 (Nav1.3, Nav1.7, and Nav1.8)). Expression of miR-183 in the dorsal root ganglia (DRG) of mice was evaluated by in situ hybridization. TGFα, CCL2, and C-C chemokine receptor type 2 (CCR2) levels were examined by immunoblot analysis and interaction between miR-183 and TGFα, determined by luciferase reporter assay. The extent of pain in mice was measured using a behavioural assay, and OA severity assessed by Safranin O and Fast Green staining. Immunofluorescent staining was conducted to examine the infiltration of macrophages in mouse DRG.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1193 - 1195
1 Nov 2022
Rajput V Meek RMD Haddad FS

Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area.

Cite this article: Bone Joint J 2022;104-B(11):1193–1195.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims

Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy.

Methods

The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 227 - 229
1 Mar 2023
Theologis T Brady MA Hartshorn S Faust SN Offiah AC

Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical prediction tools.

Cite this article: Bone Joint J 2023;105-B(3):227–229.


Bone & Joint 360
Vol. 12, Issue 1 | Pages 5 - 7
1 Feb 2023
Karthikappallil D


Bone & Joint 360
Vol. 12, Issue 2 | Pages 6 - 9
1 Apr 2023
O’Callaghan J Afolayan J Ochieng D Rocos B


Aims

This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA).

Methods

Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1362 - 1368
1 Dec 2022
Rashid F Mahmood A Hawkes DH Harrison WJ

Aims

Prior to the availability of vaccines, mortality for hip fracture patients with concomitant COVID-19 infection was three times higher than pre-pandemic rates. The primary aim of this study was to determine the 30-day mortality rate of hip fracture patients in the post-vaccine era.

Methods

A multicentre observational study was carried out at 19 NHS Trusts in England. The study period for the data collection was 1 February 2021 until 28 February 2022, with mortality tracing until 28 March 2022. Data collection included demographic details, data points to calculate the Nottingham Hip Fracture Score, COVID-19 status, 30-day mortality, and vaccination status.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 113 - 120
1 Feb 2023
Cai Y Liang J Chen X Zhang G Jing Z Zhang R Lv L Zhang W Dang X

Aims

This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%).

Methods

In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 720 - 727
1 Jul 2024
Wu H Wang X Shen J Wei Z Wang S Xu T Luo F Xie Z

Aims

This study aimed to investigate the clinical characteristics and outcomes associated with culture-negative limb osteomyelitis patients.

Methods

A total of 1,047 limb osteomyelitis patients aged 18 years or older who underwent debridement and intraoperative culture at our clinic centre from 1 January 2011 to 31 December 2020 were included. Patient characteristics, infection eradication, and complications were analyzed between culture-negative and culture-positive cohorts.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


Bone & Joint Open
Vol. 5, Issue 5 | Pages 435 - 443
23 May 2024
Tadross D McGrory C Greig J Townsend R Chiverton N Highland A Breakwell L Cole AA

Aims

Gram-negative infections are associated with comorbid patients, but outcomes are less well understood. This study reviewed diagnosis, management, and treatment for a cohort treated in a tertiary spinal centre.

Methods

A retrospective review was performed of all gram-negative spinal infections (n = 32; median age 71 years; interquartile range 60 to 78), excluding surgical site infections, at a single centre between 2015 to 2020 with two- to six-year follow-up. Information regarding organism identification, antibiotic regime, and treatment outcomes (including clinical, radiological, and biochemical) were collected from clinical notes.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).