Advertisement for orthosearch.org.uk
Results 1 - 50 of 248
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for hip arthroscopy (hip-preservation surgery) for planning of bone resection. Hip impingement in flexion has implications for daily activities (e.g. putting on shoes), sports, and sex. Cite this article: Bone Joint Res 2023;12(1):22–32


Bone & Joint Open
Vol. 3, Issue 10 | Pages 804 - 814
13 Oct 2022
Grammatopoulos G Laboudie P Fischman D Ojaghi R Finless A Beaulé PE

Aims. The primary aim of this study was to determine the ten-year outcome following surgical treatment for femoroacetabular impingement (FAI). We assessed whether the evolution of practice from open to arthroscopic techniques influenced outcomes and tested whether any patient, radiological, or surgical factors were associated with outcome. Methods. Prospectively collected data of a consecutive single-surgeon cohort, operated for FAI between January 2005 and January 2015, were retrospectively studied. The cohort comprised 393 hips (365 patients; 71% male (n = 278)), with a mean age of 34.5 years (SD 10.0). Over the study period, techniques evolved from open surgical dislocation (n = 94) to a combined arthroscopy-Hueter technique (HA + Hueter; n = 61) to a pure arthroscopic technique (HA; n = 238). Outcome measures of interest included modes of failures, complications, reoperation, and patient-reported outcome measures (PROMs). Demographic, radiological, and surgical factors were tested for possible association with outcome. Results. At a mean follow-up of 7.5 years (SD 2.5), there were 43 failures in 38 hips (9.7%), with 35 hips (8.9%) having one failure mode, one hip (0.25%) having two failure modes, and two hips (0.5%) having three failure modes. The five- and ten-year hip joint preservation rates were 94.1% (SD 1.2%; 95% confidence interval (CI) 91.8 to 96.4) and 90.4% (SD 1.7%; 95% CI 87.1 to 93.7), respectively. Inferior survivorship was detected in the surgical dislocation group. Age at surgery, Tönnis grade, cartilage damage, and absence of rim-trimming were associated with improved preservation rates. Only Tönnis grade was an independent predictor of hip preservation. All PROMs improved postoperatively. Factors associated with improvement in PROMs included higher lateral centre-edge and α angles, and lower retroversion index and BMI. Conclusion. FAI surgery provides lasting improvement in function and a joint preservation rate of 90.4% at ten years. The evolution of practice was not associated with inferior outcome. Since degree of arthritis is the primary predictor of outcome, improved awareness and screening may lead to prompt intervention and better outcomes. Cite this article: Bone Jt Open 2022;3(10):804–814


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 775 - 782
1 Aug 2024
Wagner M Schaller L Endstrasser F Vavron P Braito M Schmaranzer E Schmaranzer F Brunner A

Aims. Hip arthroscopy has gained prominence as a primary surgical intervention for symptomatic femoroacetabular impingement (FAI). This study aimed to identify radiological features, and their combinations, that predict the outcome of hip arthroscopy for FAI. Methods. A prognostic cross-sectional cohort study was conducted involving patients from a single centre who underwent hip arthroscopy between January 2013 and April 2021. Radiological metrics measured on conventional radiographs and magnetic resonance arthrography were systematically assessed. The study analyzed the relationship between these metrics and complication rates, revision rates, and patient-reported outcomes. Results. Out of 810 identified hip arthroscopies, 359 hips were included in the study. Radiological risk factors associated with unsatisfactory outcomes after cam resection included a dysplastic posterior wall, Tönnis grade 2 or higher, and over-correction of the α angle. The presence of acetabular retroversion and dysplasia were also significant predictors for worse surgical outcomes. Notably, over-correction of both cam and pincer deformities resulted in poorer outcomes than under-correction. Conclusion. We recommend caution in performing hip arthroscopy in patients who have three positive acetabular retroversion signs. Acetabular dysplasia with a lateral centre-edge angle of less than 20° should not be treated with isolated hip arthroscopy. Acetabular rim-trimming should be avoided in patients with borderline dysplasia, and care should be taken to avoid over-correction of a cam deformity and/or pincer deformity. Cite this article: Bone Joint J 2024;106-B(8):775–782


Bone & Joint Research
Vol. 9, Issue 9 | Pages 572 - 577
1 Sep 2020
Matsumoto K Ganz R Khanduja V

Aims. Femoroacetabular impingement (FAI) describes abnormal bony contact of the proximal femur against the acetabulum. The term was first coined in 1999; however what is often overlooked is that descriptions of the morphology have existed in the literature for centuries. The aim of this paper is to delineate its origins and provide further clarity on FAI to shape future research. Methods. A non-systematic search on PubMed was performed using keywords such as “impingement” or “tilt deformity” to find early anatomical descriptions of FAI. Relevant references from these primary studies were then followed up. Results. Although FAI has existed for almost 5,000 years, the anatomical study by Henle in 1855 was the first to describe it in the literature. The relevance of the deformity was not appreciated at the time but this triggered the development of further anatomical studies. Parallel to this, Poland performed the first surgical correction of FAI in 1898 and subsequently, descriptions of similar procedures followed. In 1965, Murray outlined radiological evidence of idiopathic cam-type deformities and highlighted its significance. This led to a renewed focus on FAI and eventually, Ganz et al released their seminal paper that has become the foundation of our current understanding of FAI. Since then, there has been an exponential rise in published literature but finding a consensus, especially in the diagnosis of FAI, has proven to be difficult. Conclusion. Current research on FAI heavily focuses on new data, but old evidence does exist and studying it could be equally as important in clarifying the aetiology and classification of FAI. Cite this article: Bone Joint Res 2020;9(9):572–577


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 532 - 540
2 May 2022
Martin H Robinson PG Maempel JF Hamilton D Gaston P Safran MR Murray IR

There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI. Cite this article: Bone Joint J 2022;104-B(5):532–540


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 751 - 759
1 Jul 2023
Lu V Andronic O Zhang JZ Khanduja V

Aims. Hip arthroscopy (HA) has become the treatment of choice for femoroacetabular impingement (FAI). However, less favourable outcomes following arthroscopic surgery are expected in patients with severe chondral lesions. The aim of this study was to assess the outcomes of HA in patients with FAI and associated chondral lesions, classified according to the Outerbridge system. Methods. A systematic search was performed on four databases. Studies which involved HA as the primary management of FAI and reported on chondral lesions as classified according to the Outerbridge classification were included. The study was registered on PROSPERO. Demographic data, patient-reported outcome measures (PROMs), complications, and rates of conversion to total hip arthroplasty (THA) were collected. Results. A total of 24 studies were included with a total of 3,198 patients (3,233 hips). Patients had significantly less improvement in PROMs if they had Outerbridge grade III and IV lesions (p = 0.012). Compared with microfracture, autologous matrix-induced chondrogenesis (AMIC) resulted in significantly reduced rates of conversion to THA (p = 0.042) and of revision arthroscopy (p = 0.038). Chondral repair procedures in these patients also did not significantly reduce the rates of conversion to THA (p = 0.931), or of revision arthroscopy (p = 0.218). However, compared with microfracture, AMIC significantly reduced the rates of conversion to THA (p = 0.001) and of revision arthroscopy (p = 0.011) in these patients. Those with Outerbridge grade III and IV lesions also had significantly increased rates of conversion to THA (p = 0.029) and of revision arthroscopy (p = 0.023) if they had associated lesions of the acetabulum and femoral head. Those who underwent labral debridement had a significantly increased rate of conversion to THA compared with those who underwent labral repair (p = 0.015). Conclusion. There is universal improvement in PROMs following HA in patients with FAI and associated chondral lesions. However, those with Outerbridge grade III and IV lesions had significantly less improvement in PROMs and a significantly increased rate of conversion to THA than those with Outerbridge grade I and II. This suggests that the outcome of HA in patients with FAI and severe articular cartilage damage may not be favourable. Cite this article: Bone Joint J 2023;105-B(7):751–759


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 32 - 39
1 May 2024
Briem T Stephan A Stadelmann VA Fischer MA Pfirrmann CWA Rüdiger HA Leunig M

Aims. The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI). Methods. This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm. 2. , who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain. Results. A total of 12 hips from 11 patients were included (ten males, one female, mean age 26.8 years (SD 5.0), mean follow-up 6.2 years (SD 5.2 months)). The mean postoperative MOCART score was 66.3 (SD 16.3). None of the patients required conversion to total hip arthroplasty. Two patients had anterior impingement. External hip rotation was moderately limited in four patients. There was a correlation between MOCART and follow-up time (r. s. = -0.61; p = 0.035), but not with initial cartilage damage, age, BMI, or imaging time delay before surgery. PROMs improved significantly: OHS from 37.4 to 42.7 (p = 0.014) and COMI from 4.1 to 1.6 (p = 0.025). There was no correlation between MOCART and PROMs. Conclusion. Based on the reported mid-term results, we consider AMIC as an encouraging treatment option for large cartilage lesions of the hip. Nonetheless, the clinical evidence of AMIC in FAI patients remains to be determined, ideally in the context of randomized controlled trials. Cite this article: Bone Joint J 2024;106-B(5 Supple B):32–39


Bone & Joint Open
Vol. 3, Issue 7 | Pages 557 - 565
11 Jul 2022
Meier MK Reche J Schmaranzer F von Tengg-Kobligk H Steppacher SD Tannast M Novais EN Lerch TD

Aims. The frequency of severe femoral retroversion is unclear in patients with femoroacetabular impingement (FAI). This study aimed to investigate mean femoral version (FV), the frequency of absolute femoral retroversion, and the combination of decreased FV and acetabular retroversion (AR) in symptomatic patients with FAI subtypes. Methods. A retrospective institutional review board-approved observational study was performed with 333 symptomatic patients (384 hips) with hip pain due to FAI evaluated for hip preservation surgery. Overall, 142 patients (165 hips) had cam-type FAI, while 118 patients (137 hips) had mixed-type FAI. The allocation to each subgroup was based on reference values calculated on anteroposterior radiographs. CT/MRI-based measurement of FV (Murphy method) and AV were retrospectively compared among five FAI subgroups. Frequency of decreased FV < 10°, severely decreased FV < 5°, and absolute femoral retroversion (FV < 0°) was analyzed. Results. A significantly (p < 0.001) lower mean FV was found in patients with cam-type FAI (15° (SD 10°)), and in patients with mixed-type FAI (17° (SD 11°)) compared to severe over-coverage (20° (SD 12°). Frequency of decreased FV < 10° was significantly (p < 0.001) higher in patients with cam-type FAI (28%, 46 hips) and in patients with over-coverage (29%, 11 hips) compared to severe over-coverage (12%, 5 hips). Absolute femoral retroversion (FV < 0°) was found in 13% (5 hips) of patients with over-coverage, 6% (10 hips) of patients with cam-type FAI, and 5% (7 hips) of patients with mixed-type FAI. The frequency of decreased FV< 10° combined with acetabular retroversion (AV < 10°) was 6% (8 hips) in patients with mixed-type FAI and 5% (20 hips) in all FAI patients. Of patients with over-coverage, 11% (4 hips) had decreased FV < 10° combined with acetabular retroversion (AV < 10°). Conclusion. Patients with cam-type FAI had a considerable proportion (28%) of decreased FV < 10° and 6% had absolute femoral retroversion (FV < 0°), even more for patients with pincer-type FAI due to over-coverage (29% and 13%). This could be important for patients evaluated for open hip preservation surgery or hip arthroscopy, and each patient requires careful personalized evaluation. Cite this article: Bone Jt Open 2022;3(7):557–565


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 209 - 216
1 Feb 2010
Pollard TCB Villar RN Norton MR Fern ED Williams MR Murray DW Carr AJ

Femoroacetabular impingement causes pain in the hip in young adults and may predispose to the development of osteoarthritis. Genetic factors are important in the aetiology of osteoarthritis of the hip and may have a role in that of femoroacetabular impingement. We compared 96 siblings of 64 patients treated for primary impingement with a spouse control group of 77 individuals. All the subjects were screened clinically and radiologically using a standardised protocol for the presence of cam and pincer deformities and osteoarthritis. The siblings of those patients with a cam deformity had a relative risk of 2.8 of having the same deformity (66 of 160 siblings hips versus 23 of 154 control hips, p < 0.00001). The siblings of those patients with a pincer deformity had a relative risk of 2.0 of having the same deformity (43 of 116 sibling hips versus 29 of 154 control hips, p = 0.001). Bilateral deformity occurred more often in the siblings (42 of 96 siblings versus 13 of 77 control subjects, relative risk 2.6, p = 0.0002). The prevalence of clinical features in those hips with abnormal morphology was also greater in the sibling group compared with the control group (41 of 109 sibling hips versus 7 of 46 control hips, relative risk 2.5, p = 0.007). In 11 sibling hips there was grade-2 osteoarthritis according to Kellgren and Lawrence versus none in the control group (p = 0.002). Genetic influences are important in the aetiology of primary femoroacetabular impingement. This risk appears to be manifested through not only abnormal joint morphology, but also through other factors which may modulate progression of the disease


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1203 - 1208
1 Sep 2010
Brunner A Hamers AT Fitze M Herzog RF

The β-angle is a radiological tool for measuring the distance between the pathological head-neck junction and the acetabular rim with the hip in 90° of flexion in patients with femoroacetabular impingement. Initially it was measured using an open-chamber MRI. We have developed a technique to measure this angle on plain radiographs. Correlation analysis was undertaken to determine the relationship between the range of movement and the β-angle in 50 patients with femoroacetabular impingement and 50 asymptomatic control subjects. Inter- and intra-observer reliability of the β-angle was also evaluated. Patients with femoroacetabular impingement had a significantly smaller (p < 0.001) mean β-angle (15.6°, 95% confidence interval (CI) 13.3 to 17.7) compared with the asymptomatic group (38.7°, 95% CI 36.5 to 41.0). Correlation between internal rotation and the β-angle was high in the impingement group and moderate in the asymptomatic group. The β-angle had excellent inter- and intra-observer reliability in both groups. Our findings suggest that the measurement of the β-angle on plain radiography may represent a valid, reproducible and cost-effective alternative to open MRI in the assessment of the pathological bony anatomy in patients with cam, pincer and mixed femoroacetabular impingement


Bone & Joint Research
Vol. 6, Issue 8 | Pages 472 - 480
1 Aug 2017
Oduwole KO de SA D Kay J Findakli F Duong A Simunovic N Yen Y Ayeni OR

Objectives. The purpose of this study was to evaluate the existing literature from 2005 to 2016 reporting on the efficacy of surgical management of patients with femoroacetabular impingement (FAI) secondary to slipped capital femoral epiphysis (SCFE). Methods. The electronic databases MEDLINE, EMBASE, and PubMed were searched and screened in duplicate. Data such as patient demographics, surgical technique, surgical outcomes and complications were retrieved from eligible studies. Results. Fifteen eligible level IV studies were included in this review comprising 261 patients (266 hips). Treatment groups included arthroscopic osteochondroplasty, surgical hip dislocation, and traditional open osteotomy. The mean alpha angle corrections were 32.14° (standard deviation (. sd). 7.02°), 41.45° (. sd. 10.5°) and 6.0° (. sd. 5.21°), for arthroscopy, surgical hip dislocation, and open osteotomy groups, respectively (p < 0.05). Each group demonstrated satisfactory clinical outcomes across their respective scoring systems. Major complication rates were 1.6%, 10.7%, and 6.7%, for arthroscopy, surgical dislocation and osteotomy treatments, respectively. Conclusion. In the context of SCFE-related FAI, surgical hip dislocation demonstrated improved correction of the alpha angle, albeit at higher complication and revision rates than both arthroscopic and open osteotomy treatments. Further investigation, including high-quality trials with standardised radiological and clinical outcome measures for young patients, is warranted to clarify treatment approaches and safety. Cite this article: K. O. Oduwole, D. de Sa, J. Kay, F. Findakli, A. Duong, N. Simunovic, Y. Yi-Meng, O. R. Ayeni. Surgical treatment of femoroacetabular impingement following slipped capital femoral epiphysis: A systematic review. Bone Joint Res 2017;6:472–480. DOI: 10.1302/2046-3758.68.BJR-2017-0018.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1025 - 1030
1 Aug 2007
Ilizaliturri VM Nossa-Barrera JM Acosta-Rodriguez E Camacho-Galindo J

Open reduction of the prominence at the femoral head-neck junction in femoroacetabular impingement has become an established treatment for this condition. We report our experience of arthroscopically-assisted treatment of femoroacetabular impingement secondary to paediatric hip disease in 14 hips in 13 consecutive patients (seven women, six men) with a mean age of 30.6 years (24 to 39) at the time of surgery. The mean follow-up was 2.5 years (2 to 4). Radiologically, 13 hips had successful restoration of the normal geometry and only one had a residual deformity. The mean increase in the Western Ontario McMasters Osteoarthritis Index for the series at the last follow-up was 9.6 points (4 to 14). No patient developed avascular necrosis or sustained a fracture of the femoral neck or any other complication. These findings suggest that femoroacetabular impingement associated with paediatric hip disease can be treated safely by arthroscopic techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1570 - 1575
1 Dec 2008
Bardakos NV Vasconcelos JC Villar RN

There is a known association between femoroacetabular impingement and osteoarthritis of the hip. What is not known is whether arthroscopic excision of an impingement lesion can significantly improve a patient’s symptoms. This study compares the results of hip arthroscopy for cam-type femoracetabular impingement in two groups of patients at one year. The study group comprised 24 patients (24 hips) with cam-type femoroacetabular impingement who underwent arthroscopic debridement with excision of their impingement lesion (osteoplasty). The control group comprised 47 patients (47 hips) who had arthroscopic debridement without excision of the impingement lesion. In both groups, the presence of femoroacetabular impingement was confirmed on pre-operative plain radiographs. The modified Harris hip score was used for evaluation pre-operatively and at one-year. Non-parametric tests were used for statistical analysis. A tendency towards a higher median post-operative modified Harris hip score was observed in the study group compared with the control group (83 vs 77, p = 0.11). There was a significantly higher proportion of patients in the osteoplasty group with excellent/good results compared with the controls (83% vs 60%, p = 0.043). Additional symptomatic improvement may be obtained after hip arthroscopy for femoroacetabular impingement by the inclusion of femoral osteoplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1592 - 1596
1 Dec 2007
Fraitzl CR Käfer W Nelitz M Reichel H

Conventional treatment of mild slipped capital femoral epiphysis consists of fixation in situ with wires or screws. Recent contributions to the literature suggest that even a mild slip may lead to early damage of the acetabular labrum and adjacent cartilage by abutment of a prominent femoral metaphysis. It has been suggested that the appropriate treatment in mild slipped capital femoral epiphysis should not only prevent further slipping of the epiphysis, but also address potential femoroacetabular impingement by restoring the anatomy of the proximal femur. Between October 1984 and December 1995 we treated 16 patients for unilateral mild slipped capital femoral epiphysis by fixation in situ with Kirschner wires. In this study we have reviewed these patients for clinical and radiological evidence of femoroacetabular impingement. There was little clinical indication of impingement but radiological evaluation assessing the femoral head-neck ratio and measuring the Nötzli α angle on the anteroposterior and cross-table radiographs showed significant alterations in the proximal femur. None of the affected hips had a normal head-neck ratio and the mean α angle was 86° (55° to 99°) and 55° (40° to 94°) on the anteroposterior and lateral cross-table radiographs, respectively. While our clinical data favours conventional treatment, our radiological findings are in support of restoring the anatomy of the proximal femur to avoid or delay the development of femoroacetabular impingement following mild slipped capital femoral epiphysis


Bone & Joint Research
Vol. 10, Issue 9 | Pages 574 - 590
7 Sep 2021
Addai D Zarkos J Pettit M Sunil Kumar KH Khanduja V

Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO), and surgical hip dislocation (SHD). This SR was registered with PROSPERO. An electronic database search of PubMed, Medline, and EMBASE for English and German language articles over the last 20 years was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We specifically analyzed and compared changes in patient-reported outcome measures (PROMs), α-angle, rate of complications, rate of revision, and conversion to total hip arthroplasty (THA). A total of 48 articles were included for final analysis with a total of 4,384 hips in 4,094 patients. All subgroups showed a significant correction in mean α angle postoperatively with a mean change of 28.8° (95% confidence interval (CI) 21 to 36.5; p < 0.01) after AMO, 21.1° (95% CI 15.1 to 27; p < 0.01) after SHD, and 20.5° (95% CI 16.1 to 24.8; p < 0.01) after HA. The AMO group showed a significantly higher increase in PROMs (3.7; 95% CI 3.2 to 4.2; p < 0.01) versus arthroscopy (2.5; 95% CI 2.3 to 2.8; p < 0.01) and SHD (2.4; 95% CI 1.5 to 3.3; p < 0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. All three surgical approaches offered significant improvements in PROMs and radiological correction of cam deformities. All three groups showed similar rates of revision procedures but SHD had the highest rate of conversion to a THA. Revision rates were similar for all three revision procedures


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1027 - 1032
1 Aug 2011
Schilders E Dimitrakopoulou A Bismil Q Marchant P Cooke C

Labral tears are commonly associated with femoroacetabular impingement. We reviewed 151 patients (156 hips) with femoroacetabular impingement and labral tears who had been treated arthroscopically. These were subdivided into those who had undergone a labral repair (group 1) and those who had undergone resection of the labrum (group 2). In order to ensure the groups were suitably matched for comparison of treatment effects, patients with advanced degenerative changes (Tönnis grade > 2, lateral sourcil height < 2 mm and Outerbridge grade 4 changes in the weight-bearing area of the femoral head) were excluded, leaving 96 patients (101 hips) in the study. At a mean follow-up of 2.44 years (2 to 4), the mean modified Harris hip score in the labral repair group (group 1, 69 hips) improved from 60.2 (24 to 85) pre-operatively to 93.6 (55 to 100), and in the labral resection group (group 2, 32 hips) from 62.8 (29 to 96) pre-operatively to 88.8 (35 to 100). The mean modified Harris hip score in the labral repair group was 7.3 points greater than in the resection group (p = 0.036, 95% confidence interval 0.51 to 14.09). Labral detachments were found more frequently in the labral repair group and labral flap tears in the resection group. No patient in our study group required a subsequent hip replacement during the period of follow-up. This study shows that patients without advanced degenerative changes in the hip can achieve significant improvement in their symptoms after arthroscopic treatment of femoroacetabular impingement. Where appropriate, labral repair provides a superior result to labral resection


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives. The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field. Methods. The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only. Results. A total of 29 articles were reviewed to obtain information on a number of variables. These comprised the type of device used for measurement, rater standardisation, the type of movements tested, body positioning and comparative studies of muscle strength in FAI versus normal controls. The studies found that hip muscle strength is lower in patients with FAI; this is also true for the asymptomatic hip in patients with FAI. Conclusions. Current literature on this subject is limited and examines multiple variables. Our recommendations for achieving reproducible results include stabilising the patient, measuring isometric movements and maximising standardisation by using a single tester and familiarising the participants with the protocol. Further work must be done to demonstrate the reliability of any new testing method. Cite this article: E. Mayne, A. Memarzadeh, P. Raut, A. Arora, V. Khanduja. Measuring hip muscle strength in patients with femoroacetabular impingement and other hip pathologies: A systematic review. Bone Joint Res 2017;6:66–72. DOI: 10.1302/2046-3758.61.BJR-2016-0081


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1636 - 1645
1 Dec 2020
Lerch TD Liechti EF Todorski IAS Schmaranzer F Steppacher SD Siebenrock KA Tannast M Klenke FM

Aims. The prevalence of combined abnormalities of femoral torsion (FT) and tibial torsion (TT) is unknown in patients with femoroacetabular impingement (FAI) and hip dysplasia. This study aimed to determine the prevalence of combined abnormalities of FT and TT, and which subgroups are associated with combined abnormalities of FT and TT. Methods. We retrospectively evaluated symptomatic patients with FAI or hip dysplasia with CT scans performed between September 2011 and September 2016. A total of 261 hips (174 patients) had a measurement of FT and TT. Their mean age was 31 years (SD 9), and 63% were female (165 hips). Patients were compared to an asymptomatic control group (48 hips, 27 patients) who had CT scans including femur and tibia available for analysis, which had been acquired for nonorthopaedic reasons. Comparisons were conducted using analysis of variance with Bonferroni correction. Results. In the overall study group, abnormal FT was present in 62% (163 hips). Abnormal TT was present in 42% (109 hips). Normal FT combined with normal TT was present in 21% (55 hips). The most frequent abnormal combination was increased FT combined with normal TT of 32% (84 hips). In the hip dysplasia group, 21% (11 hips) had increased FT combined with increased TT. The prevalence of abnormal FT varied significantly among the subgroups (p < 0.001). We found a significantly higher mean FT for hip dysplasia (31°; SD 15)° and valgus hips (42° (SD 12°)) compared with the control group (22° (SD 8°)). We found a significantly higher mean TT for hips with cam-type-FAI (34° (SD 6°)) and hip dysplasia (35° (SD 9°)) compared with the control group (28° (SD 8°)) (p < 0.001). Conclusion. Patients with FAI had a high prevalence of combined abnormalities of FT and TT. For hip dysplasia, we found a significantly higher mean FT and TT, while 21% of patients (11 hips) had combined increased TT and increased FT (combined torsional malalignment). This is important when planning hip preserving surgery such as periacetabular osteomy and femoral derotation osteotomy. Cite this article: Bone Joint J 2020;102-B(12):1636–1645


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 589 - 594
1 May 2009
Allen D Beaulé PE Ramadan O Doucette S

Femoroacetabular impingement is a cause of hip pain in adults and is potentially a precursor of osteoarthritis. Our aim in this study was to determine the prevalence of bilateral deformity in patients with symptomatic cam-type femoroacetabular impingement as well as the presence of associated acetabular abnormalities and hip pain. We included all patients aged 55 years or less seen by the senior author for hip pain, with at least one anteroposterior and lateral pelvic radiograph available. All patients with dysplasia and/or arthritis were excluded. A total of 113 patients with a symptomatic cam-impingement deformity of at least one hip was evaluated. There were 82 men and 31 women with a mean age of 37.9 years (16 to 55). Bilateral cam-type deformity was present in 88 patients (77.8%) while only 23 of those (26.1%) had bilateral hip pain. Painful hips had a statistically significant higher mean alpha angle than asymptomatic hips (69.9° vs 63.1°, p < 0.001). Hips with an alpha angle of more than 60° had an odds ratio of being painful of 2.59 (95% confidence interval 1.32 to 5.08, p = 0.006) compared with those with an alpha angle of less than 60°. Of the 201 hips with a cam-impingement deformity 42% (84) also had a pincer deformity. Most patients with cam-type femoroacetabular impingement had bilateral deformities and there was an associated acetabular deformity in 84 of 201 patients (42%). This information is important in order to define the natural history of these deformities, and to determine treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 32 - 35
1 Nov 2012
Brooks P Bershadsky B

Femoroacetabular impingement (FAI) is commonly associated with early hip arthritis. We reviewed our series of 1300 hip resurfacing procedures. More than 90% of our male patients, with an average age of 53 years, had cam impingement lesions. In this condition, there are anterior femoral neck osteophytes, and a retroverted femoral head on a normally anteverted neck. It is postulated that FAI results in collision of the anterior neck of the femur against the rim of the acetabulum, causing damage to the acetabular labrum and articular cartilage, resulting in osteoarthritis. Early treatment of FAI involves arthroscopic or open removal of bone from the anterior femoral neck, as well as repair or removal of labral tears. However, once osteoarthritis has developed, hip replacement or hip resurfacing is indicated. Hip resurfacing can re-orient the head and re-shape the neck. This helps to restore normal biomechanics to the hip, eliminate FAI, and improve range of motion. Since many younger men with hip arthritis have FAI, and are also considered the best candidates for hip resurfacing, it is evident that resurfacing has a role in these patients


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims. The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI. Patients and Methods. Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion. Results. Compared with non-FAI controls, symptomatic patients with FAI had less flexion at the spine (mean 22°, . sd. 12°, vs mean 35°, . sd. 8°; p = 0.04) and more at the hip (mean 72°, . sd. 6°, vs mean 62°, . sd. 8°; p = 0.047). Subjects with asymptomatic FAI had more spine flexion and similar hip flexion when compared to symptomatic FAI patients. Both FAI groups also sat with more anterior pelvic tilt than control patients. There were no differences in standing alignment among groups. Conclusion. Symptomatic patients with FAI require more flexion at the hip to achieve sitting position due to their inability to compensate through the lumbar spine. With limited spine flexion, FAI patients sit with more anterior pelvic tilt, which may lead to impingement between the acetabulum and proximal femur. Differences in spinopelvic mechanics between FAI and non-FAI patients may contribute to the progression of FAI symptoms. Cite this article: Bone Joint J 2018;100-B:1275–9


Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with hip arthroscopy and acetabular rim trimming or anteverting periacetabular osteotomy (PAO). Cite this article: Bone Jt Open 2021;2(10):813–824


Bone & Joint Research
Vol. 1, Issue 10 | Pages 245 - 257
1 Oct 2012
Tibor LM Leunig M

Femoroacetabular impingement (FAI) causes pain and chondrolabral damage via mechanical overload during movement of the hip. It is caused by many different types of pathoanatomy, including the cam ‘bump’, decreased head–neck offset, acetabular retroversion, global acetabular overcoverage, prominent anterior–inferior iliac spine, slipped capital femoral epiphysis, and the sequelae of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence studies show that anatomic variations that cause FAI are common in the asymptomatic population. Young athletes may be predisposed to FAI because of the stress on the physis during development. Other factors, including the soft tissues, may also influence symptoms and chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated arthroscopically. Although the results are favourable, morphologies can be complex, patient expectations are high and the surgery is challenging. The long-term outcomes of hip arthroscopy are still forthcoming and it is unknown if treatment of FAI will prevent arthrosis


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 332 - 336
1 Mar 2011
Konan S Rayan F Meermans G Witt J Haddad FS

There have been considerable recent advances in the understanding and management of femoroacetabular impingement and associated labral and chondral pathology. We have developed a classification system for acetabular chondral lesions. In our system, we use the six acetabular zones previously described by Ilizaliturri et al. The cartilage is then graded on a scale of 0 to 4 as follows: grade 0, normal articular cartilage lesions; grade 1, softening or wave sign; grade 2, cleavage lesion; grade 3, delamination; and grade 4, exposed bone. The site of the lesion is further classed as A, B or C based on whether the lesion is less than one-third of the distance from the acetabular rim to the cotyloid fossa, one-third to two-thirds of the same distance and greater than two-thirds of the distance, respectively. In order to validate the classification system, six surgeons graded ten video recordings of hip arthroscopy. Our findings showed a high intra-observer reliability of the classification system with an intraclass correlation coefficient of 0.81 and a high interobserver reliability with an intraclass correlation coefficient of 0.88. We have developed a simple reproducible classification system for lesions of the acetabular cartilage, which it is hoped will allow standardised documentation to be made of damage to the articular cartilage, particularly that associated with femoroacetabular impingement


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 162 - 169
1 Feb 2009
Bardakos NV Villar RN

Although the association between femoroacetabular impingement and osteoarthritis is established, it is not yet clear which hips have the greatest likelihood to progress rapidly to end-stage disease. We investigated the effect of several radiological parameters, each indicative of a structural aspect of the hip joint, on the progression of osteoarthritis. Pairs of plain anteroposterior pelvic radiographs, taken at least ten years apart, of 43 patients (43 hips) with a pistol-grip deformity of the femur and mild (Tönnis grade 1) or moderate (Tönnis grade 2) osteoarthritis were reviewed. Of the 43 hips, 28 showed evidence of progression of osteoarthritis. There was no significant difference in the prevalence of progression between hips with initial Tönnis grade 1 or grade 2 osteoarthritis (p = 0.31). Comparison of the hips with and without progression of arthritis revealed a significant difference in the mean medial proximal femoral angle (81° vs 87°, p = 0.004) and the presence of the posterior wall sign (39% vs 7%, p = 0.02) only. A logistic regression model was constructed to predict the influence of these two variables in the development of osteoarthritis. Mild to moderate osteoarthritis in hips with a pistol-grip deformity will not progress rapidly in all patients. In one-third, progression will take more than ten years to manifest, if ever. The individual geometry of the proximal femur and acetabulum partly influences this phenomenon. A hip with cam impingement is not always destined for end-stage arthritic degeneration


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 724 - 729
1 Jun 2014
Murgier J Reina N Cavaignac E Espié A Bayle-Iniguez X Chiron P

Slipped upper femoral epiphysis (SUFE) is one of the known causes of cam-type femoroacetabular impingement (FAI). The aim of this study was to determine the proportion of FAI cases considered to be secondary to SUFE-like deformities. . We performed a case–control study on 96 hips (75 patients: mean age 38 years (15.4 to 63.5)) that had been surgically treated for FAI between July 2005 and May 2011. Three independent observers measured the lateral view head–neck index (LVHNI) to detect any SUFE-like deformity on lateral hip radiographs taken in 45° flexion, 45° abduction and 30° external rotation. A control group of 108 healthy hips in 54 patients was included for comparison (mean age 36.5 years (24.3 to 53.9). The impingement group had a mean LVHNI of 7.6% (16.7% to -2%) versus 3.2% in the control group (10.8% to -3%) (p < 0.001). A total of 42 hips (43.7%) had an index value > 9% in the impingement group versus only six hips (5.5%) in the control group (p < 0.001). The impingement group had a mean α angle of 73.9° (96.2° to 53.4°) versus 48.2° (65° to 37°) in the control group (p < 0.001). Our results suggest that SUFE is one of the primary aetiological factors for cam-type FAI. Cite this article: Bone Joint J 2014; 96-B:724–9


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1218 - 1229
1 Oct 2019
Lerch TD Eichelberger P Baur H Schmaranzer F Liechti EF Schwab JM Siebenrock KA Tannast M

Aims. Abnormal femoral torsion (FT) is increasingly recognized as an additional cause for femoroacetabular impingement (FAI). It is unknown if in-toeing of the foot is a specific diagnostic sign for increased FT in patients with symptomatic FAI. The aims of this study were to determine: 1) the prevalence and diagnostic accuracy of in-toeing to detect increased FT; 2) if foot progression angle (FPA) and tibial torsion (TT) are different among patients with abnormal FT; and 3) if FPA correlates with FT. Patients and Methods. A retrospective, institutional review board (IRB)-approved, controlled study of 85 symptomatic patients (148 hips) with FAI or hip dysplasia was performed in the gait laboratory. All patients had a measurement of FT (pelvic CT scan), TT (CT scan), and FPA (optical motion capture system). We allocated all patients to three groups with decreased FT (< 10°, 37 hips), increased FT (> 25°, 61 hips), and normal FT (10° to 25°, 50 hips). Cluster analysis was performed. Results. We found a specificity of 99%, positive predictive value (PPV) of 93%, and sensitivity of 23% for in-toeing (FPA < 0°) to detect increased FT > 25°. Most of the hips with normal or decreased FT had no in-toeing (false-positive rate of 1%). Patients with increased FT had significantly (p < 0.001) more in-toeing than patients with decreased FT. The majority of the patients (77%) with increased FT walk with a normal foot position. The correlation between FPA and FT was significant (r = 0.404, p < 0.001). Five cluster groups were identified. Conclusion. In-toeing has a high specificity and high PPV to detect increased FT, but increased FT can be missed because of the low sensitivity and high false-negative rate. These results can be used for diagnosis of abnormal FT in patients with FAI or hip dysplasia undergoing hip arthroscopy or femoral derotation osteotomy. However, most of the patients with increased FT walk with a normal foot position. This can lead to underestimation or misdiagnosis of abnormal FT. We recommend measuring FT with CT/MRI scans in all patients with FAI. Cite this article: Bone Joint J 2019;101-B:1218–1229


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims

To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain.

Methods

First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 580 - 586
1 May 2011
Hartofilakidis G Bardakos NV Babis GC Georgiades G

We retrospectively examined the long-term outcome of 96 asymptomatic hips in 96 patients with a mean age of 49.3 years (16 to 65) who had radiological evidence of femoroacetabular impingement. When surveillance commenced there were 17, 34, and 45 hips with cam, pincer, and mixed impingement, respectively. Overall, 79 hips (82.3%) remained free of osteoarthritis for a mean of 18.5 years (10 to 40). In contrast, 17 hips (17.7%) developed osteoarthritis at a mean of 12 years (2 to 28). No statistically significant difference was found in the rates of development of osteoarthritis among the three groups (p = 0.43). Regression analysis showed that only the presence of idiopathic osteoarthritis of the contralateral diseased hip was predictive of development of osteoarthritis on the asymptomatic side (p = 0.039). We conclude that a substantial proportion of hips with femoroacetabular impingement may not develop osteoarthritis in the long-term. Accordingly, in the absence of symptoms, prophylactic surgical treatment is not warranted


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 326 - 331
1 Mar 2011
Javed A O’Donnell JM

We reviewed the clinical outcome of arthroscopic femoral osteochondroplasty for cam femoroacetabular impingement performed between August 2005 and March 2009 in a series of 40 patients over 60 years of age. The group comprised 26 men and 14 women with a mean age of 65 years (60 to 82). The mean follow-up was 30 months (12 to 54). The mean modified Harris hip score improved by 19.2 points (95% confidence interval 13.6 to 24.9; p < 0.001) while the mean non-arthritic hip score improved by 15.0 points (95% confidence interval 10.9 to 19.1, p < 0.001). Seven patients underwent total hip replacement after a mean interval of 12 months (6 to 24 months) at a mean age of 63 years (60 to 70). The overall level of satisfaction was high with most patients indicating that they would undergo similar surgery in the future to the contralateral hip, if indicated. No serious complications occurred. Arthroscopic femoral osteochondroplasty performed in selected patients over 60 years of age, who have hip pain and mechanical symptoms resulting from cam femoroacetabular impingement, is beneficial with a minimal risk of complications at a mean follow-up of 30 months


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 16 - 23
1 Jan 2009
Philippon MJ Briggs KK Yen Y Kuppersmith DA

Over an eight-month period we prospectively enrolled 122 patients who underwent arthroscopic surgery of the hip for femoroacetabular impingement and met the inclusion criteria for this study. Patients with bilateral hip arthroscopy, avascular necrosis and previous hip surgery were excluded. Ten patients refused to participate leaving 112 in the study. There were 62 women and 50 men. The mean age of the patients was 40.6 yrs (95% confidence interval (CI) 37.7 to 43.5). At arthroscopy, 23 patients underwent osteoplasty only for cam impingement, three underwent rim trimming only for pincer impingement, and 86 underwent both procedures for mixed-type impingement. The mean follow-up was 2.3 years (2.0 to 2.9). The mean modified Harris hip score (HHS) improved from 58 to 84 (mean difference = 24 (95% CI 19 to 28)) and the median patient satisfaction was 9 (1 to 10). Ten patients underwent total hip replacement at a mean of 16 months (8 to 26) after arthroscopy. The predictors of a better outcome were the pre-operative modified HHS (p = 0.018), joint space narrowing ≥ 2 mm (p = 0.005), and repair of labral pathology instead of debridement (p = 0.032). Hip arthroscopy for femoroacetabular impingement, accompanied by suitable rehabilitation, gives a good short-term outcome and high patient satisfaction


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 47 - 50
1 Jan 2010
Konan S Rayan F Haddad FS

The radiological evaluation of the anterolateral femoral head is an essential tool for the assessment of the cam type of femoroacetabular impingement. CT, MRI and frog lateral plain radiographs have all been suggested as imaging options for this type of lesion. The alpha angle is accepted as a reliable indicator of the cam type of impingement and may also be used as an assessment for the successful operative correction of the cam lesion. We studied the alpha angles of 32 consecutive patients with femoroacetabular impingement. The angle measured on frog lateral radiographs using templating tools was compared with that measured on CT scans in order to assess the reliability of the frog lateral view in analysing the alpha angle in cam impingement. A high interobserver reliability was noted for the assessment of the alpha angle on the frog lateral view with an intraclass correlation coefficient of 0.83. The mean alpha angle measured on the frog lateral view was 58.71° (32° to 83.3°) and that by CT was 65.11° (30° to 102°). A poor intraclass correlation coefficient (0.08) was noted between the measurements using the two systems. The frog lateral plain radiograph is not reliable for measuring the alpha angle. Various factors may be responsible for this such as the projection of the radiograph, the positioning of the patient and the quality of the image. CT may be necessary for accurate measurement of the alpha angle


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1487 - 1493
1 Nov 2012
Wensaas A Gunderson RB Svenningsen S Terjesen T

Deformity after slipped upper femoral epiphysis (SUFE) can cause cam-type femoroacetabular impingement (FAI) and subsequent osteoarthritis (OA). However, there is little information regarding the radiological assessment and clinical consequences at long-term follow-up. We reviewed 36 patients (43 hips) previously treated by in situ fixation for SUFE with a mean follow-up of 37 years (21 to 50). Three observers measured the femoral head ratio (FHR), lateral femoral head ratio (LFHR), α-angle on anteroposterior (AP) and frog-leg lateral views, and anterior femoral head–neck offset ratio (OSR). A Harris hip score < 85 and/or radiologically diagnosed osteoarthritis (OA) was classified as a poor outcome. Patients with SUFE had significantly higher FHR, LFHR and α-angles and lower OSR than a control group of 22 subjects (35 hips) with radiologically normal hips. The interobserver agreement was less, with wider limits of agreement (LOA), in hips with previous SUFE than the control group. At long-term follow-up abnormal α-angles correlated with poor outcome, whereas FHR, LFHR and OSR did not. We conclude that persistent deformity with radiological cam FAI after SUFE is associated with poorer clinical and radiological long-term outcome. Although the radiological measurements had quite wide limits of agreement, they are useful for the diagnosis of post-slip deformities in clinical practice


Bone & Joint Research
Vol. 9, Issue 9 | Pages 633 - 634
1 Sep 2020
Matsumoto K Ganz R Khanduja V


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 26 - 30
1 Nov 2013
Fayad TE Khan MA Haddad FS

Young adults with hip pain secondary to femoroacetabular impingement (FAI) are rapidly being recognised as an important cohort of orthopaedic patients. Interest in FAI has intensified over the last decade since its recognition as a precursor to arthritis of the hip and the number of publications related to the topic has increased exponentially in the last decade. Although not all patients with abnormal hip morphology develop osteoarthritis (OA), those with FAI-related joint damage rapidly develop premature OA. There are no explicit diagnostic criteria or definitive indications for surgical intervention in FAI. Surgery for symptomatic FAI appears to be most effective in younger individuals who have not yet developed irreversible OA. The difficulty in predicting prognosis in FAI means that avoiding unnecessary surgery in asymptomatic individuals, while undertaking intervention in those that are likely to develop premature OA poses a considerable dilemma. FAI treatment in the past has focused on open procedures that carry a potential risk of complications.

Recent developments in hip arthroscopy have facilitated a minimally invasive approach to the management of FAI with few complications in expert hands. Acetabular labral preservation and repair appears to provide superior results when compared with debridement alone. Arthroscopic correction of structural abnormalities is increasingly becoming the standard treatment for FAI, however there is a paucity of high-level evidence comparing open and arthroscopic techniques in patients with similar FAI morphology and degree of associated articular cartilage damage. Further research is needed to develop an understanding of the natural course of FAI, the definitive indications for surgery and the long-term outcomes.

Cite this article: Bone Joint J 2013;95-B, Supple A:26–30.


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1214 - 1219
1 Sep 2015
Loh BW Stokes CM Miller BG Page RS

There is an increased risk of fracture following osteoplasty of the femoral neck for cam-type femoroacetabular impingement (FAI). Resection of up to 30% of the anterolateral head–neck junction has previously been considered to be safe, however, iatrogenic fractures have been reported with resections within these limits. We re-evaluated the amount of safe resection at the anterolateral femoral head–neck junction using a biomechanically consistent model.

In total, 28 composite bones were studied in four groups: control, 10% resection, 20% resection and 30% resection. An axial load was applied to the adducted and flexed femur. Peak load, deflection at time of fracture and energy to fracture were assessed using comparison groups.

There was a marked difference in the mean peak load to fracture between the control group and the 10% resection group (p < 0.001). The control group also tolerated significantly more deflection before failure (p < 0.04). The mean peak load (p = 0.172), deflection (p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between the 10%, 20%, and 30% resection groups.

Any resection of the anterolateral quadrant of the femoral head–neck junction for FAI significantly reduces the load-bearing capacity of the proximal femur. After initial resection of cortical bone, there is no further relevant loss of stability regardless of the amount of trabecular bone resected.

Based on our findings we recommend any patients who undergo anterolateral femoral head–neck junction osteoplasty should be advised to modify their post-operative routine until cortical remodelling occurs to minimise the subsequent fracture risk.

Cite this article: Bone Joint J 2015;97-B:1214–19.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 288 - 289
1 Jul 2019
Mayne E Raut P Memarzadeh A Arora A Khanduja V


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 769 - 776
1 Jun 2011
Hogervorst T Bouma H de Boer SF de Vos J

We examined the morphology of mammalian hips asking whether evolution can explain the morphology of impingement in human hips. We describe two stereotypical mammalian hips, coxa recta and coxa rotunda. Coxa recta is characterised by a straight or aspherical section on the femoral head or head-neck junction. It is a sturdy hip seen mostly in runners and jumpers. Coxa rotunda has a round femoral head with ample head-neck offset, and is seen mostly in climbers and swimmers.

Hominid evolution offers an explanation for the variants in hip morphology associated with impingement. The evolutionary conflict between upright gait and the birth of a large-brained fetus is expressed in the female pelvis and hip, and can explain pincer impingement in a coxa profunda. In the male hip, evolution can explain cam impingement in coxa recta as an adaptation for running.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1459 - 1462
1 Nov 2005
Crawford JR Villar RN


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1297 - 1298
1 Oct 2013
Haddad FS Konan S


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims

The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI).

Patients and Methods

A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1187 - 1192
1 Sep 2012
Rakhra KS Lattanzio P Cárdenas-Blanco A Cameron IG Beaulé PE

Advanced MRI cartilage imaging such as T1-rho (T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic radiological changes may provide prognostic information in the management of joint disease. This study aimed first to determine the normal T1ρ profile of cartilage within the hip, and secondly to identify any differences in T1ρ profile between the normal and symptomatic femoroacetabular impingement (FAI) hip. Ten patients with cam-type FAI (seven male and three female, mean age 35.9 years (28 to 48)) and ten control patients (four male and six female, mean age 30.6 years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation times for full thickness and each of the three equal cartilage thickness layers were calculated and compared between the groups. The mean T1ρ relaxation times for full cartilage thickness of control and FAI hips were similar (37.17 ms (sd 9.95) and 36.71 ms (sd 6.72), respectively). The control group demonstrated a T1ρ value trend, increasing from deep to superficial cartilage layers, with the middle third having significantly greater T1ρ relaxation values than the deepest third (p = 0.008). The FAI group demonstrated loss of this trend. The deepest third in the FAI group demonstrated greater T1ρ relaxation values than controls (p = 0.028).

These results suggest that 1.5T T1ρ MRI can detect acetabular hyaline cartilage changes in patients with FAI.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 171 - 176
1 Mar 2001
Ito K Minka-II M Leunig M Werlen S Ganz R

We have observed damage to the labrum as a result of repetitive acetabular impingement in non-dysplastic hips, in which the femoral neck appears to abut against the acetabular labrum and a non-spherical femoral head to press against the labrum and adjacent cartilage. In both mechanisms anatomical variations of the proximal femur may be a factor. We have measured the orientation of the femoral neck and the offset of the head at various circumferential positions, using MRI data from volunteers with no osteoarthritic changes on standard radiographs. Compared with the control subjects, paired for gender and age, patients showed a significant reduction in mean femoral anteversion and mean head-neck offset on the anterior aspect of the neck. This was consistent with the site of symptomatic impingement in flexion and internal rotation, and with lesions of the adjacent rim. Furthermore, when stratified for gender and age, and compared with the control group, the mean femoral head-neck offset was significantly reduced in the lateral-to-anterior aspect of the neck for young men, and in the anterolateral-to-anterior aspect of the neck for older women. For patients suspected of having impingement of the rim, anatomical variations in the proximal femur should be considered as a possible cause.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 893 - 899
1 Jul 2013
Diaz-Ledezma C Novack T Marin-Peña O Parvizi J

Orthopaedic surgeons have accepted various radiological signs to be representative of acetabular retroversion, which is the main characteristic of focal over-coverage in patients with femoroacetabular impingement (FAI). Using a validated method for radiological analysis, we assessed the relevance of these signs to predict intra-articular lesions in 93 patients undergoing surgery for FAI. A logistic regression model to predict chondral damage showed that an acetabular retroversion index (ARI) > 20%, a derivative of the well-known cross-over sign, was an independent predictor (p = 0.036). However, ARI was less significant than the Tönnis classification (p = 0.019) and age (p = 0.031) in the same model. ARI was unable to discriminate between grades of chondral lesions, while the type of cam lesion (p = 0.004) and age (p = 0.047) were able to. Other widely recognised signs of acetabular retroversion, such as the ischial spine sign, the posterior wall sign or the cross-over sign were irrelevant according to our analysis. Regardless of its secondary predictive role, an ARI > 20% appears to be the most clinically relevant radiological sign of acetabular retroversion in symptomatic patients with FAI.

Cite this article: Bone Joint J 2013;95-B:893–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 677 - 679
1 May 2008
Pan H Kawanabe K Akiyama H Goto K Onishi E Nakamura T

A 30-year-old man presented with pain and limitation of movement of the right hip. The symptoms had failed to respond to conservative treatment. Radiographs and CT scans revealed evidence of impingement between the femoral head-neck junction and an abnormally large anterior inferior iliac spine. Resection of the hypertrophic anterior inferior iliac spine was performed which produced full painless restoration of function of the hip.

Hypertrophy of the anterior inferior iliac spine as a cause of femoro-acetabular impingement has not previously been described.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1025 - 1031
1 Sep 2022
Thummala AR Xi Y Middleton E Kohli A Chhabra A Wells J

Aims. Pelvic tilt is believed to affect the symptomology of osteoarthritis (OA) of the hip by alterations in joint movement, dysplasia of the hip by modification of acetabular cover, and femoroacetabular impingement by influencing the impingement-free range of motion. While the apparent role of pelvic tilt in hip pathology has been reported, the exact effects of many forms of treatment on pelvic tilt are unknown. The primary aim of this study was to investigate the effects of surgery on pelvic tilt in these three groups of patients. Methods. The demographic, radiological, and outcome data for all patients operated on by the senior author between October 2016 and January 2020 were identified from a prospective registry, and all those who underwent surgery with a primary diagnosis of OA, dysplasia, or femoroacetabular impingement were considered for inclusion. Pelvic tilt was assessed on anteroposterior (AP) standing radiographs using the pre- and postoperative pubic symphysis to sacroiliac joint (PS-SI) distance, and the outcomes were assessed with the Hip Outcome Score (HOS), International Hip Outcome Tool (iHOT-12), and Harris Hip Score (HHS). Results. The linear regression model revealed a significant negative predictive association between the standing pre- and postoperative PS-SI distances for all three groups of patients (all p < 0.001). There was a significant improvement in all three outcome measures between the pre- and postoperative values (p < 0.05). Conclusion. There is a statistically significant decrease in pelvic tilt after surgery in patients with OA of the hip, dysplasia, and femoroacetabular impingement. These results confirm that surgery significantly alters the pelvic orientation. Pelvic tilt significantly decreased after total hip arthroplasty, periacetabular osteotomy, and arthroscopy/surgical hip dislocation. The impact of surgery on pelvic tilt should be considered within the therapeutic plan in order to optimize pelvic orientation in these patients. Cite this article: Bone Joint J 2022;104-B(9):1025–1031


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 786 - 791
1 Jul 2022
Jenkinson MRJ Peeters W Hutt JRB Witt JD

Aims. Acetabular retroversion is a recognized cause of hip impingement and can be influenced by pelvic tilt (PT), which changes in different functional positions. Positional changes in PT have not previously been studied in patients with acetabular retroversion. Methods. Supine and standing anteroposterior (AP) pelvic radiographs were retrospectively analyzed in 69 patients treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in the angle of PT was measured both by the sacro-femoral-pubic (SFP) angle and the pubic symphysis to sacroiliac (PS-SI) index. Results. In the supine position, the mean PT (by SFP) was 1.05° (SD 3.77°), which changed on standing to a PT of 8.64° (SD 5.34°). A significant increase in posterior PT from supine to standing of 7.59° (SD 4.5°; SFP angle) and 5.89° (SD 3.33°; PS-SI index) was calculated (p < 0.001). There was a good correlation in PT change between measurements using SFP angle and PS-SI index (0.901 in the preoperative group and 0.815 in the postoperative group). Signs of retroversion were significantly reduced in standing radiographs compared to supine: crossover index (0.16 (SD 0.16) vs 0.38 (SD 0.15); p < 0.001), crossover sign (19/28 hips vs 28/28 hips; p < 0.001), ischial spine sign (10/28 hips vs 26/28 hips; p < 0.001), and posterior wall sign (12/28 hips vs 24/28 hips; p < 0.001). Conclusion. Posterior PT increased from supine to standing in patients with symptomatic acetabular retroversion. The features of acetabular retroversion were less evident on standing radiographs. The low PT angle in the supine position is a factor in the increased appearance of acetabular retroversion. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs to highlight signs of acetabular retroversion, and to assist with optimizing acetabular correction at the time of surgery. Cite this article: Bone Joint J 2022;104-B(7):786–791


Bone & Joint 360
Vol. 12, Issue 5 | Pages 15 - 18
1 Oct 2023

The October 2023 Hip & Pelvis Roundup. 360. looks at: Femoroacetabular impingement syndrome at ten years – how do athletes do?; Venous thromboembolism in patients following total joint replacement: are transfusions to blame?; What changes in pelvic sagittal tilt occur 20 years after total hip arthroplasty?; Can stratified care in hip arthroscopy predict successful and unsuccessful outcomes?; Hip replacement into your nineties; Can large language models help with follow-up?; The most taxing of revisions – proximal femoral replacement for periprosthetic joint infection – what’s the benefit of dual mobility?


Bone & Joint 360
Vol. 13, Issue 1 | Pages 38 - 41
1 Feb 2024

The February 2024 Children’s orthopaedics Roundup. 360. looks at: Hip impingement after in situ pinning causes decreased flexion and forced external rotation in flexion on 3D-CT; Triplane ankle fracture patterns in paediatric patients; Improved forearm rotation even after early conversion to below-elbow; Selective dorsal rhizotomy and cerebral palsy (CP) hip displacement; Abduction bracing following anterior open reduction for developmental dysplasia of the hip does not improve residual dysplasia or reduce secondary surgery; 40% risk of later total hip arthroplasty for in situ slipped capital femoral epiphysis (SCFE) pinning; Does brace treatment following closed reduction of developmental dysplasia of the hip improve acetabular coverage?; Waterproof hip spica casts for paediatric femur fractures


Bone & Joint 360
Vol. 13, Issue 6 | Pages 17 - 19
1 Dec 2024

The December 2024 Hip & Pelvis Roundup. 360. looks at: Total hip arthroplasty after femoral neck fractures versus osteoarthritis at one-year follow-up: a comparative, retrospective study; Excellent mid-term survival of a monoblock conical prosthesis in treating atypical and complex femoral anatomy with total hip arthroplasty; Hip arthroscopy for femoroacetabular impingement improves sexual function; Fast-track hip arthroplasty does not increase complication rates; Ten-year experience with same-day discharge outpatient total hip arthroplasty: patient demographics changed, but safe outcomes were maintained