Objectives. External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). Methods. A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness. Results. The mean
Aims. Restoration of proximal medial femoral support is the keystone in the treatment of intertrochanteric fractures. None of the available implants are effective in constructing the medial femoral support. Medial sustainable nail (MSN-II) is a novel cephalomedullary nail designed for this. In this study, biomechanical difference between MSN-II and proximal femoral nail anti-rotation (PFNA-II) was compared to determine whether or not MSN-II can effectively reconstruct the medial femoral support. Methods. A total of 36 synthetic femur models with simulated intertrochanteric fractures without medial support (AO/OTA 31-A2.3) were assigned to two groups with 18 specimens each for stabilization with MSN-II or PFNA-II. Each group was further divided into three subgroups of six specimens according to different experimental conditions respectively as follows: axial loading test; static torsional test; and cyclic loading test. Results. The mean
Objectives. Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible. The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws. Materials and Methods. A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm. 3. (standard deviation (. sd). 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups. Results. Initial
The April 2024 Trauma Roundup360 looks at: The infra-acetabular screw in acetabular fracture surgery; Is skin traction helpful in patients with intertrochanteric hip fractures?; Reducing pain and improving function following hip fracture surgery; Are postoperative splints helpful following ankle fracture fixation?; Biomechanics of internal fixation in Hoffa fractures: a comparison of four different constructs; Dual-plate fixation of periprosthetic distal femur fractures; Do direct oral anticoagulants necessarily mean a delay to hip fracture surgery?; Plate or retrograde nail for low distal femur fractures?.
We examined the effect of periosteal devascularisation upon the early healing of osteotomies of sheep tibiae held in an instrumented external fixation system with an
In severe forearm injuries, the diagnosis of disruption of the interosseous membrane is frequently delayed and sometimes missed, giving difficulties in the salvage of forearm stability. We studied the structure and function of the interosseous membrane in 11 cadaver preparations, using mechanical and histological analysis. Seven of the specimens tested in uniaxial tension sustained a mid-substance tear of the central band of the membrane at a mean peak load of 1038 ± 308 N. The
A new technique of shoulder fusion is presented using a posterior approach. After removal of the articular cartilage, a Rush pin is introduced from the spine of the scapula, through the glenoid into the medullary canal of the humerus. This is supplemented by tension-band wiring from the acromion to the neck of the humerus and a muscle pedicle graft attached to the acromion. A shoulder spica is applied for four to six weeks. Four patients with injuries to the upper brachial plexus and 14 with paralysis of the upper arm due to anterior poliomyelitis have been followed for three years. One of the 18 patients developed nonunion; she had removed her own cast prematurely. This method of fixation provides high shear resistance and low
Endoprosthetic reconstruction following distal femur tumour resection has been widely advocated. In this paper, we present the design of an uncemented endoprosthesis system featuring a short, curved stem, with the goal of enhancing long-term survivorship and functional outcomes. This study involved patients who underwent implantation of an uncemented distal femoral endoprosthesis with a short and curved stem between 2014 and 2019. Functional outcomes were assessed using the 1993 version of the Musculoskeletal Tumour Society (MSTS-93) score. Additionally, we quantified five types of complications and assessed osseointegration radiologically. The survivorship of the endoprosthesis was evaluated according to two endpoints. A total of 134 patients with a median age of 26 years (IQR 16 to 41) were included in our study. The median follow-up time was 61 months (IQR 56 to 76), and the median functional MSTS-93 was 83% (IQR 73 to 91) postoperatively.Aims
Methods
Postoperative malalignment of the femur is one of the main complications in distal femur fractures. Few papers have investigated the impact of intraoperative malalignment on postoperative function and bone healing outcomes. The aim of this study was to investigate how intraoperative fracture malalignment affects postoperative bone healing and functional outcomes. In total, 140 patients were retrospectively identified from data obtained from a database of hospitals participating in a trauma research group. We divided them into two groups according to coronal plane malalignment of more than 5°: 108 had satisfactory fracture alignment (< 5°, group S), and 32 had unsatisfactory alignment (> 5°, group U). Patient characteristics and injury-related factors were recorded. We compared the rates of nonunion, implant failure, and reoperation as healing outcomes and Knee Society Score (KSS) at three, six, and 12 months as functional outcomes. We also performed a sub-analysis to assess the effect of fracture malalignment by plates and nails on postoperative outcomes.Aims
Methods
Evaluate if treating an unstable femoral neck fracture with a locking plate and spring-loaded telescoping screw system would improve construct stability compared to gold standard treatment methods. A 31B2 Pauwels’ type III osteotomy with additional posterior wedge was cut into 30 fresh-frozen femur cadavers implanted with either: three cannulated screws in an inverted triangle configuration (CS), a sliding hip screw and anti-rotation screw (SHS), or a locking plate system with spring-loaded telescoping screws (LP). Dynamic cyclic compressive testing representative of walking with increasing weight-bearing was applied until failure was observed. Loss of fracture reduction was recorded using a high-resolution optical motion tracking system.Aims
Methods
Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests.Objectives
Methods
We investigated a new intramedullary locking
nail that allows the distal interlocking screws to be locked to
the nail. We compared fixation using this new implant with fixation
using either a conventional nail or a locking plate in a laboratory
simulation of an osteoporotic fracture of the distal femur. A total
of 15 human cadaver femora were used to simulate an AO 33-A3 fracture
pattern. Paired specimens compared fixation using either a locking
or non-locking retrograde nail, and using either a locking retrograde
nail or a locking plate. The constructs underwent cyclical loading
to simulate single-leg stance up to 125 000 cycles. Axial and torsional
stiffness and displacement, cycles to failure and modes of failure
were recorded for each specimen. When compared with locking plate
constructs, locking nail constructs had significantly longer mean
fatigue life (75 800 cycles ( The new locking retrograde femoral nail showed better stiffness
and fatigue life than locking plates, and superior fatigue life
to non-locking nails, which may be advantageous in elderly patients. Cite this article:
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
This review explores recent advances in fixator design and used in contemporary orthopaedic practice including the management of bone loss, complex deformity and severe isolated limb injury.
Filling the empty holes in peri-articular locking
plates may improve the fatigue strength of the fixation. The purpose of
this A locking/compression plate was applied to 33 synthetic femurs
and then a 6 cm metaphyseal defect was created (AO Type 33-A3).
The specimens were then divided into three groups: unplugged, plugged
with locking screw only and fully plugged holes. They were then
tested using a stepwise or run-out fatigue protocol, each applying
cyclic physiological multiaxial loads. All specimens in the stepwise group failed at the 770 N load
level. The mean number of cycles to failure for the stepwise specimen
was 25 500 cycles ( In conclusion, filling the empty combination locking/compression
holes in peri-articular distal femur locking plates at the level
of supracondylar comminution does not increase the fatigue life
of the fixation in a comminuted supracondylar femoral fracture model
(AO 33-A3) with a 6 cm gap.
Although gradual bone transport may permit the
restoration of large-diameter bones, complications are common owing
to the long duration of external fixation. In order to reduce such
complications, a new technique of bone transport involving the use
of an external fixator and a locking plate was devised for segmental
tibial bone defects. A total of ten patients (nine men, one woman) with a mean age
at operation of 40.4 years (16 to 64) underwent distraction osteogenesis
with a locking plate to treat previously infected post-traumatic
segmental tibial defects. The locking plate was fixed percutaneously
to bridge proximal and distal segments, and was followed by external fixation.
After docking, percutaneous screws were fixed at the transported
segment through plate holes. At the same time, bone grafting was
performed at the docking site with the external fixator removed. The mean defect size was 5.9 cm (3.8 to 9.3) and mean external
fixation index was
13.4 days/cm (11.8 to 19.5). In all cases, primary union of the
docking site and distraction callus was achieved, with an excellent
bony result. There was no recurrence of deep infection or osteomyelitis,
and with the exception of one patient with a pre-existing peroneal
nerve injury, all achieved an excellent or good functional result. With short external fixation times and low complication rates,
bone transport with a locking plate could be recommended for patients
with segmental tibial defects. Cite this article:
We aimed to further evaluate the biomechanical characteristics
of two locking screws Synthetic tubular bone models representing normal bone density
and osteoporotic bone density were used. Artificial fracture gaps
of 1 cm were created in each specimen before fixation with one of
two constructs: 1) two locking screws using a five-hole locking
compression plate (LCP) plate; or 2) three non-locking screws with
a seven-hole LCP plate across each side of the fracture gap. The
stiffness, maximum displacement, mode of failure and number of cycles
to failure were recorded under progressive cyclic torsional and
eccentric axial loading.Objectives
Methods
Lumbar spondylolysis is a stress fracture of the pars interarticularis. We have evaluated the site of origin of the fracture clinically and biomechanically. Ten adolescents with incomplete stress fractures of the pars (four bilateral) were included in our study. There were seven boys and three girls aged between 11 and 17 years. The site of the fracture was confirmed by axial and sagittal reconstructed CT. The maximum principal tensile stresses and their locations in the L5 pars during lumbar movement were calculated using a three-dimensional finite-element model of the L3-S1 segment. In all ten patients the fracture line was seen only at the caudal-ventral aspect of the pars and did not spread completely to the craniodorsal aspect. According to the finite-element analysis, the higher stresses were found at the caudal-ventral aspect in all loading modes. In extension, the stress was twofold higher in the ventral than in the dorsal aspect. Our radiological and biomechanical results were in agreement with our clinical observations.
Ten patients, who were unsuitable for limb lengthening over an intramedullary nail, underwent lengthening with a submuscular locking plate. Their mean age at operation was 18.5 years (11 to 40). After fixing a locking plate submuscularly on the proximal segment, an external fixator was applied to lengthen the bone after corticotomy. Lengthening was at 1 mm/day and on reaching the target length, three or four screws were placed in the plate in the distal segment and the external fixator was removed. All patients achieved the pre-operative target length at a mean of 4.0 cm (3.2 to 5.5). The mean duration of external fixation was 61.6 days (45 to 113) and the mean external fixation index was 15.1 days/cm (13.2 to 20.5), which was less than one-third of the mean healing index (48 days/cm (41.3 to 55). There were only minor complications. Lengthening with a submuscular locking plate can successfully permit early removal of the fixator with fewer complications and is a useful alternative in children or when nailing is difficult.