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�� Bone Fracture

Hip preservation surgery and the 
acetabular fossa

a canary in a coal mine?

As our understanding of hip function and disease improves, it is evident that the acetabular 
fossa has received little attention, despite it comprising over half of the acetabulum’s sur-
face area and showing the first signs of degeneration. The fossa’s function is expected to be 
more than augmenting static stability with the ligamentum teres and being a templating 
landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intra-
uterine development, plays a key role in hip development, enabling its nutrition through 
vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells 
that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same de-
velopmental origin as the synovium and articular cartilage and is a biologically active area. 
Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. 
It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, 
leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an 
insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making 
and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, 
but also for their biological capacity as a source of cytokines, immune cells, and chondro-
genic stem cells.
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Article focus
�� This study aimed to determine the function 

of the acetabular fossa.
�� The morphology and physiology of the 

fossa may play a role in decision-making 
for hip preservation surgery.
�� We aimed to determine if the acetab-

ular fossa has a biological capacity of 
response to pre-arthritic and arthritic 
hip disease.

Key messages
�� The acetabular fossa is more than an 

inert acetabular surface.
�� The shape and relative size of the fossa 

with regards to the articular cartilage 
may preclude functional outcomes in 
hip preservation surgery.
�� The acetabular fossa is a source of cytokines, 

immune cells, and chondrogenic stem cells.

Strengths and limitations
�� This is an in-depth review of the embry-

ology, anatomy, histology, radiology, 
function, and biology of the acetabular 
fossa.
�� The histology of the fossa was only 

described in the context of osteoarthritis 
or in newborns with hip dysplasia.
�� Biological function of the fossa is mostly 

described in proinflammatory scenarios.

Introduction
Our understanding of the native hip’s 
mechanics, physiology, and pathology has 
dramatically improved over the last two 
decades.1-6 This has been facilitated by the 
introduction of open and arthroscopic proce-
dures to the native hip and the advance-
ments in engineering and basic sciences. 
Although a clear association between 
abnormal mechanics and osteoarthritis (OA) 
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development exists,7 there is little doubt that genetic 
predisposition is important8,9 and that the biolog-
ical cascade leading to OA is not clearly understood or 
defined.10,11

In the last two decades most of the focus on the origins 
and treatment of pre-arthritic hip disease has been on 
acetabular rim pathology/degeneration.12,13 However, 
clinical observations often show central acetabular osteo-
phytes as an early manifestation of hip arthritis, which 
are significantly associated with the degree of chondral 
damage and size of the articular defects.14

An area of the hip joint that has received relatively little 
attention is the acetabular fossa. It is composed of the 
ligamentum teres and adipose tissue (pulvinar). Lesions 
of the acetabular fossa are an uncommon cause of hip 
pain when diagnosed in isolation. Such lesions classi-
cally refer to injuries to the ligamentum teres (complete 
or partial tears), and rarely to synovitis of the fat pad, 
plicae, or fibrosis of the fibro-connective tissue.15,16 Byrd15 
described the pulvinar tissue within the acetabular fossa 
as ‘a canary in a coal mine’ since various arthritic and 
pre-arthritic hip disorders, which usually affect the hip 
cartilage and labrum, can initially damage this particular 
area.17

The acetabular fossa seems to be more than just an 
inert acetabular surface. A holistic knowledge of the 
morphology and physiology of the acetabulum is crucial 
for surgeons and scientists in the field of hip joint preser-
vation. This report aims to provide a comprehensive over-
view of the embryology, anatomy, histology, radiology, 
function (mechanical and physiological), and role in clin-
ical decision-making of the acetabular fossa as currently 
described in literature.

Embryonic and postnatal development of the 
acetabulum and acetabular fossa
The hip joint derives from the blastematous cells that 
differentiate from primordial mesoderm into pre-cartilage 
and foetal bone.18 At four weeks, the limb buds develop 
as a cluster of three-layered mesenchymal tissue at the 
lateral parts of the embryonic trunk (lateral plate meso-
derm).19 In the interzone (prospective joint), a densely 
cellular inner layer progressively becomes thinner and 
evolves into a number of tissues including: 1) articular 
cartilage of both the femoral head and the acetabulum; 
2) the ligamentum teres; 3) the pulvinar; 4) the joint’s 
synovial membrane; and 5) the labrum.20-23

During the embryonic period, the acetabular fossa 
undergoes substantial macroscopic and histological 
changes.22,24 The fossa is the first acetabular structure to 
become vascularized, allowing for further development 
of the peripheral articular cartilage through invasion 
of chondrogenic cells (Table  I).22 Such differentiation 
relies on complex genetic and molecular signalling 
processes.25-27

During the last six months (foetal period), there is a 
six-fold increase in size until birth. At birth, the articular 

cartilage is mostly located posteriorly (at the ischium), 
whereas the nonarticular fossa is sited anteriorly.28 After 
birth, the Y-shaped triradiate cartilage defines the final 
depth of the acetabulum.

The development of the articular cartilage (by appo-
sition) in the weight-bearing area requires the constant 
dynamic stimulus of the femoral head.29,30 The acetab-
ular dome is derived from the iliac centre of ossifica-
tion; the posterior and anterior walls originate from the 
ischial ossification centre and the anterior os acetabuli, 
respectively.31 The ilium and ischium are the first to fuse 
followed by the ilium and pubis that begin to fuse super-
omedially and progress downwards to the midpoint of 
the acetabulum. Finally, the pubis and ischium fuse from 
their inner margin outwards. At the apex of the fossa, 
some original blastemal connective junctions remain 
over a still unfused Y.19

Section key points
�� The fossa is the first acetabular structure to become 

vascularized, allowing for further development of the 
peripheral articular cartilage.
�� At 16 weeks, the fossa is mature and invaded by 

synovium-like cells at the pulvinar, surrounded by 
highly vascularized articular adipose tissue.

Gross anatomy and histology of the adult 
acetabular fossa
Gross anatomy.  The hip is a ball-and-socket diarthrodial 
joint between the acetabulum and the proximal femur. 
The acetabulum is a rounded vault with a mean diame-
ter of 52 mm (SD 4),32 however variations do exist de-
pending on sex and race.33-36 The joint has two distinct 
parts: the acetabular fossa (i.e. no articular cartilage) 
and a peripheral horseshoe-shaped articulating surface, 
lined with cartilage that embraces the fossa circumfer-
entially except for its distal aspect (six o’clock position), 
where the acetabular notch becomes a foramen by the 
presence of the transverse acetabular ligament (TAL). 
The acetabular fossa is filled with the ligamentum teres 
and the pulvinar (Figure 1), which is composed of fatty 
tissue (intra-articular adipose tissue (IAAT)) and a syno-
vial membrane. The pulvinar has a thickness of 2 mm to 
4.4 mm.37 In order to match the acetabulum, the femo-
ral head comprises two-thirds of a sphere, with a medial 
nonarticulating small groove (fovea capitis) for the liga-
mentum teres.38

The mean size of the acetabular fossa is 26.1 mm (SD 
6.5) by 33.9 mm (SD 6.7),39 with the ligament’s widest 
diameter being smaller than the fossa’s diameter. The 
quadrilateral plate represents the bottom of the fossa 
and is the place where the closed triradiate cartilage 
converges. The term ‘acetabular point’ corresponds with 
the point of the fusion lines for each bony element at the 
level of the acetabular fossa, represented in fused pelves 
by the indentation between the superior and the anterior 
lobes of the acetabular fossa.40



VOL. 9, NO. 12, DECEMBER 2020

HIP PRESERVATION SURGERY AND THE ACETABULAR FOSSA 859

Table I. Ontogeny of the acetabular fossa.

Time of intrauterine 
development

Stage of 
development

Stage of acetabular 
development

Stage of fossa 
development

Stage of cartilage 
development

Molecular 
development

4 weeks

‍ ‍

�� Differentiate from 
primordial mesoderm
�� Three-layered cluster of 

mesenchymal tissue at 
the limp buds

�� Derives from the inner 
layer
�� Dense metachromatic 

tissue

�� Blastematous 
metachromatic cells

�� Chondrogenic marker 
expression (SOX9)
�� Condensation of 

COL2A1
�� WNT4, WNT9A, and 

WNT16 signalling

8 weeks

‍ ‍

�� Creation of the joint 
cavity by progressive 
thinning of the inner 
layer
�� Ligaments created

�� Identifiable fossa, 
turning into a looser 
tissue
�� Central monovascular 

invasion

�� Some chondroid 
cells liberated on the 
periphery of the fossa

�� Decrease in type II 
collagen expression
�� Increase in GDF5 and 

BMP2 expression

 � 12 weeks

‍ ‍

�� Bony chondrification 
of the ilium, pubis, and 
ischium
�� Development of 

labrum and rim 
delimitation by 
perichondrium

�� Multivascular invasion 
in direction to the 
peripheral area
�� Cartilaginous matrix 

over fossa undergoes 
chondrolysis

�� Vessels liberating 
numerous 
cartilaginous cells at 
periphery of the fossa

�� WNT signalling

16 weeks

‍ ‍

�� Centres of ossification 
of the 3 pelvic bones 
mature
�� Triradiate cartilage 

visible

�� Extensive capillary 
network
�� Mast cells organized 

in rows
�� Superficial cells turn 

into synovium-like cells 
(pulvinar)
�� IAAT deposit (pulvinar)

 

�� All areas peripheral to 
the fossa surrounded 
by articular cartilage

�� Increase in CD34, 
CD44, and CD45

Last 6 months

‍ ‍

�� 6-fold increase in size 
until birth

�� Progressive anterior 
reorientation

�� Progressive 
reorientation, 
positioned more 
posteriorly
�� Thickening of the 

articular cartilage
 

�� Proliferation of 
ROSACreER/R26R 
Confetti articular 
chondrocytes 
decreases progressively
�� Thickening of the 

cartilage occurs 
through an increase 
in the volume of 
chondrocytes

 

IAAT, intra-articular adipose tissue

Govsa et al41 identified four different types of acetab-
ular fossae with regards to their shape: type 1, with a 
cloverleaf form, present in 60% of cases (137/226); type 
2, with a semicircular shape and a prevalence of 29% 
(65/226); type 3, spongy-type, present in 2% of cases 
(4/226); and type 4, with an isolated defect above the 
superior lobe seen in 9% of cases (20/226). The shape 
of the fossa determines the corresponding shape and 
rigidity of the peripheral cartilaginous surface (oval, 
piriform, or elongated),42 which ultimately defines the 
biomechanics of the joint.43 The relative proportions of 
the articular and nonarticular surfaces of the acetabulum 
vary depending on the acetabular shape (Figure 2). The 
acetabular fossa is reported to comprise over two-thirds 

(64% to 73%) of the acetabular area in acetabula with 
normal morphological parameters.

Both the margins of the notch and the TAL serve for 
the attachment of the ligamentum teres through five 
different fascicles (anterior notch, posterior notch, floor 
of the fossa, TAL, and inferior capsule).21 The ligament is 
a fibrous connective band with a pyramidal shape, with 
the base facing the acetabular fossa and the TAL.44 It is 
composed of collagen fibres and fibrous and adipose 
tissue, embraced by synovium and blood vessels of 
diverse diameters.45 In almost 75% of cases, the loose, 
tent-shaped synovial membrane covering the distal two-
thirds of the fossa and the intra-articular fat pad advances 
towards the ligament like a sleeve and inserts in the fovea 
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Fig. 1

Clinical image of the gross anatomy of a nonarthritic acetabulum from a 
75-year-old male diagnosed with a right neck of femur fracture. Fig. 2

Cadaver model of the acetabulum demonstrating different shapes of 
acetabular fossa and articular cartilage.

capitis femoris.46,47 Usually, there is a frenulum-like supe-
rior synovial fold at the base of the ligament;48,49 this 
well-padded fibroelastic plicae is a potential pitfall when 
diagnosing a partially torn ligament.

Blood supply to the fossa is provided by the obturator 
artery, with a few branches penetrating the quadrilateral 
plate, running through the fat pad and irrigating both 
walls as well as the acetabular dome.50 The number of 
vascular foramina varies.41 Additionally, the fossa has 
numerous proprioceptive nerve branches derived from 
the sciatic and obturator nerves.51-53

A constant pattern of changes in the acetabular 
morphology with ageing allows both the lunate surface 
and the acetabular fossa to act as age estimators.54,55 
Rissech et al56 suggested to measure the following post-
mortem parameters: acetabular groove, rim shape, rim 
porosity, apex cavity, activity on the outer edge of the 
fossa, activity of the fossa, and porosity of the fossa 
(acetabular fossa texture).56-58 The pulvinar is likely to be 
associated with these age-related changes seen in the 
acetabular fossa.57

Histological findings.  Little is known on the histology of 
the pulvinar in the absence of arthritis or in pre-arthritic 
disorders as well as during cellular differentiation in phas-
es of development. The composition of the pulvinar’s 
IAAT may resemble other well-described IAATs (Table  II) 
such as the Hoffa’s fat pad; a white adipose tissue com-
posed of mature adipocytes, fibroblasts, macrophages, 
and other leucocytes, including abundant mast cells,59 
grounded in an extracellular matrix of lax connective tis-
sue and rich capillaries.60 The acetabular fossa contents 
have mostly been described in the context of OA or in 
newborns with hip dysplasia.
Synovium.  Although the synovium usually lines the spac-
es of diarthrodial joint, tendon sheaths, and bursae, it can 
also be located intra-articularly (i.e. lining the fossa’s fat 
pad). It has two layers: the most superficial one (intima) 

consisting of macrophages and fibroblasts; whereas the 
deeper (subintima) is filled with fibro-cartilage and ves-
sels in a lax or dense extracellular matrix with scarce fi-
broblasts.61 Adipose synovium is generally organized 
in pads, separated by thin fibrous layers and infiltrated 
with vascular villi associated with mast cells.62 Synovial 
macrophages have non-specific esterase activity and are 
positive for CD163, CD68, CD14, and CD45, as well as 
for immunoglobulin receptor FcgRIIIa, associated with 
several rheumatic and synovial diseases.63,64

The fossa as a neuroendocrine organ.  After performing 
immunohistochemistry using the polyclonal antibody 
against the S-100 protein, Leunig et al53 reported that 
the base of the ligamentum teres had an abundance of 
unmyelinated type IVa receptors, with a frequency of 5 
to 54 per 50 mm2. These receptors are thought to be in 
charge of transmitting detailed somatosensory afferent 
signals to the spinocerebral regulatory systems. In the 
setting of nonarthritic or degenerative joint disease, me-
diators such as histamine, bradykinin, or prostaglandin E2 
(PGE2) can activate nociceptive nerve endings, triggering 
the hip pain found in these cases.65,66 However, whether 
the pulvinar has neuroreceptors is presently unknown.67

After collecting samples during total knee arthroplasty 
performed in lean and obese patents, Harasymowicz et 
al68 reported that unlike non-obese patients, those with 
obesity had the patellar fat pad infiltrated with larger 
adipocytes (than in the synovium) and the synovial IAAT 
with increased fibrosis and macrophage infiltration. 
Additionally, both tissues showed significantly more 
CD45+ CD14+ total macrophages, and CD14+ CD206+ 
M2 type macrophages and a significant reduction in the 
expression of peroxisome proliferator-activated receptor 
gamma (PPARγ), which plays a key role in lipid homeo-
stasis.69 These findings suggest that body weight may 
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Table II. Characteristics of intra-articular adipose tissue versus white adipose tissue.

Characteristic IAAT WAT

Location Pulvinar of the hip, Hoffa’s fat pad in the knee, lumbar 
facet, intermetacarpal, olecranon, and coronoid fossa

Subcutaneous, viscera, mediastinum, muscles

Thickness 2.0 mm to 4.4 mm 1.65 mm to 18 mm

Cellularity Mature adipocytes, fibroblasts, macrophages and other 
leucocytes, mast cells, and mesenchymal stem cells

Mature adipocytes, pericytes, adipose precursor cells, leucocytes, 
mesenchymal progenitor cells

Vascularization Rich capillaries (derived from obturator artery in case of 
the pulvinar)

Diverse

Innervation Branches from obturator and sciatic nerves in case of 
the hip. Peptidergic C-fibres

Diverse. Sympathetic nerve (tyrosine hydroxylase immunoreactive 
(TH+) fibres

Most relevant cytokines 
produced

IL-6, IL-8, PGE2, leptin, adiponectin, resistin, adipsin, 
ghrelin

TNF-alpha, IL-6, IL-8, PGE2, leptin, adiponectin, resistin, adipsin, 
ghrelin, visfatin, chemerin, VEGF, HGF, TGF-beta, FGF

Role Sensory regulation, load transmission, synovial fluid 
production, development and growth (in case of 
the acetabulum), local regulation of inflammatory 
response

Lipid and glucose (insulin) metabolism, coagulation, appetite and 
body weight regulation, reproduction and fertility, mechanical 
protection, temperature regulation, bone marrow metabolism, 
immune response modulator, systemic inflammatory response

Variation in gross morphology 
during metabolic disorders 
(obesity, metabolic syndrome, 
lipodystrophy, cachexia)

No Yes

Variation in cellular 
composition and cytokine 
secretion during metabolic 
disorders

Yes, adopting a proinflammatory profile Yes

FGF, fibroblast growth factor; HGF, hepatocyte growth factor; IAAT, intra-articular adipose tissue; IL, interleukin; PGE2, prostaglandin E2; TGF, 
transforming growth factor; TNF, tumour necrosis factor; VEGF, vascular-endothelial growth factor; WAT, white adipose tissue.

have a role in the expression of intra-articular adipose-
related markers with a proinflammatory profile.68

Eymard et al59 phenotyped the acetabular IAAT biop-
sied during total hip arthroplasty (THA) and compared 
it to that of subcutaneous adipose tissue (SCAT). The 
authors found an osteoarthritic-induced inflammatory 
pattern in the hip’s fat pad that had only been described 
in the knee (infrapatellar fat pad).70,71 Unlike SCAT, and 
independently of sex or body mass index, IAAT showed 
increased fibrosis, vascularization, and leucocyte infiltra-
tion, with a significantly higher expression and produc-
tion of inflammatory factors including IL-6, IL-8, and 
PGE2. In this sense, the synovium surrounding these fat 
pads should be considered as a distinctive functional 
unit,72 rather than an inert fold of fibrous tissue.
The fossa as a stem cell reservoir.  Arthroscopic-assisted 
autologous chondrocyte transplantation (ACT) is a prom-
ising minimally invasive alternative for the treatment of 
full-thickness chondral injuries in the hip.73,74 Recent ex-
perimental studies have used the acetabular fossa for cell-
based therapies.

In a retrospective study comparing ACT with cartilage 
debridement for traumatic chondral injuries of around 2 
cm2, Fontana et al75 supported the cell-based approach 
as it significantly improved the clinical scores when 
compared to arthroscopic debridement. In this study, 
the peripheral area of the pulvinar was harvested to seek 
chondrocytes that were later cultured on resorbable gel-
polymer scaffolds of polyglycolic and polylactic acid in 
order to promote 3D growth.

The acetabular fossa is also a reservoir of mesenchymal 
stem cells (MSCs). Murata et al76 compared the different 
characteristics of MSCs derived from the synovial tissue of 
the hip joint in patients with femoroacetabular impinge-
ment (FAI) obtained from two sites, the paralabral region 
and the fossa. Histology findings revealed that although 
cellular morphology was similar between the two sites, 
the number of colony-forming units (CFUs) per 104 nucle-
ated cells from the fossa were markedly higher than from 
the paralabral area, presenting also an increased osteo-
genic (by expressing higher levels of COL1a1 and BGLAP 
genes) and chondrogenic potential (with a higher expres-
sion of COL2a1 and SOX9 genes).76 Thus, it appears that 
acetabular fossa-derived MSCs could be more suitable for 
stem cell therapies than paralabral-MSCs.

Other studies support the use of IAAT-derived stem 
cells for articular cartilage repair or regeneration. Hindle 
et al77 showed that pericytes from the stromal-vascular 
fraction of the infrapatellar fat pad were a better source of 
chondrogenic cells compared with bone marrow. Simi-
larly, Liu et al78 demonstrated the use of infrapatellar fat 
pad-derived stem cells for tissue engineering of articular 
cartilage of a clinically relevant size.
The fossa in congenital hip dislocation.  Some histological 
differences have been described in the ligamentum teres 
of patients with hip dysplasia when compared to controls. 
Ippolito et al79 described a thicker and longer appearance 
of the ligamentum teres in dysplastic hips, together with 
wide areas of fibro-cartilaginous metaplasia, mostly seen 
at the superolateral capsule and within the substance of 
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Fig. 3

Cellular and molecular changes in the pulvinar leading to osteoarthritis (OA) development. Recent studies highlighted the proinflammatory role of intra-
articular adipose tissue (IAAT) in the development of OA. Our hypothesis is that these changes cause an imbalance in the differentiation of mesenchymal stem 
cells (MSCs), biasing towards the adipocyte lineage at the expense of the osteoblast and chondrocyte lineages. Adipokines combined with proinflammatory 
cytokines accumulate in the synovial fluid to further accelerate cartilage degradation and degeneration. Arrows refer to upregulation and downregulation. 
ACAN, aggrecan; ADAMTS-4, a disintegrin and metalloproteinase with thrombospondin motifs 4; CCL3L1, C-C motif chemokine ligand 3 like 1; COL2A1, 
collagen type 2 alpha 1; CXCL3, chemokine C-X-C motif ligand 3; IL, interleukin.

the ligamentum teres in paediatric cases with congenital 
dislocation of the hip. Sarban et al52 described that, unlike 
sub-luxated hips, the ligamentum teres of congenitally 
dislocated hips had an irregular cellular distribution, with 
different shapes and in different stages of degeneration. 
Additionally, completely dislocated hips evidenced thick-
er and more numerous collagen and elastic fibres, as well 
as a greater deposit of hyaline matrix.52

The fossa in the setting of osteoarthritis.  The fossa is a 
common location of acetabular osteophytes in the set-
ting of degenerative changes.80 Osteophyte analysis 
has been well described in the knee joint. Osteophytes 
extracted from knees showed significant expression of 
carboxypeptidase A3 (CPA3) and membrane-spanning 
4-domains subfamily A member 2 (MS4A2), indicating a 
considerable participation of mast cells, and expression 
of phospholipase A2, group IIA (PLA2G2A), suggesting 
prostaglandin synthesis and activation of the inflam-
matory cascade.81 These findings are in line with those 
described by Eymard et al59 who reported that tryptase-
positive cells (mast cells) were densely observed in the 
perivascular area of the IAAT of osteoarthritic hips and 
knees. Such proinflammatory cascade seen in fossas with 
degenerative disease is also observed in the cartilage area 
of both pre-arthritic and osteoarthritic hips (Figure 3).82

Sampatchalit et al83 described gradual acetabular 
fossa changes in 11 cadaveric specimens with degenera-
tive, osteoarthritic changes. The authors found foci of fat 
necrosis and fibrous strings, of variable thickness, in all 
cases. Changes related to OA included a decrease in the 
volume of the adipose tissue, fibro-cartilaginous and/or 
chondroid focal metaplasia, along with intra-substance 
calcifications. Based on these findings, the authors 
further created a three-stage classification that correlates 
with progressive stages of articular cartilage damage.83

Section key points
�� The relative proportions of the articular and nonar-

ticular surfaces of the acetabulum vary depending on 
the acetabular shape.
�� A constant pattern of changes in the acetabular 

morphology with ageing allows both the lunate 
surface and the acetabular fossa to act as age 
estimators.
�� Being slightly different to SCAT, the composition of 

the pulvinar’s IAAT includes synovial fibroblasts and 
macrophages, mast cells, as well as acetabular fossa-
derived MSCs.
�� Unlike SCAT, IAAT acts like a distinctive functional 

unit showing increased fibrosis, vascularization, 
and leucocyte infiltration, with a significantly higher 
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expression and production of inflammatory factors 
including IL-6, IL-8, and PGE2 in osteoarthritic 
models.

Radiological findings
The acetabular fossa can be easily interpreted on plain 
radiographs. On an anteroposterior pelvic radiograph, 
the acetabular fossa extends from the teardrop to an ill-
defined area between the medial sourcil and the superior 
edge of the fovea capitis. Its distal part (at the level of the 
teardrop) is an important radiological marker of acetab-
ular depth.84 Coxa profunda exists when the acetabular 
fossa touches or crosses the ilioischial line,85 whereas 
protrusio acetabuli means that the femoral head touches 
or crosses the ilioischial line. 86Coxa profunda can be seen 
in up to 76% of asymptomatic patients (25/33), with 
acetabular over-coverage (lateral centre-edge angle > 
40° or Tönnis angle < 0°) detected in only 22% of all coxa 
profunda hips (19/86).87

As previously mentioned, the acetabular fossa is a 
distinctive area in which osteophytes develop.88 The prev-
alence of central acetabular osteophytes is as frequent 
as that of marginal ones or those found in the femoral 
head.80 They can be present in Tönnis 0 hips89 and can 
be detected as saber-tooth bony excrescence on cross-
sectional imaging or as a double acetabular medial wall 
on plain radiographs.90 Their recognition is important as 
they are an independent factor associated with reduced 
chances of hip preservation surgery for the treatment 
of symptomatic FAI.89 When detected intraoperatively, 
favourable results have been reported with arthroscopic 
debridement/notchplasty.91,92

Cross-sectional imaging, including CT and MRI, 
is an important complimentary tool for assessing 
the morphology of the acetabular fossa. Leunig et 
al93 reported on specific hip preservation cases with 
protrusio acetabuli with MRI slices showing that the 
acetabular fossa extended far into the weight-bearing 
zone of the roof. This finding, initially described by 
Dunlop et al94 and untraceable on plain radiographs, 
might jeopardize the indication of rim trimming that 
would further reduce the cartilaginous weight-bearing 
zone. Axial views of the MRI are also useful to detect 
saber-tooth osteophytes rising from the acetabular 
fossa.89 MRI arthrography is a sensitive tool to identify 
the changes that occur with OA within the fossa as 
described by Sampatchalit et al.83

Lastly, the ‘acetabular fossa hot spot’ was described by 
Kubicki et al95 in a positron emission tomography (PET)/
CT study of asymptomatic volunteers. The prevalence is 
low (0.36%) and the aetiology is unclear; it brings to light 
the fact that increased cellular activity may take place 
within the fossa.
Section key points
�� The fossa can be easily interpreted on plain radio-

graphs, and is a distinctive area in which osteophytes 
develop.

�� Its morphology and position in the acetabulum can 
help define femoral head coverage and acetabular 
volume (e.g. coxa profunda, coxa protrusio).
�� Cross-sectional imaging can further delineate the 

limits of the fossa with the weight-bearing zone.
�� Saber-tooth osteophytes located at the fossa, which 

are associated with inferior outcomes of hip preserva-
tion surgery, can be easily identified with axial views 
of CT/MRI scans.

Function of the acetabular fossa
Mechanical.  Mechanical loads (compressive vs tensile 
forces) can have an effect on cellular and molecular com-
ponents of bony structures.96 The acetabular fossa has 
important roles in the dynamic function of the acetabu-
lum. Greenwald et al97 studied how load is transmitted in 
the hip joint. The two columns of the pelvis, configured 
in an inverted Y, allow for dynamic deformation of the 
acetabular walls with increasing load bearing. At lower 
loads, only the anterior and posterior walls transmit force, 
and the acetabular dome has no contact with the femoral 
head. With increasing loads, the two columns gradually 
separate deforming both walls, thus allowing the dome 
to absorb force. Lazennec et al42 further assessed how the 
acetabulum absorbed the load during gait. Since the an-
terior wall is more rigid than the posterior one, it is the 
latter that deforms the most.42 For a given load, there 
are asymmetric anterior and posterior contact surfaces 
between the femur and the acetabulum, also promoting 
differential mobility of the anterior and posterior acetab-
ular horns, causing a subsequent widening of the ace-
tabular notch.98 This progressive deformation shows an 
asymptotic configuration, being less noticeable at higher 
loads. This process is repeated continuously under phys-
iological loads (gait), where both the fossa and obturator 
foramen compress and relax, ultimately allowing for in-
termittent full contact between the femoral head and the 
upper part of the acetabulum to occur.97

The horseshoe shape of the acetabular fossa is consid-
ered to be advantageous for the load to be distributed 
more homogeneously. Daniel et al99 were the first to high-
light the importance of the acetabular fossa as a means 
to redistribute the vector force medially, away from the 
lateral acetabular rim. In their mathematical model, the 
authors advocate that the shape of the fossa contrib-
utes to a uniform load distribution in the hip joint, thus 
reducing the peak contact forces.99 The authors assumed 
that the acetabulum was a perfect sphere and that shape 
of the fossa remained constant among the different 
anatomical models, although a wide variety of morpho-
logical types of both the acetabulum and the fossa had 
been described.41,100

The acetabular fossa also contributes to the lubrication 
of the hip joint. Synovial fluid synthesis is mostly done 
by the peripheral synovium.101 The fossa is the only intra-
articular tissue associated with fluid production. Synovial 



BONE & JOINT RESEARCH 

P. A. SLULLITEL, D. COUTU, M. A. BUTTARO, P. E. BEAULE, G. GRAMMATOPOULOS864

fluid is essential for cartilage nutrition and load trans-
mission. By applying a seal to fluid escape, the labrum 
reduces maximum contact between the articular surfaces 
with a uniform distribution of the interstitial synovial 
fluid.102

Additional functionality to the fossa is provided by the 
ligamentum teres. This ligament can tolerate up to 204 N 
before it tears.103 Historically, the ligament was thought to 
be an important hip stabilizer with the femur in adduc-
tion.44 However, further studies suggested it could be an 
important stabilizer in the setting of hip dysplasia and 
mostly in the squatting position, in which the iliofemoral 
ligament is relaxed.104,105

Biological.  The pulvinar may have a direct influence on 
joint homeostasis.106 Adipokines secreted by IAAT (e.g. 
leptin, adiponectin, resistin, ghrelin) have been shown to 
have an effect on bone marrow metabolism, central reg-
ulation of bone turnover, and even chondral homeosta-
sis.107-110 High doses of leptin can accelerate chondrocyte 
senescence and further cartilage degeneration.111 Since 
human chondrocytes express adipokine receptors under 
physiological conditions, there seems to be a close inter-
action between such proteins and articular inflammatory 
diseases.112,113 The inflammatory profile of the IAATs is not 
only related to the amount of adipokines they can pro-
duce, but also to the number of adipocyte-associated and 
development genes that they express, in charge of acti-
vating positive CD45 and tryptase cells.59 However, it re-
mains unclear by which means IAAT secretes adipokines 
or activates inflammatory cells, and no information exists 
regarding normal synovial levels of these proteins.

Different osteoarthritic phenotypes have been 
described as risk factors for degenerative disease, with 
specific joint/bone shapes being only one such factor.114 
Therefore, it should be acknowledged that there is a 
relatively high percentage of hips with OA but without 
any morphological or mechanical underlying cause.115 
Patients with symptomatic FAI showed increased molec-
ular metabolic activity (interleukin-8 (IL-8), chemokine 
(C-X-C motif) ligand 3 (CXCL3), CXCL6, CCL3L1, collagen 
type 2 alpha 1 chain (COL2A1), a disintegrin and metal-
loproteinase with thrombospondin motifs 4 (ADAMTS-4), 
and aggrecan (ACAN)) when compared to asymptomatic 
controls.116 However, the metabolic pattern of cytokine 
activity has not yet been elucidated in different stages 
of pre-arthritic joint disease. Since IAAT products may 
play a key role in maintaining hip joint homeostasis, 
specific genetic and/or phenotype alterations inducing 
proinflammatory changes in the IAAT can affect cartilage 
health independently of age.11 Further molecular studies 
are necessary to understand the interaction between 
IAAT and OA.
Section key points
�� The horseshoe shape of the acetabular fossa is consid-

ered to be advantageous for the load to be distributed 
more homogeneously.

�� The pulvinar may have a direct influence on joint 
homeostasis through IAAT products. Specific genetic 
and/or phenotype alterations inducing proinflamma-
tory changes in the IAAT can affect cartilage health 
independently of age.

The acetabular fossa as a decision aid for hip 
surgery
Hip preservation surgery.  The underlying principle for 
successful joint-preserving surgery is to restore/optimize 
joint biomechanics so that cartilage is not loaded beyond 
its failure point. Because there is an intimate relationship 
between size of the fossa and functional hyaline carti-
lage,93 understanding the varying morphological fossa 
characteristics is relevant when considering hip preserva-
tion surgery.
Relative size of acetabular fossa.  In a detailed 3D study 
of the acetabular morphology in the painful young adult 
hip, Steppacher et al117 showed that dysplastic hips had 
a decreased articular cartilage surface and an increased 
acetabular fossa surface. Also, the authors reported that 
in contrast to protrusio hips, retroverted and deep hips 
did not have an increased size of the acetabular cartilage 
surface.117 Thus, rim trimming should be performed with 
caution and a periacetabular osteotomy (PAO) would be 
the treatment of choice. In line with the above findings, 
Slullitel et al118 determined the articular cartilage/acetab-
ular fossa (AC/CF) ratio in a subset of hips that underwent 
hip preservation surgery of various indications. Lower 
AC/CF ratios were seen in dysplastic hips (0.55 ± 0.047), 
compared to the pincer (0.68 ± 0.063) and cam groups 
(0.67 ± 0.061; p < 0.001).

Pun et al39 reviewed 200 hips undergoing PAO, reverse 
PAO, and open rim trimming and compared the three 
cohorts with controls in terms of cartilage and fossa widths 
and heights measured on MRI and CT scans. The authors 
reported the following mean cartilage/fossa ratios: 0.79 
(95% confidence interval (CI) 0.72 to 0.87) for controls, 
0.74 (95% CI 0.67 to 0.82) for dysplastic hips, 0.84 (95% 
CI 0.77 to 0.92) for deep acetabula type-1 (i.e. with 
increased anterior and posterior cartilage lengths), and 
0.49 (95% CI 0.38 to 0.61) for deep acetabula type-2 (i.e. 
with a larger fossa in height and width and smaller supe-
rior cartilage length) (p = 0.001). Compared to control 
acetabula, dysplastic hips showed proportionally lower 
cartilage and fossa dimensions, but without differences in 
the ratio.39 Unlike the study from Slullitel et al,118 dyspla-
sias did not show lower ratios because cartilage and fossa 
heights and widths were lower in equal proportion (i.e. 
lower volume overall). Moreover, the authors described 
two types of deep acetabula: type-1 with increased ante-
rior and posterior cartilage lengths; and type-2 with a 
larger fossa and small superior cartilage extension.39 
Hence, due to its deficient articular cartilage area, this 
latter group might not benefit from rim trimming and 
an anteverting PAO might better address the acetabular 
morphological problem.
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Lastly, Trinh et al119 recently performed a 3D-CT poly-
hedral reconstruction of 60 FAI and dysplasia cases to 
define a correlation between acetabular cartilage area 
and lateral centre-edge angle. Instead of calculating 
cartilage/fossa ratios, the authors measured articular 
surface area through 3D stereolithographical models. 
They reported that Wiberg’s angle had a significant but 
moderate correlation with acetabular cartilage area 
(R2 = 0.38; p = 0.002, Pearson correlation following a 
linear regression model), although this correlation was 
poor in non-dysplastic hips (R2 = 0.02; p = 0.88, Pearson 
correlation following a linear regression model).119 It is 
thus evident that until novel radiological parameters are 
described, the most reliable method to determine the 
cartilage/fossa ratio or the percentage of articular carti-
lage within the hip is only from axial imaging.
Ability of the fossa to remodel.  The relative size of the ac-
etabular fossa may change following reorientation oste-
otomy of the hip. Data from Yamasaki et al120 have shown 
that a significant amount of remodelling can take place 
within the acetabular fossa. The authors retrospectively 
compared the clinical and radiological outcomes of 21 
rotational acetabular osteotomies (RAOs) that had under-
gone additional multiple (six to eight) drillings at the ac-
etabular fossa in order to induce expansion of the medial 
subchondral bone with 14 RAOs without additional drill-
ing.120 The authors noted a significant difference in the 
extent of the radiological weight-bearing area (from the 
medial to the lateral sourcil) in the group with adjuvant 
drilling, as a result of supposed cartilaginous metaplasia 
or cartilaginous ossification of the acetabular fossa.120 
Even though the same authors reported that this medi-
al acetabular enlargement can happen spontaneously 
following RAO,121 it was markedly increased with the ad-
dition of post-RAO arthroscopic-assisted drilling of the 
fossa.

In order to further elucidate whether the fossa is able 
to ‘remodel’ following a reorientational osteotomy, 
Shimogaki et al122 performed an experimental study to 
detect changes in the acetabular cartilage in 24 rabbit 
hips, of which 12 underwent RAO and the remaining 12 
conservative treatment. At 26 weeks, the nonoperated 
hips evidenced exfoliation of the articular cartilage, while 
those subjected to RAO showed cloning and increased 
uptake of the cartilage matrix without degenerative 
changes, with additional cartilaginous metaplasia at the 
acetabular fossa, which became the new weight-bearing 
area.122 This concept of histological remodelling as an 
environmental response is not new. In an experimental 
model, Hiranuma et al123 described cartilaginous meta-
plasia resembling cartilage in the interposed joint capsule 
after performing a Chiari osteotomy in 20 rabbits.
Tears of ligamentum teres.  Tears of the ligamentum teres 
are an additional common finding in hip preservation 
candidates, thought to have a prevalence rate of 51%.124 
Hips with structural deficiencies may be at an increased 
risk of ligamentum teres injuries.125 In open rim trimming 

and/or femoral osteochondroplasty (surgical hip disloca-
tion), the ligamentum teres is routinely cut without lead-
ing to further instability.126 However, in the setting of hip 
dysplasia or hyperlaxity, the ligamentum teres might have 
a more important role in hip stabilization and should be 
preserved or repaired.127 Still, the routine indication of 
ligamentum teres repair remains controversial.

Hip arthroplasty surgery
The acetabular fossa has historically been useful for 
locating the centre of rotation when reaming the acetab-
ular bone. The identification of the outer lamina of the 
fossa is essential to determine the depth of the acetab-
ular component and appropriately reconstruct the hip 
joint’s centre of rotation (mediolaterally and anteropos-
teriorly) and offset.128-131 However, some believe that the 
fossa might not be located at the true centre of rotation, 
but rather rely anterior to the hip of rotation, and this 
should be contemplated so as not to over-ream the ante-
rior wall.132

Section key points
�� The relative size of the fossa may help delineate 

between dysplasia and femoroacetabular impinge-
ment in hips with a lateral centre-edge angle between 
20° and 25°.
�� Further studies are required to determine whether 

dysplasia is associated with a reduced cartilage to 
fossa ratio within the acetabulum.
�� A considerable amount of remodelling (i.e. cartilag-

inous metaplasia) can occur in the fossa after reori-
entational osteotomy, where the fossa becomes a 
weight-bearing area.
�� In THA, the identification of the outer lamina of the 

fossa is essential to determine acetabular depth for 
acetabular component implantation; however, the 
fossa might not be located at the true centre of rota-
tion, but rather rely more anteriorly.

Potential clinical relevance of the acetabular 
fossa
Given its potential influence on decision-making for 
both THA and hip preservation surgery, the clinical rele-
vance of the fossa (and cartilage ratio) may become 
more evident in the near future. Large cohort studies 
are still necessary to define the cartilage/fossa ratio in 
dysplastic, overcovered, and retroverted hips as well as 
‘normal’ values in asymptomatic controls. Following 
Stepaccher et al’s117 and Slullitel et al’s studies,118 such 
ratios can be useful to distinguish between dysplasia and 
impingement when lateral centre-edge angle (and other 
common measurements) is measured within ‘normal’ 
parameters. However, a cip arthrorrelation of cartilage/
fossa ratio with easy to measure radiological landmarks 
still needs to be demonstrated in order to make such 
measurements/assessments easy to make by all hip pres-
ervation surgeons.
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Additionally, the identification of the extent of the fossa 
into the weight-bearing zone can be of value in selecting 
the best candidate for hip preservation surgery in the 
setting of dysplasia or FAI.39 In this scenario, some cases 
of protrusio acetabuli may not be the ideal candidates 
for rim trimming in the event that a large extension of 
the fossa determines a small cartilaginous area.93 Equally, 
hip dysplasia patients with a considerably low cartilage/
fossa ratio may not benefit from a reorientational oste-
otomy if the reoriented fragment (which will become 
the ‘new’ weight-bearing area) has a large amount of 
non-cartilaginous tissue (i.e. fatty tissue from the fossa’s 
pulvinar zone).

Lastly, characterization of the fossa’s biological activity 
might provide useful diagnostic information (e.g. degree 
of inflammation and the presence of cellular alterations), 
acting as novel biomarkers and therapeutic targets for 
the hip preservation surgery.
Section key points
�� Large cohort studies are still necessary to define the 

cartilage/fossa ratio in dysplastic, overcovered, and 
retroverted hips as well as ‘normal’ values in asymp-
tomatic controls.
�� The identification of the extent of the fossa into the 

weight-bearing zone can become of value to select 
the best candidate for hip preservation surgery in 
the setting of dysplasia or FAI.

In summary, several parameters regarding the fossa 
were explored. This ‘silent’ yet large area within the 
acetabulum appears to play an important role for the 
joint’s function, although this is not clearly defined at 
present. Nevertheless, the fossa is more than a radiolog-
ical parameter of acetabular depth for acetabular compo-
nent implantation within THA. The fossa should have 
an impact on decision-making and surgical outcomes in 
hip preservation surgery: the analysis of cartilage/fossa 
ratio may help to distinguish between impingement and 
dysplasia in so-called borderline hips; it can also aid in 
patient selection or rejection for specific preservation 
procedures (e.g. rim trimming for deep hips with low 
cartilage ratio). As there is a paucity of literature on the 
potential acetabular fossa changes detected in nonar-
thritic hip disorders, future studies should explore the 
fossa’s role in hip preservation surgery not only for its 
size, shape, and extent, but also for its biological capacity 
as a source of cytokines, chondrocytes, and stem cells.
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