Advertisement for orthosearch.org.uk
Results 161 - 180 of 440
Results per page:
Bone & Joint 360
Vol. 10, Issue 4 | Pages 5 - 11
1 Aug 2021
Kurien T Scammell BE


Bone & Joint 360
Vol. 10, Issue 2 | Pages 53 - 55
1 Apr 2021


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


Objectives. Local corticosteroid infiltration is a common practice of treatment for lateral epicondylitis. In recent studies no statistically significant or clinically relevant results in favour of corticosteroid injections were found. The injection of autologous blood has been reported to be effective for both intermediate and long-term outcomes. It is hypothesised that blood contains growth factors, which induce the healing cascade. Methods. A total of 60 patients were included in this prospective randomised study: 30 patients received 2 ml autologous blood drawn from contralateral upper limb vein + 1 ml 0.5% bupivacaine, and 30 patients received 2 ml local corticosteroid + 1 ml 0.5% bupivacaine at the lateral epicondyle. Outcome was measured using a pain score and Nirschl staging of lateral epicondylitis. Follow-up was continued for total of six months, with assessment at one week, four weeks, 12 weeks and six months. Results. The corticosteroid injection group showed a statistically significant decrease in pain compared with autologous blood injection group in both visual analogue scale (VAS) and Nirschl stage at one week (both p < 0.001) and at four weeks (p = 0.002 and p = 0.018, respectively). At the 12-week and six-month follow-up, autologous blood injection group showed statistically significant decrease in pain compared with corticosteroid injection group (12 weeks: VAS p = 0.013 and Nirschl stage p = 0.018; six months: VAS p = 0.006 and Nirschl p = 0.006). At the six-month final follow-up, a total of 14 patients (47%) in the corticosteroid injection group and 27 patients (90%) in autologous blood injection group were completely relieved of pain. Conclusions. Autologous blood injection is efficient compared with corticosteroid injection, with less side-effects and minimum recurrence rate


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 143 - 147
1 Jan 2004
Kaya M Wada T Nagoya S Kawaguchi S Isu K Yamashita T

Concomitant tumour resistance (CTR) is a unique phenomenon in which animals harbouring large primary tumours are resistant to the growth of smaller metastatic tumours by systemic angiogenic suppression. To examine this clinically, in ten patients with osteosarcoma, we investigated the effects of removal of the primary tumour on the development of pulmonary metastases, the systemic angiogenesis-inducing ability and the serum levels of several angiogenesis modulators. We found that removal of the primary tumour significantly elevated systemic angiogenesis-inducing ability in five patients who had post-operative recurrence of the tumour. Post-operative elevation of the angiogenesis-induced ability was suppressed by the addition of an angiogenic inhibitor, endostatin. Also, primary removal of the tumour decreased the serum levels of vascular endothelial growth factor and endostatin. These findings suggest, for the first time, the presence of CTR in patients with osteosarcoma for whom postoperative antiangiogenic therapy may be used to prevent the post-operative progression of micrometastases


Bone & Joint Research
Vol. 10, Issue 4 | Pages 285 - 297
1 Apr 2021
Ji M Ryu HJ Hong JH

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA.

Cite this article: Bone Joint Res 2021;10(4):285–297.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 488 - 497
10 Aug 2021
Cleemann R Sorensen M West A Soballe K Bechtold JE Baas J

Aims

We wanted to evaluate the effects of a bone anabolic agent (bone morphogenetic protein 2 (BMP-2)) on an anti-catabolic background (systemic or local zoledronate) on fixation of allografted revision implants.

Methods

An established allografted revision protocol was implemented bilaterally into the stifle joints of 24 canines. At revision surgery, each animal received one BMP-2 (5 µg) functionalized implant, and one raw implant. One group (12 animals) received bone graft impregnated with zoledronate (0.005 mg/ml) before impaction. The other group (12 animals) received untreated bone graft and systemic zoledronate (0.1 mg/kg) ten and 20 days after revision surgery. Animals were observed for an additional four weeks before euthanasia.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1200 - 1208
1 Nov 2004
Borden M Attawia M Khan Y El-Amin SF Laurencin CT

We have evaluated in vivo a novel, polymer-based, matrix for tissue engineering of bone. A segmental defect of 15 mm was created in the ulna of New Zealand white rabbits to determine the regenerative properties of a porous polylactide-co-glycolide matrix alone and in combination with autogenous marrow and/or the osteoinductive protein, BMP-7. In this study four implant groups were used: 1) matrix alone; 2) matrix with autogenous marrow; 3) matrix with 20 μg of BMP-7; and 4) matrix with 20 μg of BMP-7 and autogenous marrow. The results showed that the degree of bone formation was dependent on the properties of the graft material. The osteoconductive sintered matrix structure showed significant formation of bone at the implant-bone interface. The addition of autogenous marrow increased the penetration of new bone further into the central area of the matrix and also increased the degree of revascularisation. The osteoinductive growth factor BMP-7 induced penetration of new bone throughout the entire structure of the implant. The most effective treatment was with the combination of marrow cells and osteoinductive BMP-7


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1052 - 1056
1 Nov 1998
Matsui Y Kawabata H Yasui N Kimura T Tsumaki N Ochi T

Recent studies of the fibroblast growth factor receptor 3 (FGFR3) gene have established that achondroplasia and hypochondroplasia are allelic disorders of different mutations. To determine whether the genotype could be distinguished on the basis of the phenotype, we analysed height, arm span, and skeletal radiographs from 23 patients with achondroplasia and the G380R mutation of FGFR3 and eight with hypochondroplasia and the N540K mutation. Both conditions share the classical pathological features of micromelic short stature, reduced or unchanged interpedicular distances in the lumbar spine, disproportionately long fibulae, and squared and shortened pelvic ilia. These were significantly more severe in the G380R patients than in the N540K patients. Our findings have shown a firm statistical correlation between the genotype and the phenotype, although there were a few exceptional cases in which there was phenotypic overlap between the two conditions


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1054 - 1058
1 Sep 2000
Khan U Kakar S Akali A Bentley G McGrouther DA

The formation of restrictive adhesions around the musculotendinous unit after injury is one of the most vexing processes faced by the surgeon. In flexor tendons it has been shown that the synovial tissue is the source of aggressive fibroblasts which contribute to this process. Using a rabbit model, we have examined the effects of treating the synovial sheath with the antimetabolite 5-fluorouracil (5-FU) for five minutes. Inflammatory, proliferative and molecular markers were compared in the response of the treated and control tendons to injury. Compared with a control group we found that the proliferative and inflammatory responses were significantly reduced (p < 0.001) in the treated tendons. Not only was there a reduction in the cellular and cytokine response, but there also was a significant (p < 0.001) reduction in the level of activity of the known pro-scarring agent, transforming growth factor beta 1 (TGF-β1). These pilot studies indicate that the formation of restrictive adhesions may be modulated using a simple single-touch technique in the hope of producing a better return of function


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 144 - 147
1 Jan 2001
Mayr-Wohlfart U Kessler S Puhl W Günther KP Knöchel W

Since bone morphogenetic proteins (BMPs) are highly homologous, we investigated the hypothesis that recombinant BMP-4 of the genome of Xenopus laevis (rxBMP-4) may influence the proliferation or differentiation of human primary osteoblast-like cells (HPOC), as occurs with recombinant human BMP (rhBMP-2). HPOC were incubated in the presence of either rxBMP-4, rhBMP-2 or basic fibroblast growth factor (rh-bFGF). The last two were used as positive controls and are known to induce differentiation or proliferation of HPOC, respectively. rxBMP-4 (50 ng/ml and 100 ng/ml) induced a differentiation of HPOC to almost the same extent as rhBMP-2, whereas the addition of rh-bFGF, applied in the same concentration, failed to have any influence on cell differentiation. rh-bFGF however, provoked an increase in cell proliferation of up to 150% when compared with non-stimulated HPOC, while rhBMP-2 and rxBMP-4 had no such effect. Our results indicate an equipotent effect of rhBMP-2 and rxBMP-4 obtained from Xenopus laevis on the differentiation and proliferation of human primary osteoblast-like cells


Bone & Joint Research
Vol. 10, Issue 7 | Pages 445 - 458
7 Jul 2021
Zhu S Zhang X Chen X Wang Y Li S Qian W

Aims

The value of core decompression (CD) in the treatment of osteonecrosis of the femoral head (ONFH) remains controversial. We conducted a systematic review and meta-analysis to evaluate whether CD combined with other treatments could improve the clinical and radiological outcomes of ONFH patients compared with CD alone.

Methods

We searched the PubMed, Embase, Web of Science, and Cochrane Library databases until June 2020. All randomized controlled trials (RCTs) and clinical controlled trials (CCTs) comparing CD alone and CD combined with other measures (CD + cell therapy, CD + bone grafting, CD + porous tantalum rod, etc.) for the treatment of ONFH were considered eligible for inclusion. The primary outcomes of interest were Harris Hip Score (HHS), ONFH stage progression, structural failure (collapse) of the femoral head, and conversion to total hip arthroplasty (THA). The pooled data were analyzed using Review Manager 5.3 software.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1723 - 1734
1 Dec 2020
Fung B Hoit G Schemitsch E Godbout C Nauth A

Aims

The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT.

Methods

A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 134 - 136
1 Feb 2021
Im G

The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods.

Cite this article: Bone Joint Res 2021;10(2):134–136.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 798 - 807
2 Nov 2020
Brzeszczyńska J Brzeszczyński F Hamilton DF McGregor R Simpson AHRW

MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data.

Cite this article: Bone Joint Res 2020;9(11):798–807.


Bone & Joint Research
Vol. 9, Issue 12 | Pages 857 - 869
1 Dec 2020
Slullitel PA Coutu D Buttaro MA Beaule PE Grammatopoulos G

As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells.

Cite this article: Bone Joint Res 2020;9(12):857–869.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 211 - 215
1 Mar 2002
Bayat A Watson JS Stanley JK Alansari A Shah M Ferguson MWJ Ollier WER

Dupuytren’s disease is a benign fibroproliferative disease of unknown aetiology. It is often familial and commonly affects Northern European Caucasian men, but genetic studies have yet to identify the relevant genes. Transforming growth factor beta one (TGF-β1) is a multifunctional cytokine which plays a central role in wound healing and fibrosis. It stimulates the proliferation of fibroblasts and the deposition of extracellular matrix. Previous studies have implicated TGF-β1 in Dupuytren’s disease, suggesting that it may represent a candidate susceptibility gene for this condition. We have investigated the association of four common single nucleotide polymorphisms in TGF-β1 with the risk of developing Dupuytren’s disease. A polymerase chain reaction-restriction fragment length polymorphism method was used for genotyping TGF-β1 polymorphisms. DNA samples from 135 patients with Dupuytren’s disease and 200 control subjects were examined. There was no statistically significant difference in TGF-β1 genotype or allele frequency distributions between the patients and controls for the codons 10, 25, −509 and −800 polymorphisms. Our observations suggest that common TGF-β1 polymorphisms are not associated with a risk of developing Dupuytren’s disease. These data should be interpreted with caution since the lack of association was shown in only one series of patients with only known, common polymorphisms of TGF-β1. To our knowledge, this is the first report of a case-control association study in Dupuytren’s disease using single nucleotide polymorphisms in TGF-β1


Bone & Joint Research
Vol. 10, Issue 5 | Pages 298 - 306
1 May 2021
Dolkart O Kazum E Rosenthal Y Sher O Morag G Yakobson E Chechik O Maman E

Aims

Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model.

Methods

A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls. Biomechanical, histological, and bone properties were assessed at three and six weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 377 - 382
1 May 1996
Lind M Overgaard S Ongpipattanakul B Nguyen T Bünger C Søballe K

Bone growth into cementless prosthetic components is compromised by osteoporosis, by any gap between the implant and the bone, by micromotion, and after the revision of failed prostheses. Recombinant human transforming growth factor-β1 (rhTGF-β1) has recently been shown to be a potent stimulator of bone healing and bone formation in various models in vivo. We have investigated the potential of rhTGF-β1, adsorbed on to weight-loaded tricalcium phosphate (TCP) coated implants, to enhance bone ongrowth and mechanical fixation. We inserted cylindrical grit-blasted titanium alloy implants bilaterally into the weight-bearing part of the medial femoral condyles of ten skeletally mature dogs. The implants were mounted on special devices which ensured stable weight-loading during each gait cycle. All implants were initially surrounded by a 0.75 mm gap and were coated with TCP ceramic. Each animal received two implants, one with 0.3 μg rhTGF-β1 adsorbed on the ceramic surface and the other without growth factor. Histological analysis showed that bone ongrowth was significantly increased from 22 ± 5.6% bone-implant contact in the control group to 36 ± 2.9% in the rhTGF-β stimulated group, an increase of 59%. The volume of bone in the gap was increased by 16% in rhTGF-β1-stimulated TCP-coated implants, but this difference was not significant. Mechanical push-out tests showed no difference in fixation of the implant between the two groups. Our study suggests that rhTGF-β1 adsorbed on TCP-ceramic-coated implants can enhance bone ongrowth