
VOL. 10, NO. 4, APRIL 2021 285

Freely available onlineFollow us @BoneJointRes

BJR

M. Ji,
H. J. Ryu,
J. H. Hong

From College of 
Medicine, Gachon 
University, Incheon, 
South Korea

Correspondence should be sent to
Jeong Hee Hong; email:  
​minicleo@​gachon.​ac.​kr

doi: 10.1302/2046-3758.104.BJR-
2020-0331.R1

Bone Joint Res 2021;10(4):285–
297.

�� Arthritis

Signalling and putative therapeutic 
molecules on the regulation 
of synoviocyte signalling in 
rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and 
chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation 
and cartilage and bone destruction by inflammatory cytokines and matrix-degrading en-
zymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are 
considered as potential strategies for treating RA. However, since synoviocytes play a critical 
role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility 
need to be addressed. In this review, we focus on the alteration of synoviocyte signalling 
and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, com-
pounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to 
achieve developed therapeutic strategies of RA.
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Article focus
�� Apoptosis or proliferation of fibroblastic 

synoviocytes (FLS) controls excessive 
multiplication of FLS, which causes 
pannus formation of joint.
�� The inflammation and migration of FLS 

involved in rheumatoid arthritis (RA) 
pathogenesis.
�� Current strategies for targeting inflam-

mation and pathognomonic parameters 
for RA FLS.

Key messages
�� FLS-related signalling is involved in FLS 

hyperplasia, joint destruction, and pain. 
To regulate the excessive multiplication 
of FLS, mechanisms of various signalling 
molecules related to proliferation and 
apoptosis of FLS are summarized in this 
review.
�� Activated FLS tends to migrate to and 

invade synovial tissues following aggra-
vation of RA. We elucidate the signal-
ling molecules, enzymes, and various 
compounds focused on the migration 
and invasion of FLS.

�� We also describe our current knowl-
edge of FLS signalling and several agents 
related to FLS signalling as candidates for 
therapeutic opportunities.

Strengths and limitations
�� We describe the numerous molecules and 

mechanisms, which are directly involved 
in RA, to regulate FLS characteristics. This 
paper could be the initiation for build-up 
therapies of RA to focus on pathogno-
monic parameters for RA FLS.
�� Signalling pathways are integrated 

in various compounds or signalling 
molecule-related FLS pathogenesis. 
Assessment or prioritization of the poten-
tial translational value of such targets and 
compounds still needs to be substantially 
improved.

Introduction
The goal of treatment for rheumatoid arthritis 
(RA) is remission for early RA and low disease 
activity for long-standing disease.1-3 Most 
current treatments for RA, including non-
steroidal anti-inflammatory drugs (NSAIDs), 
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synthetic or biological disease-modifying antirheumatic 
drugs (DMARDs), and glucocorticoids, are targeted to 
eliminate inflammation rapidly. This is because inflam-
mation is established as the driving force for the clinical 
symptoms, joint damage, disability, and comorbidity in 
RA.4,5 The biological DMARDs are specifically developed 
to target inflammatory cytokines and their receptors 
such as tumour necrosis factor-α (TNF-α), interleukin-6 
(IL-6), IL-6 receptor (IL-6R), interleukin-17 (IL-17), B cells 
(rituximab), or T cells (abatacept). Moreover, they are 
highly efficient in decrement of disease activity in about 
75% to 80% of the RA patients.5,6 However, there is still 
a requirement for development of new therapies for RA 
because 20% to 25% of patients do not reach low disease 
activity. Recent guidelines from the American College 
of Rheumatology (ACR) recommend an initial use of 
methotrexate and then adding or switching to other 
conventional synthetic DMARDs (csDMARDs) in patients 
with insufficient improvement in disease activity.2 The 
European League Against Rheumatism (EULAR) recom-
mends administration of biological DMARDs in patients 
with high titres of autoantibodies, early joint damage on 
radiography, and high disease activity with the previous 
therapy and after failure of the first treatment cycle.1 It is 
clear that joint damage can occur if inflammation persists 
despite these reasonably successful treatments.

In RA, there occurs a massive cellular influx of 
immune cells such as T lymphocytes, macrophage-like 
synoviocytes, and fibroblastic synoviocytes (FLS) to the 
synovium. Their activation, proliferation, and differenti-
ation contribute remarkably to synovial inflammation.7 
Moreover, hyperplasia of FLS is one of the major contrib-
utors of this synovial inflammation. It could be explained 
by the imbalance between apoptosis and proliferation 
of existing FLS by environmental and somatic mutation, 
besides increased differentiation of mesenchymal stem 
cells to FLS.8,9 These FLS migrate to the inflammatory 
site in the joint and form hyperplastic synovial lining 
containing activated FLS and macrophages called the 
pannus. Additionally, these activated FLS play many roles 
in the joints of patients with RA. They can increase the 
expression of adhesion molecules and activate several 
signalling pathways such as nuclear factor kappa-B 
(NF-κB), mitogen-activated protein kinases (MAPK), and 
transcription factor activator protein-1 (AP-1) in early 
RA.10-12 This is caused by the response to not only the 
pro-inflammatory environment of the immune cells, but 
also to autoantibodies, mechanical stimulus, and citrul-
lination, which induces autoimmune diseases such as 
RA and activates the calcium channels in FLS directly.13 
This is strong evidence that FLS autonomously contribute 
to RA pathogenesis by driving joint inflammation and 
destruction. Moreover, FLS migrate, attach to, and invade 
the cartilage, produce matrix metalloproteinase (MMP), 
express receptor activator of NF-κB ligand (RANKL), and 
can be resistant to apoptosis by tumour-like transfor-
mation with epigenetic changes in joint destruction.14-16 

These molecular mechanisms of activated FLS are not 
fully understood and it is difficult to evaluate their degree 
of contribution to active RA or refractory RA or to current 
treatment strategies. Nevertheless, the current evidence 
indicates FLS as strong potential targets for the treatment 
of RA.

To understand RA, various signalling mechanisms and 
targets of FLS have been investigated to study cellular 
homeostasis and clinical implications. In this review, we 
summarize the novel therapeutic targets and valuable 
treatments in RA pathogenesis. In view of the applica-
tions of various antibodies such as TNF- α, IL-1β, and IL-6 
receptor as treatments for RA, the establishment of alter-
native targets may be an expanded therapeutic market 
for RA. On the other hand, the modulation of cell fate 
involves tissue homeostasis and structural modifica-
tion. The identification of new therapeutic strategies on 
RA involves the study of modulation of proliferation or 
apoptosis, resistance to apoptosis, and tumour cell-like 
features of FLS in RA.17-19 The regulation of FLS involves 
the various molecules mentioned below. This section 
will discuss the proliferative and apoptotic signalling 
agents of FLS in RA. Beneficial effects of various agents 
on FLS may attenuate FLS hyperplasia, joint destruction, 
and pain. Here, we describe our current knowledge of 
FLS signalling and review target molecules and potential 
molecules before approval for RA treatment and depict 
articles in accordance with scope of the mode of action 
in FLS as proliferation, apoptosis, inflammatory activity, 
migration, and invasion.

Proliferative and apoptotic modulation of RA 
FLS
FLS of RA forms pannus with accumulated FLS, which is 
the result of hyperplasia of FLS. In this section, we will 
describe factors or molecules related to apoptosis or 
proliferation of FLS to control excessive multiplication of 
FLS and schematic summary, represented in Figure 1 and 
represented mode of action and working dose of mole-
cules in Table I.

Endogenous factors
Lymphotoxin-like herpes simplex virus glycoprotein D, a 
receptor expressed by T lymphocytes.  The expression lev-
el of lymphotoxin-like herpes simplex virus glycoprotein 
D, a receptor expressed by T lymphocytes (LIGHT) is up-
regulated in both the synovial fluid (SF) and the synovi-
um.20,54,55 LIGHT significantly enhances the proliferation 
of FLS and induces the expression of adhesion molecules 
such as the intercellular adhesion molecule-1 (ICAM-1) 
and various cytokines such as the monocyte chemoat-
tractant protein-1, IL-8, macrophage inflammatory pro-
tein (MIP)-1α, and NF-κB translocation through the lym-
photoxin β receptor.20 Moreover, LIGHT also stimulates 
macrophage-mediated osteoclastogenesis in the SF. A 
higher concentration of LIGHT is revealed in RA SF com-
pared with that in the OA SF.54
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Fig. 1

Schematic diagram of the overall signalling mechanism and related factors of proliferative and apoptotic modulation in the fibroblastic synoviocytes (FLS) of 
rheumatoid arthritis (RA). Proliferation and apoptosis in FLS are regulated by various signalling factors. IL-36α, NCL, SAHA, and MMC increase reactive oxygen 
species (ROS) and survivin activates platelet-derived growth factor (PDGF) signalling. PDGF and ROS affect extracellular signal‑regulated protein kinase 1/2 
(ERK1/2), p38, phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) signalling. SAHA inhibits B-cell lymphoma-extra large (Bcl-xL) and myeloid cell 
leukemia-1 (Mcl-1) expression. NCL inhibits nuclear factor kappa-B (NF-κB). Quercetin and hesperidin inhibit extracellular signal-regulated kinase (ERK)/
PI3K/Akt signalling, whereas IL-36α, IL-32‍γ ‍, IL-21, IL-27, LTα, and C43 activate this signalling. While calreticulin stimulates Bcl-xL, Mcl-1, and C-X-C motif 
chemokine ligand (CXCL)-1/8 through this signalling, ATO and resveratrol enhance caspase-8 activity, and CYLD, SAA, LIGHT, and TGF-β1 activate NF-κB 
signalling. In the nucleus, Shh activates MCP-1 and CYLD and DLL-1 increase MMPs and IL-1β through NF-κB signalling. GPI, APRIL, and RasGRPs increase 
inflammatory factors such as TNF-α and IL-8. JMJD3 inhibits the activity of PCNA in the nucleus. SAHA and DMHP enhance expression of Bcl-2-associated X 
protein (BAX) and caspase-3, and they also attenuate Bcl-2 expression. LIGHT, lymphotoxin-like, herpes simplex virus glycoprotein D, a receptor expressed 
by T lymphocytes; LTα, lymphotoxin α; APRIL, a proliferation-inducing ligand; Shh, Sonic hedgehog; GPI, glucose-6-phosphate isomerase; IL, interleukin; 
JMJD3, Jumonji C family of histone demethylases; CYLD, cylindromatosis; RasGRPs, Ras guanine nucleotide-releasing proteins; TGF-β1, transforming growth 
factor-β1; SAA, serum amyloid A; DLL-1, δ like Notch ligand 1; C43, compound 43; ATO, arsenic trioxide; DMHP, 7,3'-dimethoxy hesperetin; NCL, niclosamide; 
MMC, mitomycin C; MCP-1, monocyte chemoattractant protein-1; SAHA, suberoylanilide hydroxamic acid; PCNA, proliferating cell nuclear antigen.
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Table I. Summary of molecular mechanism of fibroblastic synoviocytes (proliferation and apoptosis).

Molecules Mode of action Species Dose Ref

In vivo In vitro

Endogenous factors
LIGHT Enhanced the proliferation of FLS, expression of ICAM-1, 

MCP-1, IL-8, MIP-1α, and NF-κB translocation
RA-FLS 10 ng/ml 20

APRIL Produced IL-6, TNF-α, IL-1β, and enhanced FLS 
proliferation

RA-FLS, Rat adjuvant-induced 
arthritis (AA) model

30 to 300 ng/ml 21,22

Shh signalling Mediated the proliferation and migration through MAPK/
ERK pathway

RA-FLS 1, 10 μΜ 23

GPI Stimulated the secretion of TNF-α and IL-1β RA-FLS, arthritic synovial 
tissues from RA patients

1 to 10 μg/ml 24

Survivin Promoted proliferation RA-FLS  �  25

JMJD3 Activated proliferation and migration RA-FLS, CIA mice  �  26

CYLD Enhanced cell growth and cytokine production RA-FLS  �  27

RasGRPs Enhanced cell motility and IL-6 production RA-FLS, CIA mice  �  28

TGF-β1 Activated NF-κB, AP-1, migration, and invasion RA-FLS, SF from RA patients 1 to 100 ng/ml 29,30

SAA Promoted migration, angiogenesis through MMP-2/9, 
activation of NF-κB, and cytokine production

RA-FLS, RA synovial/SCID 
mouse

50 μg/ml 10 to 50 μg/ml 31,32

DLL-1 Suppressed IL-6 and MMP-3  �   �  33

Calreticulin Induced Bcl-xL, Mcl-1 through PI3K/Akt and STAT3 
pathways

RA-FLS  �  34

Cytokines
LTα Activation of MAPK, ERK1/2, p38, PI3K/Akt pathway, NF-

κB translocation, IL-6/8, and MMP-3
RA-FLS 0.5 nM 35

IL-21 Stimulated the proliferation and secretion of TNF-α and 
IL-6 through ERK1/2, PI3K/Akt, and STAT3

RA-FLS 1 to 100 ng/ml 36

IL-32γ Enhanced expression of IL-6 and IL-8 through activation 
of ERK1/2

RA-FLS 50 to 100 ng/ml 37

IL-27 Induced expression of adhesion molecules, inflammatory 
cytokines, and activated inflammatory signalling 
pathways

RA-FLS 10 to 100 ng/ml 38

IL-36α Activated p38 MAPK signalling and pro-inflammatory 
cytokines

RA/Murine FLS, IL-36R-
deficient FLS

 �  39

Synthetic compounds
C43 Inhibited proliferation, inflammation, and bone injury RA-FLS, SIA mice, and CIA 

mice
6 to 30 mg/kg 30 μM 40,41

ATO Induced apoptosis through caspase signalling RA-FLS, CIA rats 1 to 6 mg/kg 0.1 to 8 μM 42,43

DMHP Induced apoptosis through enhancing BAX and 
caspase-3

RA-FLS, AA rats 20 to 150 mg/kg 2.5 to 20 μM 44

NCL Reduced E-selectin, ICAM-1, and VCAM-1 and inhibited 
migration and invasion

RA-FLS, RA patients 1,000 mg/day 20 to 100 nmol/l 45,46

SAHA Induced apoptosis through enhancing caspase-3 and 
ROS

RA-FLS 5 μM 47

Natural compounds  �   �

Resveratrol Mediated apoptosis and inhibited IL-1β, MMP-3, and 
phosphorylated Akt

RA-FLS, RA patients 1 g/person 6.25 to 50 μM 48,49

Hesperidin Down-regulated TNF-α and reduced MMPs RA-FLS, AIA and CIA mice 20 to 150 mg/kg 2.5 to 20 μM 50,51

MMC Induced apoptosis through ROS production RA-FLS 10 to 100 μg/ml 52

Quercetin Enhanced apoptosis through inhibition of PI3K/Akt 
pathway

RA-FLS 200 μM 53

APRIL, A proliferation-inducing ligand; ATO, arsenic trioxide; Bcl-xL, B-cell lymphoma-extra large; C43, compound 43; CYLD, cylindromatosis; 
DLL-1, delta like canonical notch ligand 1; DMHP, 7,3'-dimethoxy hesperetin; ERK1/2, extracellular signal‑regulated protein kinase 1/2; GPI, 
glucose 6-phosphate isomerase; IL-21, interleukin-21; IL-27, interleukin-27; IL-32γ, interleukin-32γ; IL-36α, interleukin-36α; JMJD3, Jumonji C 
family of histone demethylases; LIGHT, lymphotoxin-like herpes simplex virus glycoprotein D, a receptor expressed by T lymphocytes; LTα, 
lymphotoxin α; Mcl-1, myeloid cell leukemia-1; MMC, mitomycin C; NCL, niclosamide; RasGRPs, Ras guanine nucleotide-releasing proteins; Ref, 
reference; SAA, serum amyloid A; SAHA, suberoylanilide hydroxamic acid; Shh signaling, Sonic hedgehog signaling; STAT3, signal transducer and 
activator of transcription 3; TGF-β1, transforming growth factor-β1.

A proliferation-inducing ligand.  High level of A proliferation-
inducing ligand (APRIL) is detected in RA serum and in the 
adjuvant-induced arthritis (AA) synovium of rat model.21,22 

APRIL stimulates the FLS to produce various cytokines includ-
ing APRIL itself.21 APRIL-stimulated T or B cells also enhance 
the FLS proliferation in a co-culture system.22



VOL. 10, NO. 4, APRIL 2021

SIGNALLING AND PUTATIVE THERAPEUTIC MOLECULES ON THE REGULATION OF SYNOVIOCYTE SIGNALLING 289

Sonic hedgehog signalling.  Sonic hedgehog (Shh) signal-
ling is involved in various cell functions such as prolifer-
ation, differentiation, and embryonic development.56,57 
Higher expression of Shh messenger RNA (mRNA) in the 
RA synovium than that in the control synovium and treat-
ment with cyclopamine (a specific inhibitor of Shh signal-
ling) on FLS results in cell cycle arrest.58 Currently, it is re-
ported to mediate the proliferation and migration of FLS 
by the MAPK/extracellular signal-regulated kinase (ERK) 
pathway in RA.23 Two Shh inhibitors, sonidegib and vis-
modegib, have received Food and Drug Administration 
(FDA) approval for basal cell carcinoma.59

Glucose-6-phosphate isomerase.  The biochemical role of 
glucose-6-phosphate isomerase (GPI) is the isomerization 
of glucose-6-phosphate to fructose 6-phosphate. GPI 
plays various roles in cell growth and motility and has 
been robustly studied for its pathological roles in tumour 
proliferation.60–62 More recently, the pathophysiological 
role of GPI has been revealed in RA. The level of GPI is 
increased in RA FLS and it also stimulates the secretion of 
cytokines such as TNF-α and IL-1β in FLS.24

Survivin.  Survivin is considered a proto-oncogene and is 
involved in joint destruction in RA.63–65 Enhanced expres-
sion of wild type and splice variant type 2B of survivin 
is demonstrated in the RA synovium.65 Extracellular sur-
vivin is also increased in the SF of RA.25 Platelet-derived 
growth factor (PDGF)-dependent survivin 2B expression 
and subsequent promotion of FLS proliferation suggest 
that survivin 2B plays an emerging role in RA.
Jumonji C family of histone demethylases.  The expression 
of Jumonji C family of histone demethylases (JMJD3) is 
low in normal tissue; its expression is stimulated by vari-
ous stress conditions such as amino acid deprivation and 
hypoxia.66,67 The enhanced expression of JMJD3 in RA FLS 
activates proliferation and migration.26

Cylindromatosis.  Cylindromatosis (CYLD) is a condition 
involving multiple tumours of the skin appendages.68,69 
The gene of CYLD, a tumour suppressor, is associated 
with deactivation of the NF-κB signalling pathway.27,70,71 
CYLD suppression enhances cell growth and cytokine 
production in RA FLS.27

Ras guanine nucleotide-releasing proteins.  Ras guanine 
nucleotide-releasing proteins (RasGRPs) are identified in 
the FLS of RA. The overexpression of RasGRP2 enhanc-
es cell motility and IL-6 production, whereas the knock-
down of RasGRP2 attenuates pannus formation in an ex-
perimental arthritis model.28

Transforming growth factor-β1.  Transforming growth 
factor (TGF)-β1 is expressed in the synovium of patients 
with RA. It enhances the DNA-binding activities of NF-κB 
and AP-1,29,30,72 and promotes migration and invasion by 
activating Smad2/3 in the RA FLS.73

Serum amyloid A.  Serum amyloid A (SAA) is identified 
as a biomarker for acute phase inflammation in RA.74,75 It 
promotes the migration of FLS and angiogenesis by in-
duction of MMP-2 and MMP-9 in the synovium; thus, it 
supports the proliferation of synovium and formation of 

pannus.31 SAA is enhanced in RA synovium,76 and stimu-
lates the transcriptional activation of NF-κB and the ex-
pression of IL-6 and IL-8 with the involvement of receptor 
for advanced glycation end-products (RAGE).32 The SAA/
RAGE/NF-κB signalling process is involved in the patho-
genesis of RA.32

δ like canonical Notch ligand 1.  Blocking the δ like canon-
ical Notch ligand 1 (DLL-1) protein improves arthritis in 
collagen-induced arthritis (CIA) mouse model and sup-
pressed IL-6 and MMP-3.33 Although the ameliorating 
effect of DLL-1 blocking on inflammatory cytokines is 
partial, DLL-1 has proved to be a new target for joint in-
flammation treatment.
Calreticulin.  Calreticulin is known as the calcium-
binding endoplasmic reticulum (ER) resident chaperone. 
Extracellular calreticulin is involved in apoptotic cell clear-
ance as a recognition ligand.77 Extracellular application of 
recombinant calreticulin inhibits inflammation-mediated 
bone resorption.78 Although the intra-/extracellular func-
tions of calreticulin are diverse, it is also considered as 
a biomarker of juvenile idiopathic arthritis.34 In addition, 
enhanced expression of calreticulin is revealed in RA syn-
ovium, and it induces the expression of B-cell lymphoma-
extra large (Bcl-xL) and myeloid cell leukaemia-1 (Mcl-1) 
proteins through the phosphoinositide 3-kinase (PI3K)/
protein kinase B (PKB or Akt) and signal transducer and 
activator of transcription 3 (STAT3) pathways.79

Cytokines
Lymphotoxin α.  Lymphotoxin α (LTα), previously known 
as tumour necrosis factor-β (TNF-β), is a pro-inflammatory 
cytokine produced by T lymphocytes and is very similar 
to TNF-α.35,80 LTα possesses high affinity for both TNF re-
ceptor 1 (TNFR1) and TNFR2.81 It mediates the activation 
of MAPKs extracellular signal‑regulated protein kinase 1/2 
(ERK1/2), p38, the PI3K/Akt pathway, NF-κB transloca-
tion, and the secretion of cytokines such as IL-6, IL-8, and 
MMP-3.35 Being homologous to the cytokine TNF-α, LTα 
is also a stimulant of RA FLS as well as lymphocytes such 
as macrophages. However, the subcutaneous injection of 
pateclizumab, an anti-LTα antibody, does not show any 
clinical improvements in RA symptoms and signs, while 
adalimumab, a TNF-α inhibitor, demonstrates the clinical 
efficacy in RA patients with poor response to csDMARDs.82

IL-21.  Increased serum IL-21 levels and enhanced expres-
sion of IL-21 receptors in the synovium of RA patients are 
associated with the pathology of RA.83,84 The treatment 
of IL-21-activated signalling pathways such as ERK1/2, 
PI3K/Akt, and STAT3 subsequently stimulate the prolif-
eration and secretion of cytokines in RA FLS.36 Recently, 
the first in-human phase 2 trial with recombinant anti-
IL-21 monoclonal Ab has shown to be well tolerated in 
RA patients.85

IL-32γ.  IL-32γ is identified in the monocytes of active RA 
SF.37 Stimulation of IL-32γ enhances the expression of IL-6 
and IL-8 in RA FLS. Phosphorylated ERK1/2 is also involved 
in RA, and inhibition of ERK1/2 in RA FLS attenuates 
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Fig. 2

Schematic diagram of the overall signalling mechanism and related factors of inflammatory activity, migration, and invasion in the fibroblastic synoviocytes 
(FLS) of rheumatoid arthritis (RA) FSTL1 stimulates JAK signalling. Oxymatrine and C3G enhance FAK signalling. Anti-CCP antibody activates PI3K. JAK induces 
activation of extracellular signal‑regulated protein kinase 1/2 (ERK1/2) and pSTAT3, FAK activates phosphoinositide 3-kinase (PI3K), p38, and protein kinase B 
(Akt) signalling. Chemerin and GRP activate PI3K/Akt signalling, but CA-074Me inhibits this signalling. HIP-1 activates RAC1 and HDAC5 activates interferon 
regulatory factor 1 (IRF-1) through PI3K/Akt signalling. HDAC6 inhibits inflammatory factors such as interleukin (IL)-6 and tumour necrosis factor-α (TNF-α) 
through nuclear factor kappa-B (NF-κB) transcription in the nucleus, whereas class 3 semaphorins increase levels of matrix metalloproteinases (MMPs). 
In addition, increased TNF-α enhances DKK-1 and FAK. This signalling is involved in the inflammation, migration, and invasion of FLS. C3G, cyanidin-3-
glucoside; DKK-1, Dickkopf-1; FAK: integrin-related focal adhesion kinase; pSTAT3: phosphorylated signal transducer and activator of transcription 3; GRP, 
gastrin-releasing peptide; HIP-1, Huntingtin-interacting protein-1; HDAC, histone deacetylase; FSTL1, follistatin-like protein 1; ECM proteins, extracellular 
matrix proteins; anti-CCP, anti-cyclic citrullinated peptide.
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Table II. Summary of molecular mechanisms of fibroblastic synoviocytes (inflammation, migration, and invasion).

Molecules Mode of action Species Dose Ref

In vivo in vitro

Endogenous factors
Chemerin Activation of cytokine 

production, MMP-3 
expression, and FLS migration

RA-FLS 10 to 50 μM 113

DKK-1 and FAK Enhancement of FLS migration RA-FLS  �  114

GRP Enhancement of FLS invasion 
through Akt activation

RA-FLS 10 μM 115

Class 3 semaphorins Activation of RAC1 and 
increasing effect on RA-FLS 
invasion

RA-FLS 10 μM 116

HIP-1 Enhancement of FLS migration RA-FLS  �  117

Adrenomedullin Increase of FLS adhesion RA-FLS 100 nM 118

HDAC Increase of IL-6 and IL-1β 
expression

RA-FLS, CIA mice  �  119

FSTL1 Enhancement of MMP 
expression and invasion of FLS

RA-FLS 1 to 5 μg/ml 120

Cadherin-11 Enhancement of FLS adhesion 
and proliferation

RA-FLS  �  121,122

Anti-CCP antibody Increase of FLS migration 
through PI3K activation

RA-FLS 1 μg/ml 123

Synthetic compounds  �   �

CA-074Me Inhibition of cathepsin B with 
decrease of MMP-2, F-actin, 
and phosphorylation of p38 
MAPK/JNK

RA-FLS 10 μM 124

Natural compounds
C3G Inhibition of LPS-induced IL-6 

and IL-1β production
RA-FLS, CIA mice 50 mg/kg 10 to 40 μM 125

Oxymatrine Protection of joint destruction RA-FLS, CIA mice 100 mg/kg 10 to 100 μM 126

C3G, cyanidin-3-glucoside; CIA, collagen-induced arthritis; DKK-1, Dickkopf-1; FAK, focal adhesion kinase; FLS, fibroblastic synoviocytes; FSTL1, 
follistatin-like protein 1; GRP, gastrin-releasing peptide; HDAC, histone deacetylase; HIP-1, Huntingtin-interacting protein-1; IL, interleukin; 
JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinases; MMP, matrix metalloproteinase; PI3K, phosphoinositide 3-kinase; RA, 
rheumatoid arthritis.

IL-32γ-induced IL-6 and IL-8 mRNA expressions.86 It also 
mediates proinflammatory cytokines through the activa-
tion of ERK1/2.
IL-27.  Increased level of IL-27 is observed in RA patients 
and IL-27 receptor is expressed in FLS. Stimulation of 
IL-27 induces the expression of adhesion molecules, re-
lease of inflammatory chemokines such as the C-C motif 
chemokine ligand 2 (CCL2), C-X-C motif chemokine li-
gand 9 (CXCL9), and CXCL10, and activates inflamma-
tory signalling pathways such as STAT1, JAK-2, Akt, PI3K, 
and c-Jun N-terminal kinase (JNK) signalling in RA FLS.38,87

IL-36α.  Increased expression of IL-36α, an IL-1 family 
member, is identified in the synovium of patients with in-
flammatory arthritis such as RA and psoriatic arthritis.88 As 
an inflammatory signalling mediator, IL-36α stimulation 
activates p38-MAPK signalling and enhances the produc-
tion of proinflammatory cytokines in FLS.39 This study of 
IL-36α receptor-depleted condition demonstrates that the 
IL-36α receptor provides a link between FLS and plasma 
or B cells in synovium.39

Synthetic compounds
Compound 43.  Compound 43 (C43) is an agonist of the 
formylpeptide receptor identified in various cells, such as 
endothelial cells89 and fibroblasts,90 and has been discov-
ered as the receptor for the tripeptide N-formylmethionyl-
leucyl-phenylalanine (fMLF).91 C43 inhibits inflammation 
and bone injury, and decreases FLS proliferation and joint 
damage in RA.40,41

Arsenic trioxide.  Arsenic trioxide (ATO, As2O3) has been 
studied with reference to cellular apoptosis, and has been 
approved by the FDA for the treatment of acute promye-
locytic leukaemia. ATO shows a beneficial effect for some 
solid tumours and haematological malignancies.42,92 The 
action of ATO is also effective against the pathogenesis of 
RA by inducing apoptosis of FLS through the activation 
of caspase signalling and subsequently rebuilding the 
synovial tissue.43 Although the molecular mechanism of 
ATO is poorly understood in RA, more recently ATO has 
been shown to improve RA symptoms by regulating au-
tophagic signalling in combination with vitamin D.42

7,3'-dimethoxy hesperetin.  7,3'-dimethoxy hesperetin 
(DMHP) is a derivative of the bioflavonoid compound 
hesperidin.44 It induces FLS apoptosis through enhanced 
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expression of BAX (Bcl-2-associated X protein) and 
caspase-3 mRNA and caspase-3 activity in an experimen-
tal adjuvant arthritis model.44

Niclosamide.  Niclosamide (NCL) is known as a multifunc-
tional agent with anti-inflammatory, antitumour, and 
antioxidative properties,45,93–95 and is used for therapy of 
tapeworm infection.96 Moreover, its role in the suppres-
sion of cell viability and ROS production through the 
mitochondrial-Akt signalling pathways has also been in-
vestigated.45,97 A phase 2 clinical trial of NCL for RA was 
conducted as an adjuvant treatment along with admin-
istration of etanercept, and it showed a reduction of dis-
ease activity with marked decrease of E-selectin, ICAM-1, 
and vascular cell adhesion molecule-1 (VCAM-1).46

Suberoylanilide hydroxamic acid.  Suberoylanilide hy-
droxamic acid (SAHA, vorinostat), a class I histone 
deacetylase (HDAC) inhibitor, is an anticancer agent98,99 
and was approved by the FDA for treatment of cutaneous 
T cell lymphoma.100 It induces the apoptosis of RA FLS 
through the involvement of enhanced caspase-3 activity 
and ROS production.47

Natural compounds
Resveratrol.  Polyphenol resveratrol, trans-3,5,4'-tr-
ihydroxystilbene, is an antioxidant abundant in red 
wines and displays a positive effect on cardiac protec-
tion.101,102 Resveratrol mediates cell apoptosis through 
the modulation of mitochondrial signalling in RA FLS. It 
is a different strategy to reduce synovial hyperplasia.102 
Currently, it is reported that resveratrol inhibits inflam-
matory cytokine IL-1β, MMP-3, and phosphorylated Akt 
expression.48 Moreover, a clinical trial has shown the ef-
ficacy of resveratrol as an adjuvant therapy to the con-
ventional RA treatment.49

Hesperidin.  Hesperidin, a bioflavonoid, has revealed 
various protective roles in cognition, heart function, 
and inflammation.103–105 Oral administration of hesperi-
din suppresses the clinical scores of RA patients.50 More 
recently, hesperidin has shown an anti-inflammatory ef-
fect on FLS and reduces the polarization of macrophag-
es in antigen-induced arthritis mouse model.51

Mitomycin C.  Mitomycin C (MMC) is an antibiotic and 
anti-tumour agent.106,107 It has also been studied as an 
apoptotic agent of fibroblasts.108–110 Treatment with 
MMC induces apoptosis of RA FLS through the produc-
tion of ROS and disruption of the mitochondrial mem-
brane potential.52

Quercetin.  Quercetin (3,3',4',5,7-pentahydroxyflavone
) is a polyphenolic flavonoid and antioxidant in the hu-
man diet.111,112 The treatment of quercetin enhances the 
apoptosis of RA FLS through the inhibition of the PI3K/
Akt pathway.53

Inflammatory activity, migration, and 
invasion
A characteristic inflamed synovium possesses dynamic 
FLS that reveals migration and invasive properties. This 

section focuses on the modulation of inflammation and 
migration of FLS and signalling molecules or enzymes on 
RA pathogenesis. A schematic diagram of migration and 
invasive properties is shown in Figure 2, and a summary 
of the mode of action and working dose of molecules is 
given in Table II.

Endogenous factors
Chemerin.  Chemerin is an agonist of chemokine-like 
receptor 1 (known as ChemR23) and identified in mac-
rophages and dendritic cells.127,128 The enhanced expres-
sions of chemerin and its receptor ChemR23 are revealed 
in the RA synovium and related to disease severity.113,129 
Chemerin activates cytokine production, MMP-3 expres-
sion, and enhances FLS migration through the involve-
ment of the p38-MAPK and Akt pathways.113

Dickkopf-1 and integrin-related focal adhesion ki-
nase.  Stimulation by TNF-α causes the FLS-induced ac-
tivation of Dickkopf-1 (DKK-1) and integrin-related focal 
adhesion kinase (FAK), and enhances migration of these 
FLS.114 High levels of FAK, p-JNK, paxillin, and cell division 
control protein 42 (cdc42) expression are reported in the 
FLS migration machinery.
Gastrin-releasing peptide.  Gastrin-releasing peptide 
(GRP) and its receptor GRPR are involved in inflammation 
processes such as gastritis and sepsis.130 Activation of GRP 
enhances FLS invasion through Akt activation whereas 
RC-3095, the GRPR antagonist reduces it in a RA mice 
model.115

Class 3 semaphorins.  The semaphorins are implicated in 
autoimmune diseases such as RA and in the migration of 
immune cells and FLS.116,131 Type-specific expression of 
semaphorin reveals the severity of RA.116,132

Huntingtin-interacting protein 1.  Huntingtin-interacting 
protein 1 (HIP-1) gene is identified using DNA sequenc-
ing by a phenotype-driven strategy in rats and patients 
with RA; it is involved in the enhanced invasiveness of RA 
FLS.117 HIP-1 deficient human RA FLS decreased their inva-
sion by nearly 50%,133 suggesting that HIP-1 can be used 
for deteriorated joints in RA patients.
Adrenomedullin.  Adrenomedullin is a secreted peptide 
from the FLS and is associated with the pathogenesis of 
RA.118,134 Its stimulation mediates the adhesion of FLS by 
association of extracellular matrix proteins, integrin-α2 
and -β1.135

Histone deacetylase.  The role of HDAC in RA FLS is not 
yet clear. Although the HDAC inhibitor SAHA mediates 
apoptosis in RA FLS,47 the stimulation of inflammatory 
cytokines such as IL-1β and TNF-α suppresses the expres-
sion of HDAC5 in RA FLS.136 In addition, application of 
HDAC6 inhibitor tubastatin A suppresses synovial inflam-
mation and protects joint damage in CIA mice.119

Follistatin-like protein 1.  Follistatin-like protein 1 (FSTL1) 
is identified in RA synovium137 and enhanced in the ear-
ly stage of CIA in mice.138 It is also involved in the pro-
gression of osteoclasts.139 Its mechanism of pathogenesis 
in RA involves NF-κB, MAPK, and JAK/STAT3 signalling 
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pathways.120 MicroRNA-27a-targeted FSTL1 inhibits the 
migration and invasion of RA FLS.140

Cadherin-11.  Cadherin-11 is an adhesion molecule in-
volved in various functions of the FLS. Cadherin-11-
deficient FLS display diminished migration and inva-
sion to cartilage under stimulation of serum or PDGF.141 
Cadherin-11 is selectively expressed on the FLS and sup-
ports the lining layer of the synovium via mediating FLS-
to-FLS adhesion.121 Knockdown of cadherin-11 reduces 
the IL-1β-induced proliferation of FLS.122

Anti-cyclic citrullinated peptide antibody.  The serum of 
RA patients is positive for anti-cyclic citrullinated peptide 
(anti-CCP).142 Anti-CCP is used as a serological marker to 
diagnose RA.143 Recently, it has been reported that FLS 
migration is increased by stimulation of anti-CCP poly-
clonal antibody through activating PI3K.123

Synthetic compounds
Cathepsin B inhibitor, CA-074 Me.  Cathepsin B, a pro-
teinase, displays a higher activity in RA synovium.144 
Application of its inhibitor, CA-074 Me, inhibits invasion 
signalling through the reduced expression of MMP-2 
mRNA, F-actin protein, and phosphorylation of P38-
MAPK/JNK in FLS.124

Natural compounds
Cyanidin-3-glucoside.  Cyanidin-3-glucoside (C3G) is the 
most distributed anthocyanin compound in the flavonoid 
family. Being an antioxidant, it is studied for its inhibito-
ry role on inflammation.145 Treatment with C3G inhibits 
LPS-induced cytokine production in FLS and attenuates 
RA severity in the CIA mouse model.125

Oxymatrine.  Oxymatrine, a quinolizidine alkaloid, is 
an extract from the roots of Sophora flavescens.126 It has 
demonstrated an inhibitory role in breast cancer cell 
migration and invasion,146 an anti-inflammatory and 
antioxidant role,147 and a protective effect on amyloid 
beta-induced neurotoxicity.148 From the massive study 
conducted on oximatrine, it is found to be involved in the 
protection of joint destruction in RA.126

Future perspectives and clinical strategies
Current medications, focused on inflammation and 
immunity, can influence FLS in RA. A therapeutic dose 
of methotrexate, the first choice for initial RA treat-
ment, may attenuate the effects of PDGF and IL-1β on 
tumour suppressor expression and inhibit the prolifer-
ation and migration of FLS.149,150 Hydroxychloroquine, a 
csDMARD, can also sensitize FLS to Fas-mediated apop-
tosis.151 TNF-α inhibitors can influence FLS apoptosis via 
phosphoinositide-3-kinase Akt signal transduction and 
proliferation via the NF-κB pathway.152,153 IL-6 and IL-6R 
inhibitors can also function well, since IL-6 is reported 
to promote proliferation of FLS154 and facilitate angio-
neogenesis for pannus formation.155 It is reported that 
IL-17 impairs FLS apoptosis through activation of auto-
phagy156 and enhances proliferation of FLS via STAT3 

activation.157 Thus, IL-17 inhibitors can attenuate the 
contribution of FLS in RA. Janus kinase inhibitors, which 
are targeted synthetic DMARDs (sDMARDs), may inhibit 
the FAK-mediated activation and invasion of FLS in RA.158 
Rituximab, a CD20 monoclonal antibody, might inhibit 
cellular adhesion and the production of MMP by FLS 
through LIGHT up-regulated B-cell depletion.159 Abata-
cept, a cytotoxic T-lymphocyte-associated antigen 4-Ig 
that antagonizes CD28-medicated T cell activation, 
inhibits the FLS migration and expression of MMPs by 
inhibiting the MAPK pathway.160 Although the influences 
of these medications on RA FLS have been reported, it is 
not known whether or not they can sufficiently control 
the RA FLS under therapeutic dose.

Research has been focusing on the greatest unmet 
needs of novel targeted therapies, including research of 
novel combination therapies for patients with refractory 
RA to available therapies, since the patients with remis-
sion are less than half of RA patients and there is no cure 
yet.161 Current available therapies for RA including various 
synthetic and biological DMARDs, glucocorticoids, and 
their combination therapies should be used carefully due 
to hazards such as increased risk of infection and malig-
nancy. Thus to minimize systemic adverse events from 
immune suppression and increase the response to these 
current treatments, more specific target molecules that 
have a weaker effect on immune cells may be needed. 
In this respect, molecules that regulate synoviocyte 
signalling may be one of the more efficient therapeutic 
targets for RA, and we review these here. Add-on or 
combination therapies with synoviocyte-targeting thera-
pies may increase their treatment efficacy and decrease 
systemic adverse events by reducing dose of current 
therapies. For example, NCL, as mentioned earlier, in 
combination with etanercept increases the proportion of 
patients achieving an ACR 20% response (ACR20), ACR50 
response, and ACR70 response, and improves tender 
joint count, swollen joint count, and disease activity 
score of 28 joints (DAS-28) in RA patients who show 
an inadequate response to etanercept.46 Interestingly, 
this treatment does not reduce CRP and ESR compared 
to placebo,46 and this suggests that adding NCL can 
improve the treatment response without having a certain 
effect on systemic inflammation. In this regard, GPI is 
also prudently suggested as one of the best prospective 
targets, although this treatment option is in the early 
stages since GPI could be involved in the pathogenesis of 
RA with joint-specific inflammation as an autoantigen.162 
GPI has also shown to be correlated with disease activity 
such as DAS-28, swollen and tender joint count, and GPI 
levels decreased in response to infliximab treatment in RA 
patients.163

In this review, we have tried to highlight the unmet 
need to target FLS as one of the novel therapies for RA. 
Several therapeutic approaches may have a weak anti-
inflammatory effect or no effect at all. However, it is clear 
that inflammation is at the heart of the pathogenesis of 
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RA. In this respect, innovative strategies are required to 
target inflammation and pathognomonic parameters for 
RA FLS concurrently. This approach will provide us with a 
wide perspective to identify the appropriate target from 
multiple signalling of RA.
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