Advertisement for orthosearch.org.uk
Results 1 - 100 of 188
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 2 | Pages 288 - 292
1 Mar 1993
Leung K Fung K Sher A Li C Lee K

The total plasma alkaline phosphatase level has long been recognised as an indicator of osteoblastic activity, but lack of specificity makes it an insensitive index of the progress of disease and the response to treatment. Selective precipitation by wheatgerm lectin allows measurement of the plasma bone-specific alkaline phosphatase. We measured the plasma levels of this isoenzyme in 170 normal Chinese adolescents and adults, in 49 adults with fractures of a long bone, in 15 patients with osteosarcoma and in 38 patients with osteolytic metastases. The enzyme activity was also determined in 39 patients with liver disease. Of the patients with fractures, 94% had increased plasma activity during the healing process. The level was also increased in those with osteosarcoma but not in those with osteolytic bone metastases. There was no significant increase in activity in the patients with liver disease. We conclude that the plasma bone-specific alkaline phosphatase activity is a sensitive and reliable measure of osteoblastic activity


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 629 - 634
1 Aug 1986
Volpin G Rees J Ali S Bentley G

Experimentally produced fractures in long bones studied by light and electron microscopic histochemistry were found to heal by a process of enchondral calcification. There was intense proliferation in the cells of the cambium layer of the periosteum, with differentiation to chondroblasts and osteoblasts, suggesting that this layer was the primary tissue responsible for development of the callus. Cytoplasmic processes of the hypertrophic chondrocytes appeared to bud and produce matrix vesicles. Alkaline phosphatase activity was detected along the plasma membrane of the hypertrophic chondrocytes and around the matrix vesicles, before any signs of mineral deposition. Calcification took place by deposition of hydroxyapatite crystals in and around these matrix vesicles which frequently showed alkaline phosphatase activity. It is suggested that there is a close functional association between alkaline phosphatase activity and calcification in the process of fracture healing, which is another type of enchondral calcification mediated by matrix vesicles


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 1 | Pages 61 - 65
1 Feb 1978
Hosking D

Osteomalacia may be a contributory factor in some patients in the development of fractures of the femoral neck and complicate the subsequent management. The level of serum alkaline phosphatase is often valuable in the diagnosis of metabolic bone disease but rises after any uncomplicated fracture, and since such a rise may limit the diagnostic usefulness of this measurement in detecting osteomalacia its extent was assessed in 106 patients. In the majority serum levels were normal on admission, rising after seven to nine days to reach a maximum within a month after fracture. Elevated levels on admission were found in patients with osteomalacia, liver damage or where there had been a delay of several weeks between injury and admission. In a small number of patients normal levels on admission subsequently reached very high values, usually in association with comminution or instability of the fracture. Elevated levels persisted for six to twelve weeks after fracture, the major influence upon the level at this time being the maximum value achieved rather than the presence of osteomalacia. If patients are to be screened for osteomalacia, the alkaline phosphatase must be measured within the first week after a fracture to avoid the distorting influences of the fracture itself


The Journal of Bone & Joint Surgery British Volume
Vol. 61-B, Issue 4 | Pages 432 - 434
1 Nov 1979
Mollan R

Estimations of serum alkaline phosphatase were carried out prospectively on a series of patients having a total hip replacement. The levels of serum alkaline phosphatase before operation indicated a group of patients who subsequently developed heterotopic ossification. Levels of this enzyme after operation did not indicate those patients who were developing heterotopic ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 1 | Pages 27 - 28
1 Jan 1988
Markovic B Cvijetic A Karakasevic J

The acid and alkaline phosphatase activity in fluid aspirated from solitary bone cysts in six patients was measured, and large increases in the concentration of acid phosphatase were found. In some cases this increase was reflected in venous blood concentrations. The significance of these findings for the pathogenesis and the management of solitary bone cyst is discussed



The Journal of Bone & Joint Surgery British Volume
Vol. 31-B, Issue 1 | Pages 94 - 99
1 Feb 1949
Lorch IJ


Aims. Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results. The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion. APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression. Cite this article: Bone Joint Res 2023;12(8):476–485


Bone & Joint Research
Vol. 13, Issue 12 | Pages 750 - 763
11 Dec 2024
Xie C Gong J Zheng C Zhang J Gao J Tian C Guo X Dai S Gao T

Aims. This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods. The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results. The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC. Conclusion. This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC. Cite this article: Bone Joint Res 2024;13(12):750–763


Bone & Joint Open
Vol. 5, Issue 3 | Pages 210 - 217
13 Mar 2024
Mthethwa PG Marais LC Aldous CM

Aims. The aim of this study is to determine the predictors of overall survival (OS) and predictive factors of poor prognosis of conventional high-grade osteosarcoma of the limbs in a single-centre in South Africa. Methods. We performed a retrospective cross-sectional analysis to identify the prognostic factors that predict the OS of patients with histologically confirmed high-grade conventional osteosarcoma of the limbs over ten years. We employed the Cox proportional regression model and the Kaplan-Meier method for statistical analysis. Results. This study comprised 77 patients at a three-year minimum follow-up. The predictors of poor OS were: the median age of ≤ 19 years (hazard ratio (HR) 0.96; 95% confidence interval (CI) 0.92 to 0.99; p = 0.021); median duration of symptoms ≥ five months (HR 0.91; 95% CI 0.83 to 0.99; p < 0.037); metastasis at diagnosis (i.e. Enneking stage III) (HR 3.33; 95% CI 1.81 to 6.00; p < 0.001); increased alkaline phosphatase (HR 3.28; 95% CI 1.33 to 8.11; p < 0.010); palliative treatment (HR 7.27; 95% CI 2.69 to 19.70); p < 0.001); and amputation (HR 3.71; 95% CI 1.12 to 12.25; p < 0.032). In contrast, definitive surgery (HR 0.11; 95% CI 0.03 to 0.38; p < 0.001) and curative treatment (HR 0.18; 95% CI 0.10 to 0.33; p < 0.001) were a protective factor. The Kaplan-Meier median survival time was 24 months, with OS of 57.1% at the three years. The projected five-year event-free survival was 10.3% and OS of 29.8% (HR 0.76; 95% CI 0.52 to 1.12; p = 0.128). Conclusion. In this series of high-grade conventional osteosarcoma of the appendicular skeleton from South Africa, 58.4% (n = 45) had detectable metastases at presentation; hence, an impoverished OS of five years was 29.8%. Large-scale future research is needed to validate our results. Cite this article: Bone Jt Open 2024;5(3):210–217


Bone & Joint Research
Vol. 10, Issue 9 | Pages 611 - 618
27 Sep 2021
Ali E Birch M Hopper N Rushton N McCaskie AW Brooks RA

Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. Results. Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. Conclusion. We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611–618


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims

Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP.

Methods

Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 304 - 316
17 May 2022
Kim MH Choi LY Chung JY Kim E Yang WM

Aims. The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. Methods. The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed. Results. In total, 65.93% of the genes of the AUR network matched with osteoporosis-related genes. Osteoclast differentiation was predicted to be a potential pathway of AUR in osteoporosis. Based on the network pharmacology, the BMD and bone mineral content levels were significantly (p < 0.05) increased in the whole body, femur, tibia, and lumbar spine by AUR. AUR normalized the bone microstructure and the serum alkaline phosphatase (ALP), bone-specific alkaline phosphatase (bALP), osteocalcin, and calcium in comparison with the OVX group. In addition, AUR treatment reduced TRAP-positive osteoclasts and receptor activator of nuclear factor kappa-B ligand (RANKL). +. nuclear factor of activated T cells 1 (NFATc1). +. expression in the femoral body. Moreover, the expressions of initiators for osteoclastic resorption and bone matrix degradation were significantly (p < 0.05) regulated by AUR in the lumbar spine of the osteoporotic mice. Conclusion. AUR ameliorated bone loss by downregulating the RANKL/NFATc1 pathway, resulting in improvement of osteoporosis. In conclusion, AUR might be an ameliorative cure that alleviates bone loss in osteoporosis via inhibition of osteoclastic activity. Cite this article: Bone Joint Res 2022;11(5):304–316


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims. The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis. Methods. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments. Results. LINC01089 expression was reinforced in serum samples of OP patients, but it gradually diminished while hMSCs underwent osteogenic differentiation. LINC01089 knockdown facilitated hMSC osteogenic differentiation. This was substantiated by: the increase in ALP activity; ALP, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) messenger RNA (mRNA) levels; and level of ARS staining. Meanwhile, LINC01089 upregulation resulted in the opposite effects. LINC01089 targeted miR-1287-5p, and the LINC01089 knockdown-induced hMSC osteogenic differentiation was repressed by miR-1287-5p depletion. HSPA4 is a downstream function molecule of the LINC01089/miR-1287-5p pathway; miR-1287-5p negatively modulated HSPA4 levels and attenuated its functional effects. Conclusion. LINC01089 negatively regulated hMSC osteogenic differentiation, at least in part, via governing miR-1287-5p/HSPA4 signalling. These findings provide new insights into hMSC osteogenesis and bone metabolism. Cite this article: Bone Joint Res 2024;13(12):779–789


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process. Results. Mean callus volume was larger in the elastic fixation group (1,755 mm. 3. (standard error of the mean (SEM) 297)) than in the stiff fixation group (258 mm. 3. (SEM 65)). Pathological observation found that the expression levels of osterix (OSX), collagen, type I, alpha 1 (COL1α1), and alkaline phosphatase (ALP) in the callus of the elastic fixation group were higher than those of the stiff fixation group. The protein sequence of the callus revealed 199 DEPs, 124 of which were highly expressed in the elastic fixation group. In the in vitro study, it was observed that a stress of 200 g led to upregulation of thrombospondin 1 (THBS1) and osteoglycin (OGN) expression in bone marrow mesenchymal stem cells (BMSCs). Additionally, these genes were found to be upregulated during the osteogenic differentiation process of the BMSCs. Conclusion. Elastic fixation can promote fracture healing and osteoblast differentiation in callus, and the ability of elastic fixation to promote osteogenic differentiation of BMSCs may be achieved by upregulating genes such as THBS1 and OGN. Cite this article: Bone Joint Res 2024;13(10):559–572


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results. Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion. We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males. Cite this article: Bone Joint Res 2024;13(1):28–39


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods. The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results. Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions. The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 679 - 687
1 Jun 2023
Lou Y Zhao C Cao H Yan B Chen D Jia Q Li L Xiao J

Aims. The aim of this study was to report the long-term prognosis of patients with multiple Langerhans cell histiocytosis (LCH) involving the spine, and to analyze the risk factors for progression-free survival (PFS). Methods. We included 28 patients with multiple LCH involving the spine treated between January 2009 and August 2021. Kaplan-Meier methods were applied to estimate overall survival (OS) and PFS. Univariate Cox regression analysis was used to identify variables associated with PFS. Results. Patients with multiple LCH involving the spine accounted for 15.4% (28/182 cases) of all cases of spinal LCH: their lesions primarily involved the thoracic and lumbar spines. The most common symptom was pain, followed by neurological dysfunction. All patients presented with osteolytic bone destruction, and 23 cases were accompanied by a paravertebral soft-tissue mass. The incidence of vertebra plana was low, whereas the oversleeve-like sign was a more common finding. The alkaline phosphatase was significantly higher in patients with single-system multifocal bone LCH than in patients with multisystem LCH. At final follow-up, one patient had been lost to follow-up, two patients had died, three patients had local recurrence, six patients had distant involvement, and 17 patients were alive with disease. The median PFS and OS were 50.5 months (interquartile range (IQR) 23.5 to 63.1) and 60.5 months (IQR 38.0 to 73.3), respectively. Stage (hazard ratio (HR) 4.324; p < 0.001) and chemotherapy (HR 0.203; p < 0.001) were prognostic factors for PFS. Conclusion. Pain is primarily due to segmental instability of the spine from its destruction by LCH. Chemotherapy can significantly improve PFS, and radiotherapy has achieved good results in local control. The LCH lesions in some patients will continue to progress. It may initially appear as an isolated or single-system LCH, but will gradually involve multiple sites or systems. Therefore, long-term follow-up and timely intervention are important for patients with spinal LCH. Cite this article: Bone Joint J 2023;105-B(6):679–687


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 680 - 684
1 May 2008
Simon DWN Clarkin CE Das-Gupta V Rawlinson SCF Emery RJ Pitsillides AA

We examined cultured osteoblasts derived from paired samples from the greater tuberosity and acromion from eight patients with large chronic tears of the rotator cuff. We found that osteoblasts from the tuberosity had no apparent response to mechanical stimulation, whereas those derived from the acromion showed an increase in alkaline phosphatase activity and nitric oxide release which is normally a response of bone cells to mechanical strain. By contrast, we found that cells from both regions were able to respond to dexamethasone, a well-established promoter of osteoblastic differentiation, with the expected increase in alkaline phosphatase activity. Our findings indicate that the failure of repair of the rotator cuff may be due, at least in part, to a compromised capacity for mechanoadaptation within the greater tuberosity. It remains to be seen whether this apparent decrease in the sensitivity of bone cells to mechanical stimulation is the specific consequence of the reduced load-bearing history of the greater tuberosity in these patients


Aims. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing. Methods. A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively. Results. miR-136-5p promoted fracture healing and osteoblast proliferation and differentiation. BMSC-derived exosomes exhibited an enriched miR-136-5p level, and were internalized by MC3T3-E1 cells. LRP4 was identified as a downstream target gene of miR-136-5p. Moreover, miR-136-5p or exosomes isolated from BMSCs (BMSC-Exos) containing miR-136-5p activated the Wnt/β-catenin pathway through the inhibition of LRP4 expression. Furthermore, BMSC-derived exosomes carrying miR-136-5p promoted osteoblast proliferation and differentiation, thereby promoting fracture healing. Conclusion. BMSC-derived exosomes carrying miR-136-5p inhibited LRP4 and activated the Wnt/β-catenin pathway, thus facilitating fracture healing. Cite this article: Bone Joint Res 2021;10(12):744–758


Bone & Joint Research
Vol. 10, Issue 9 | Pages 619 - 628
27 Sep 2021
Maestro-Paramio L García-Rey E Bensiamar F Saldaña L

Aims. To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities. Methods. We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors. Results. Osteoblasts from the intertrochanteric region of patients with ONFH showed lower alkaline phosphatase (ALP) activity and mineralization capacity than osteoblasts from the same skeletal site in age-matched patients with OA, as well as lower messenger RNA (mRNA) levels of genes encoding osteocalcin and bone sialoprotein and higher osteopontin expression. In addition, osteoblasts from patients with ONFH secreted lower osteoprotegerin (OPG) levels than those from patients with OA, resulting in a higher receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) ligand (RANKL)-to-OPG ratio. In patients with ONFH, osteoblasts from the femoral head showed reduced viability and mineralized nodule formation compared with osteoblasts from the intertrochanteric region. Notably, the secretion of the pro-resorptive factors interleukin-6 and prostaglandin E. 2. as well as the RANKL-to-OPG ratio were markedly higher in osteoblast cultures from the femoral head than in those from the intertrochanteric region. Conclusion. Idiopathic ONFH is associated with a reduced mineralization capacity of osteoblasts and increased secretion of pro-resorptive factors. Cite this article: Bone Joint Res 2021;10(9):619–628


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims. Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods. RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results. Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion. Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535


Bone & Joint Research
Vol. 9, Issue 10 | Pages 667 - 674
1 Oct 2020
Antich-Rosselló M Forteza-Genestra MA Calvo J Gayà A Monjo M Ramis JM

Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods. EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca. 2+. ) content. Results. Osteogenic differentiation of MSCs was confirmed when treated with UC-isolated EVs. In order to disprove that the effect was due to co-isolated proteins, EVs were isolated by SEC. Purer EVs were obtained and proved to maintain the differentiation effect on MSCs and showed a dose-dependent response. Conclusion. PL-derived EVs present an osteogenic capability comparable to PL treatments, emerging as an alternative able to overcome PL and PRP limitations. Cite this article: Bone Joint Res 2020;9(10):667–674


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims. Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. Methods. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. Results. TGF-β and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. Conclusion. A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades. Cite this article: Bone Joint Res 2020;9(7):412–420


The Journal of Bone & Joint Surgery British Volume
Vol. 41-B, Issue 2 | Pages 401 - 412
1 May 1959
Jeffree GM

1. A quantitative study of phosphatase distribution in the limb bones of growing rabbits is reported. 2. Alkaline phosphatase is present in high concentrations in areas of deposition of new bone. Both local concentrations and the total alkaline phosphatase content of a bone are found to decrease with age. There is good correlation between total alkaline phosphatase activity and monthly increment of weight. 3. Acid phosphatase is present in these bones in greatly less concentrations than alkaline phosphatase. 4. The acid phosphatase of bone shows nearly full activity in the presence of 0·5 per cent formaldehyde. It can be subdivided into two enzymes with characteristically different distributions by the effect of M/100 tartrate on activity. 5. The formaldehyde-stable and tartrate-stable acid phosphatase of rabbit bone (FTS) has a distribution very similar to that of alkaline phosphatase, though very much less in amount, and, like the latter, declines in activity as the bone matures. 6. Tartrate-inhibited, formaldehyde-stable acid phosphatase (FSTI) is found mainly in red marrow and cancellous bone, and full activity persists in mature bone. This enzyme may be associated with resorption and remodelling of bone, or it may represent residual activity under these conditions of the acid phosphatase of developing erythrocytes in the marrow


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 1 | Pages 120 - 136
1 Feb 1965
Jeffree GM Price CHG

1. Alkaline and acid phosphatase, non-specific esterase and beta-glucuronidase have been estimated and demonstrated histochemically in a series of bone tumours and allied lesions, of which ten were osteogenic sarcomata, ten were giant-cell lesions, eleven were fibroblastic lesions and seven were tumours of cartilage. 2. Osteogenic sarcoma was found to be characterised by high levels of alkaline phosphatase, with rich staining for this enzyme in the tumour cells. Similar high levels of alkaline phosphatase were found in other bone-forming lesions, such as fibrous dysplasia, a giant-cell sarcoma with osteogenic matrix, and fracture callus. 3. Giant-cell lesions were characterised by high levels of acid phosphatase, and intense staining for this enzyme in the osteoclasts. These cells were also found to be rich in non-specific esterase (as shown by the alpha-naphthyl acetate method) and in beta-glucuronidase, but almost or entirely lacking in alkaline phosphatase. High levels of alkaline phosphatase were not found in giant-cell lesions except in relation to osteogenic matrix. 4. Fibroblastic tumours were characterised by moderate levels of all four enzymes, with little or no staining for phosphatases in the tumour cells; non-specific esterase was generally present in a proportion of the cells. 5. In certain lesions intermediate stages in the differentiation of fibroblasts to osteoblasts were found, notably in fibrous dysplasia, in which the biochemical change preceded the histological. In such lesions high total levels of alkaline phosphatase were found. 6. Cartilaginous tumours were characterised by low levels of all four enzymes, and little histochemical staining except in hypertrophied cells in areas of ossification. 7. It was found in general that the enzyme distributions in these neoplasms and other lesions reflected the findings in comparable reactive and growing normal tissues


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1647 - 1654
1 Dec 2018
Shepherd KL Cool P Cribb G

Aims. The purpose of this study was to identify prognostic indicators of outcome at presentation to the orthopaedic surgeon, in patients with metastatic prostate cancer. Our aim was to use this information in a pragmatic, clinic-based approach so that surgical decision making could be optimized to benefit the patient in their remaining lifetime. Patients and Methods. A cohort analysis was undertaken of all patients with metastatic disease of the prostate who presented to a regional orthopaedic centre in the United Kingdom between 2003 and 2016. Biochemical data were collected in addition to disease and demographic data. These included: prostate-specific antigen (PSA) at orthopaedic presentation; haemoglobin (Hb); platelets (plt); alkaline phosphatase (ALP); albumin (Alb); and corrected calcium (CaC). Statistical analysis included Kaplan–Meier survival analysis, and a Cox proportional hazards model was fitted to the data. Results. From the departmental database, 137 episodes were identified in 136 patients with a median age at presentation of 72 years (interquartile range (IQR) 66 to 78). Most patients had stage IV disease (n = 98, 72%), and most did not undergo surgical intervention. At one-year follow-up, 50% of patients had died. Biomarkers found to be independently associated with poor survival were: low Hb, low Alb, relatively low PSA (< 30 mmol/l), and a raised ALP. Patients who needed surgical intervention had a poorer survival rate than patients who were managed nonoperatively. Conclusion. The study findings are important for orthopaedic clinical practice in the management of patients with metastatic prostate cancer. The interpretation of routine blood tests can help to predict survival in patients who present with orthopaedic manifestations of prostate cancer. A lower PSA is not necessarily a good prognostic sign. We believe that simple blood testing should be carried out routinely when assessing a patient, guiding potential surgical management and palliative care in the future


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims. Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy. Methods. Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs. Results. Overexpression of BRD4 enhanced while inhibition of Brd4 suppressed the osteogenic differentiation of hBMSCs in vitro. Overexpression of Brd4 increased the expression of mitotically associated long non-coding RNA (Mancr). Downregulation of Mancr suppressed the osteoinductive effect of BRD4. In vivo, inhibition of BRD4 by JQ1 significantly attenuated pathological bone formation in the ATP model (p = 0.001). Conclusion. BRD4 was found to be upregulated in HO and Brd4-Mancr-Runx2 signalling was involved in the modulation of new bone formation in HO. Cite this article: Bone Joint Res 2021;10(10):668–676


Bone & Joint Research
Vol. 8, Issue 10 | Pages 481 - 488
1 Oct 2019
Nathan K Lu LY Lin T Pajarinen J Jämsen E Huang J Romero-Lopez M Maruyama M Kohno Y Yao Z Goodman SB

Objectives. Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. Methods. A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. Results. We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. Conclusion. These results suggest that: 1) a 72- to 96-hour proinflammatory environment is critical for optimal matrix mineralization; and 2) there are immunological differences in this coculture environment due to sex. Optimizing immunomodulation during fracture healing may enhance and expedite the bone regeneration response. These findings provide insight into precise immunomodulation for enhanced bone healing that is sex-specific. Cite this article: K. Nathan, L. Y. Lu, T. Lin, J. Pajarinen, E. Jämsen, J-F. Huang, M. Romero-Lopez, M. Maruyama, Y. Kohno, Z. Yao, S. B. Goodman. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res 2019;8:481–488. DOI: 10.1302/2046-3758.810.BJR-2018-0231.R2


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives. There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method . was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). Results. Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. . Conclusions. Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine


The Journal of Bone & Joint Surgery British Volume
Vol. 36-B, Issue 3 | Pages 474 - 489
1 Aug 1954
Schajowicz F Cabrini RL

1. Histochemical studies have been made of the distribution of alkaline phosphatase, glycogen and acid mucopolysaccharides in normal growing bones (mice, rats and men) and also in forty cases of pathological bone processes (neoplastic and dystrophic). 2. The study of normal material confirmed that alkaline phosphatase is plentiful in calcification of cartilage and even more plentiful in bone formation (whether enchondral or direct). 3. It was observed that glycogen increased in the cartilage areas about to be calcified, and that it disappeared in those calcified. It seemed that osteoblasts did not always contain glycogen. 4. In the pathological material (tumours and dystrophic processes) there was great phosphatase activity in the osteogenic areas and also in the cartilage about to be calcified. Whereas glycogen was plentiful in some cases of neoplastic or reactive osteogenesis, it was absent from others. 5. In every area of normal or pathological ossification, the presence of phosphatase seems to be a rule; glycogen is often but not always present. 6. It appears that alkaline phosphatase plays an important role in the formation of the protein matrix of bone, but is not associated with the elaboration of the mucoprotein cartilage matrix. We believe it is premature to draw any definite conclusion on the behaviour and role of the metachromatic substances in the processes of calcification and ossification. The histochemical study of alkaline phosphatase has shown that this is a valuable method in the detection of reactionary or pathological osteogenic processes which in some cases are difficult to demonstrate with the usual histological methods


The Journal of Bone & Joint Surgery British Volume
Vol. 54-B, Issue 3 | Pages 535 - 546
1 Aug 1972
Jeffree GM

1. Histochemical staining and correlated biochemical estimations of five hydrolytic enzymes were done on eighteen benign and twenty malignant fibroblastic lesions of bone and soft tissue. 2. Alkaline phosphatase activity was moderate in a fibroma and very high in fibrous dysplasia. In a typical fibrosarcoma the fibroblasts showed no enzyme activity and estimations were low. Exceptions indicated an osteogenic potential in the tumour. 3. ß-glucuronidase, leucine aminopeptidase, and to a less extent non-specific esterase, were more active in malignant than in benign lesions, and the highest activities were found in sarcomata arising in Paget's disease of bone. 4. Acid phosphatase showed no correlation with malignancy and was generally unremarkable except for high activity in osteoclasts, but was raised in two sarcomata that occurred after irradiation of giant-cell tumours. 5. A non-osteogenic fibroma and a fibrous cortical defect, though poorly represented in this series, are not uncommon; they sometimes lead to pathological fracture, but sarcoma is very rare in such lesions. They tend to show more alkaline phosphatase than fibrosarcoma but not the very high activity of fibrous dysplasia, which is related to its osteogenic potential. 6. Fibrous dysplasia most often presents in the five to fifteen age group but seldom leads to malignancy, though this may occur, usually as osteosarcoma, which has a similar high content of alkaline phosphatase. Fibrosarcoma is typically negative or very weak in this enzyme: the exceptional cases with high activity were tumours which were in part osteosarcoma. Generally the demonstration of high alkaline phosphatase activity in a fibroblastic lesion of bone, in the absence of trauma or inflammation, suggests the diagnosis of fibrous dysplasia


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1157 - 1163
1 Aug 2005
Peter B Zambelli P Guicheux J Pioletti DP

In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our in vitro study was designed to determine the maximum dose to which osteoblasts could be safely exposed. Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ. m. Murine cells can be exposed to concentrations as high as 10 μ. m. . A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts


Objectives. Osteoporosis is a systemic bone metabolic disease, which often occurs among the elderly. Angelica polysaccharide (AP) is the main component of angelica sinensis, and is widely used for treating various diseases. However, the effects of AP on osteoporosis have not been investigated. This study aimed to uncover the functions of AP in mesenchymal stem cell (MSC) proliferation and osteoblast differentiation. Methods. MSCs were treated with different concentrations of AP, and then cell viability, Cyclin D1 protein level, and the osteogenic markers of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2) were examined by Cell Counting Kit-8 (CCK-8) and western blot assays, respectively. The effect of AP on the main signalling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin was determined by western blot. Following this, si-H19#1 and si-H19#2 were transfected into MSCs, and the effects of H19 on cell proliferation and osteoblast differentiation in MSCs were studied. Finally, in vivo experimentation explored bone mineral density, bone mineral content, and the ash weight and dry weight of femoral bone. Results. The results revealed that AP significantly promoted cell viability, upregulated cyclin D1 and increased RUNX2, OCN, ALP, and BMP-2 protein levels in MSCs. Moreover, we found that AP notably activated PI3K/AKT and Wnt/β-catenin signalling pathways in MSCs. Additionally, the relative expression level of H19 was upregulated by AP in a dose-dependent manner. The promoting effects of AP on cell proliferation and osteoblast differentiation were reversed by H19 knockdown. Moreover, in vivo experimentation further confirmed the promoting effect of AP on bone formation. Conclusion. These data indicate that AP could promote MSC proliferation and osteoblast differentiation by regulating H19. Cite this article: X. Xie, M. Liu, Q. Meng. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19: An animal study. Bone Joint Res 2019;8:323–332. DOI: 10.1302/2046-3758.87.BJR-2018-0223.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 42-B, Issue 1 | Pages 137 - 141
1 Feb 1960
Burger M Sobel AE

The alkaline phosphatase activity of pre-osseous tibial cartilage of rachitic bone stored in the deep freeze for two weeks at -25 degrees centigrade was only slightly less than that of fresh controls from the same animals. The deep frozen pre-osseous tissue did not calcify in in vitro calcifying media containing either inorganic phosphorus or organic phosphate ester. The fresh controls calcified equally well in both media. In addition, after deep-freeze storage the tissue hydrolysed the organic phosphate to the same degree as did the fresh tissue. Bones heated at 65 degrees centigrade will calcify in vitro after calcium chloride treatment despite the destruction of phosphatase activity. It appears unlikely that a relationship exists between alkaline phosphatase and the minimal system required for calcification of pre-osseous cartilage in vitro. These findings do not exclude the possibility that alkaline phosphatase plays some critical role in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 129 - 133
1 Jan 2006
Lee SY Miwa M Sakai Y Kuroda R Niikura T Kurosaka M

We have investigated whether cells derived from haemarthrosis caused by injury to the anterior cruciate ligament could differentiate into the osteoblast lineage in vitro. Haemarthroses associated with anterior cruciate ligament injuries were aspirated and cultured. After treatment with β-glycerophosphate, ascorbic acid and dexamethasone or 1,25 (OH). 2. D. 3. , a significant increase in the activity of alkaline phosphatase was observed. Matrix mineralisation was demonstrated after 28 days and mRNA levels in osteoblast-related genes were enhanced. Our results suggest that the haemarthrosis induced by injury to the anterior cruciate ligament contains osteoprogenitor cells and is a potential alternative source for cell-based treatment in such injury


Bone & Joint Research
Vol. 7, Issue 2 | Pages 187 - 195
1 Feb 2018
Ziebart J Fan S Schulze C Kämmerer PW Bader R Jonitz-Heincke A

Objectives. Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. Methods. Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. Results. Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. Conclusion. Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered. Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187–195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 966 - 972
1 Jul 2008
Kawasumi M Kitoh H Siwicka KA Ishiguro N

The aim of our study was to investigate the effect of platelet-rich plasma on the proliferation and differentiation of rat bone-marrow cells and to determine an optimal platelet concentration in plasma for osseous tissue engineering. Rat bone-marrow cells embedded in different concentrations of platelet-rich plasma gel were cultured for six days. Their potential for proliferation and osteogenic differentiation was analysed. Using a rat limb-lengthening model, the cultured rat bone-marrow cells with platelet-rich plasma of variable concentrations were transplanted into the distraction gap and the quality of the regenerate bone was evaluated radiologically. Cellular proliferation was enhanced in all the platelet-rich plasma groups in a dose-dependent manner. Although no significant differences in the production and mRNA expression of alkaline phosphatase were detected among these groups, mature bone regenerates were more prevalent in the group with the highest concentration of platelets. Our results indicate that a high platelet concentration in the platelet-rich plasma in combination with osteoblastic cells could accelerate the formation of new bone during limb-lengthening procedures


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1394 - 1400
1 Oct 2006
Eid K Labler L Ertel W Trentz O Keel M

Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects. The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% vs 19.1%, p = 0.031). Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients


Bone & Joint Research
Vol. 7, Issue 4 | Pages 289 - 297
1 Apr 2018
Sanghani-Kerai A Osagie-Clouard L Blunn G Coathup M

Objectives. This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis. Methods. Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant. Results. CD marker expression and proliferation of the MSCs from the three groups was not significantly different. The young MSCs demonstrated significantly increased differentiation into bone and fat and superior migration towards SDF-1. The migration of SDF-1 doubled with young rats compared with the adult rats (p = 0.023) and it was four times higher when compared with cells isolated from ovariectomized (OVX) osteopenic rats (p = 0.013). Conclusion. Young rat MSCs are significantly more responsive to osteogenic differentiation, and, contrary to other studies, also demonstrated increased adipogenic differentiation compared with cells from adult and ostopenic rats. Young-rat-derived cells also showed superior migration towards SDF-1 compared with MSCs from OVX and adult control rats. Cite this article: A. Sanghani-Kerai, L. Osagie-Clouard, G. Blunn, M. Coathup. The influence of age and osteoporosis on bone marrow stem cells from rats. Bone Joint Res 2018;7:289–297. DOI: 10.1302/2046-3758.74.BJR-2017-0302.R1


Bone & Joint Research
Vol. 7, Issue 1 | Pages 58 - 68
1 Jan 2018
Portal-Núñez S Ardura JA Lozano D Martínez de Toda I De la Fuente M Herrero-Beaumont G Largo R Esbrit P

Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H. 2. O. 2. )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H. 2. O. 2. on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion. These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 5 | Pages 765 - 768
1 Nov 1987
Wilton T Hosking D Pawley E Stevens A Harvey L

In this study 201 elderly patients with femoral neck fractures were compared with 30 osteomalacic patients with the same injury. Hypocalcaemia and a raised alkaline phosphatase level are common biochemical abnormalities in elderly patients with femoral neck fractures. In only a minority of patients, however, were they associated with histologically proven osteomalacia. By using the combination of hypocalcaemia and a raised alkaline phosphatase it is possible to identify a subgroup (approximately 10% of all admissions) in whom osteomalacia is relatively likely


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 1 | Pages 64 - 74
1 Feb 1958
Dickson W Horrocks RH

1. A case of hypophosphatasia in a boy who sustained a fractured left femur is described. 2. The literature is reviewed, and the reported cases are found to fall into severe, moderately severe and mild forms. 3. The diagnostic features of the disease are the radiological picture, which resembles that of rickets, very low serum alkaline phosphatase, and excessive phosphoethanolamine excretion in the urine. 4. Other clinical features may be a failure to thrive in early infancy, premature loss of deciduous teeth, hypercalcaemia and renal damage. 5. The function of alkaline phosphatase in bone metabolism in relation to this disease has been discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 4 | Pages 421 - 427
1 Nov 1977
Blanco O Stivel M Mautalen C Schajowicz F

A study of two siblings with a severe infantile form of familial idiopathic hyperphosphatasia is reported. A girl aged one year was followed for two years while receiving intermittent treatment with porcine calcitonin. This induced a clinical remission, a reduction of both the high serum level of alkaline phosphatase and the raised urinary excretion of hydroxyproline, and a remarkable improvement in bone structure as seen radiologically. Her sister aged two months received porcine calcitonin for three weeks, during which clinical improvement, no change in the serum level of alkaline phosphatase and a marked decrease of the excretion of hydroxyproline were recorded


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 264 - 270
1 Feb 2009
Hasegawa T Miwa M Sakai Y Niikura T Kurosaka M Komori T

The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this in vitro study, we investigated the effects of LIPUS on the osteogenic activity of HCs. Alkaline phosphatase activity, osteocalcin secretion, the expression of osteoblast-related genes and the mineralisation of HCs were shown to be significantly higher when LIPUS had been applied but without a change in the proliferation of the HCs. These findings provide evidence in favour of the use of LIPUS in the treatment of fractures


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 988 - 994
1 Nov 1997
Haynes DR Hay SJ Rogers SD Ohta S Howie DW Graves SE

Bone loss around replacement prostheses may be related to the activation of mononuclear phagocytes (MNP) by prosthetic wear particles. We investigated how osteoblast-like cells were regulated by human MNP stimulated by particles of prosthetic material. Particles of titanium-6-aluminium-4-vanadium (TiAlV) stimulated MNP to release interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6 and prostaglandin E. 2. (PGE. 2. ). All these mediators are implicated in regulating bone metabolism. Particle-activated MNP inhibited bone cell proliferation and stimulated release of IL-6 and PGE. 2. The number of cells expressing alkaline phosphatase, a marker associated with mature osteo-blastic cells, was reduced. Experiments with blocking antibodies showed that TNFα was responsible for the reduction in proliferation and the numbers of cells expressing alkaline phosphatase. By contrast, IL-1β stimulated cell proliferation and differentiation. Both IL-1β and TNFα stimulated IL-6 and PGE. 2. release from the osteoblast-like cells. Our results suggest that particle-activated mono-nuclear phagocytes can induce a change in the balance between bone formation and resorption by a number of mechanisms


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 475 - 482
1 May 1997
Allen MJ Myer BJ Millett PJ Rushton N

Particulate wear debris can induce the release of bone-resorbing cytokines from cultured macrophages and fibroblasts in vitro, and these mediators are believed to be the cause of the periprosthetic bone resorption which leads to aseptic loosening in vivo. Much less is known about the effects of particulate debris on the growth and metabolism of osteoblastic cells. We exposed two human osteoblast-like cell lines (SaOS-2 and MG-63) to particulate cobalt, chromium and cobalt-chromium alloy at concentrations of 0, 0.01, 0.1 and 1.0 mg/ml. Cobalt was toxic to both cell lines and inhibited the production of type-I collagen, osteocalcin and alkaline phosphatase. Chromium and cobalt-chromium were well tolerated by both cell lines, producing no cytotoxicity and no inhibition of type-I collagen synthesis. At the highest concentration tested (1.0 mg/ml), however, chromium inhibited alkaline phosphatase activity, and both chromium and cobalt-chromium alloy inhibited osteocalcin expression. Our results clearly show that particulate metal debris can modulate the growth and metabolism of osteoblastic cells in vitro. Reduced osteoblastic activity at the bone-implant interface may be an important mechanism by which particulate wear debris influences the pathogenesis of aseptic loosening in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 350 - 358
1 Apr 2004
Karachalios T Lyritis GP Kaloudis J Roidis N Katsiri M

We investigated the effect of calcitonin in the prevention of acute bone loss after a pertrochanteric fracture and its ability to reduce the incidence of further fractures in the same patient. Fifty women aged between 70 and 80 years who had a pertrochanteric fracture of the hip were randomly allocated to group A (200 IU of nasal salmon calcitonin daily for three months) or group B (placebo). Patients in group A showed a significantly higher level of total alkaline phosphatase and osteocalcin on the 15th day after injury and a significantly higher level of bone alkaline phosphatase on the 90th day after surgery. These patients also had significantly lower levels of urinary C-telopeptide (CrossLaps) on the 15th, 45th and 90th days after injury and lower levels of urinary hydroxyproline on the 15th and 45th days after injury. Patients in group A had significantly higher bone mineral density at all recorded sites except the greater trochanter at three months and one year after operation. After a four-year period of clinical observation, five patients (24%) in group B sustained a new fracture, in four of whom (20%) it was of the contralateral hip. Our findings show that calcitonin reduces acute bone loss in patients with pertrochanteric fractures and may prevent the occurrence of new fractures of the contralateral hip in the elderly


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1022 - 1026
1 Aug 2013
O’Neill SC Queally JM Devitt BM Doran PP O’Byrne JM

Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition. Cite this article: Bone Joint J 2013;95-B:1021–5


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 120 - 127
1 Jan 2002
Musgrave DS Pruchnic R Bosch P Ziran BH Whalen J Huard J

We have examined whether primary human muscle-derived cells can be used in ex vivo gene therapy to deliver BMP-2 and to produce bone in vivo. Two in vitro experiments and one in vivo experiment were used to determine the osteocompetence and BMP-2 secretion capacity of cells isolated from human skeletal muscle. We isolated five different populations of primary muscle cells from human skeletal muscle in three patients. In the first in vitro experiment, production of alkaline phosphatase by the cells in response to stimulation by rhBMP-2 was measured and used as an indicator of cellular osteocompetence. In the second, secretion of BMP-2 was measured after the cell populations had been transduced by an adenovirus encoding for BMP-2. In the in vivo experiment, the cells were cotransduced with a retrovirus encoding for a nuclear localised β-galactosidase gene and an adenovirus encoding for BMP-2. The cotransduced cells were then injected into the hind limbs of severe combined immune-deficient (SCID) mice and analysed radiographically and histologically. The nuclear localised β-galactosidase gene allowed identification of the injected cells in histological specimens. In the first in vitro experiment, the five different cell populations all responded to in vitro stimulation of rhBMP-2 by producing higher levels of alkaline phosphatase when compared with non-stimulated cells. In the second, the five different cell populations were all successfully transduced by an adenovirus to express and secrete BMP-2. The cells secreted between 444 and 2551 ng of BMP-2 over three days. In the in vivo experiment, injection of the transduced cells into the hind-limb musculature of SCID mice resulted in the formation of ectopic bone at 1, 2, 3 and 4 weeks after injection. Retroviral labelling of the cell nuclei showed labelled human muscle-derived cells occupying locations of osteoblasts in the ectopic bone, further supporting their osteocompetence. Cells from human skeletal muscle, because of their availability to orthopaedic surgeons, their osteocompetence, and their ability to express BMP-2 after genetic engineering, are an attractive cell population for use in BMP-2 gene therapy approaches


The Journal of Bone & Joint Surgery British Volume
Vol. 61-B, Issue 1 | Pages 82 - 84
1 Feb 1979
Anderton J

Hypophosphatasia in adults is rare. Two elderly sisters presenting with pathological fractures of the femur are reported to illustrate the difficulties in orthopaedic management of this disease. All patients with a history of repeated fractures, especially from minor trauma and with generalised radiological bony abnormality, should be screened for this rare disease. A consistently low level of serum alkaline phosphatase with the presence of phosphoethanolamine in the urine is diagnostic


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 6 | Pages 887 - 890
1 Nov 1994
Floman Y Milgrom C Gomori J Kenan S Ezra Y Liebergall M

We report four patients with unilateral postpartum sacroiliitis presenting with agonising unilateral pain, an elevated ESR, elevated alkaline phosphatase levels, leucocytosis and positive bone scans. The diagnosis of a non-infectious inflammatory cause was supported by the postpartum onset, the response to non-steroidal anti-inflammatory drugs, negative aspiration cultures in two cases and the lack of changes in the sacroiliac joints on long-term follow-up radiographs


The Journal of Bone & Joint Surgery British Volume
Vol. 36-B, Issue 3 | Pages 445 - 449
1 Aug 1954
Dixon TF Mulligan L Nassim R Stevenson FH

1. A metabolic study in a case of myositis ossificans progressiva is reported. 2. The serum showed an increased power of calcification of rachitic rat cartilage. 3. Estimations of alkaline phosphatase showed slightly raised values. 4. Surgical removal of a bony bar was followed by prolonged administration of ACTH and cortisone, but no effect on the calcium-phosphorus balance or on the re-ossification within the area of operation was observed


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 2 | Pages 316 - 325
1 May 1957
Caughey JE Gwynne JF Jefferson NR

1. A report is given of a family suffering from dystrophia myotonica and familial Paget’s disease of bone. 2. Radiological changes in the skull occur in both disorders, which are quite dissimilar. Thickening of the calvarium, however, may be common to both. 3. The serum alkaline phosphatase is high in Paget's disease and normal in dystrophia myotonica. 4. In one patient the Paget's disease was complicated by the development of multiple sarcomata. Sarcomatous involvement of the vertebral column, observed in one of the cases, has not been recorded before


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 2 | Pages 140 - 143
1 Mar 1983
Fyfe I Henry A Mulholland R

A study of cadaveric vertebral biopsy and a review of 100 clinical biopsies has shown that needles and trephines producing tissue specimens of two millimetres or more in diameter can be expected to give a high degree of diagnostic accuracy. The erythrocyte sedimentation rate was a more useful screening investigation than were estimations of serum alkaline phosphatase. The complications are described. It is suggested that patients with painful thoracic metastases and evidence of progressive cord compression should have early decompression after open biopsy if further neurological compromise is to be prevented


The Journal of Bone & Joint Surgery British Volume
Vol. 41-B, Issue 3 | Pages 600 - 610
1 Aug 1959
Amato VP Bombelli R

The main findings in this experimental work on rats fed on lathyrus odoratus (sweet-pea) meal are as follows:. 1. Growth is retarded. 2. The growth plate is disorganised and normal ossification at the metaphysis is interfered with. 3. The small blood vessels are seriously affected and probably contribute quite largely to the disorganisation and lack of calcification. 4. Alkaline phosphatase activity is increased. 5. Raising of the periosteum and laying down of new bone result in exostoses. The possible underlying etiology and the role of cement substance, endocrine factors and the blood vessels are discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 2 | Pages 284 - 286
1 Mar 1992
Nolan P Nicholas R Mulholland B Mollan R Wilson D

We cultured human osteoblasts from trabecular bone explants and confirmed their phenotype by alkaline phosphatase assay, increased cyclic adenosine monophosphate production in response to prostaglandin E2 and radiographic micro-analysis of nodules of calcification. The osteoblasts were seeded on to demineralised human bone fragments and examined at ten-day intervals over a 50-day period by scanning electron microscopy. During this time the bank bone became progressively repopulated by the cultured osteoblasts. This system may offer a means of graft enhancement in elective orthopaedic and maxillofacial surgery by delivery of cultured autologous human osteoblasts to bone defects


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 706 - 711
1 Jul 2002
Foukas AF Deshmukh NS Grimer RJ Mangham DC Mangos EG Taylor S

We studied 55 patients with stage-IIB osteosarcoma around the knee with respect to the expression of matrix metalloproteinase (MMP)-9 in the surviving tumour cells in surgical resection specimens. They were followed up for a minimum of 2.5 years. Factors significantly associated with poor overall survival were a high serum level of alkaline phosphatase at diagnosis and tumour cells expressing MMP-9 in the resection specimens. The only factor strongly associated with disease-free survival was the immunohistochemical status of tumour cells for MMP-9 in the resection specimens. The percentage of necrosis after chemotherapy failed marginally to reach statistical significance. On Cox regression analysis only MMP-9 remained significant for overall and disease-free survival


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 1 | Pages 33 - 37
1 Feb 1981
Kaltsas D

Seven patients with stress fractures of the femoral neck were treated at the Military Hospital of Thessaloniki, Greece between 1972 and 1976. Their average age was 22 years. Stress fractures of the femoral neck are not as common as stress fractures of the metatarsals or tibia and other bones. Intense muscular activity was the main cause of these stress fractures which were only classed as such in the absence of any injury. Pain and stiffness around the hip were reported by all seven patients before admission. Results of laboratory investigations of the patients' alkaline phosphatase and serum calcium levels were normal. One patient received surgical treatment and the other patients were treated conservatively. Healing was uneventful in all


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 2 | Pages 304 - 323
1 May 1955
Duthie RB Barker AN

1. A method is described of demonstrating in vivo the utilisation of radioactive sulphur. 35. and of radioactive phosphorus. 32. during bone growth and repair. 2. The relationship between labelled chondroitin sulphuric acid and labelled phosphate complexes has been studied, the importance and significance of vascularity and the localisation of the enzyme alkaline phosphatase being noted. 3. It was found that bone growth by external accretion, both epiphysial and periosteal, was accompanied by an increased utilisation of radioactive chondroitin sulphuric acid and calcium phosphate complexes. 4. During repair in a fracture site, although there was deposition of radioactive phosphate, no preferential localisation of radioactive sulphur was observed and the possible explanations of this are discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 1 | Pages 137 - 140
1 Jan 1990
Lidor C Dekel S Meyer M Blaugrund E Hallel T Edelstein S

In vitamin D-fed chicks 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were implanted into experimentally-produced fractures of the mid-tibia. The mechanical and biochemical properties of the tibia were evaluated for two weeks, including torsion tests, measurement of alkaline phosphatase activity, 45Ca incorporation, and Ca2+ content. Both dihydroxylated metabolites of vitamin D3 had a direct effect on endochondral bone formation. 24,25(OH)2D3 strengthened the callus, and raised alkaline phosphate activity in the first seven days after fracture. 1,25(OH)2D3 decreased the strength of the callus concomitant with a reduction in 45Ca incorporation. It is suggested that local application of 24,25(OH)2D3 into fractures may accelerate healing and prevent non-union


The Journal of Bone & Joint Surgery British Volume
Vol. 42-B, Issue 2 | Pages 303 - 312
1 May 1960
Montgomery RD Standard KL

1. A type of bony sclerosis is described, occurring in nine members of a Jamaican family and resembling the more benign form of Albers-Schönberg's disease. The parents were consanguineous. Three of the patients developed facial palsy at the same age, and one had bilateral optic atrophy and proptosis. 2. Although radiological changes occurred of all grades of severity, certain features often described in this condition were lacking. In one child the onset of radiological changes was observed at the age of eleven years. 3. Serum studies showed increased alkaline phosphatase activity. 4. These features are discussed in the light of present-day knowledge and theory of the pathology of Albers-Schönberg's disease


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 2 | Pages 255 - 260
1 Mar 1988
Osterberg P Wallace R Adams D Crone R Dickson G Kanis J Mollan R Nevin N Sloan J Toner P

We report 40 cases in one family of an autosomal dominant bone dysplasia, which, though similar in some aspects to Paget's disease, seems unique in some features and in its natural history. The disease shows both general and focal skeletal changes, the latter being mainly in the limbs with an onset from the second decade. Progressive osteoclastic resorption is accompanied by medullary expansion which leads to pain, severe deformity and a tendency to pathological fracture. The serum alkaline phosphatase and urinary hydroxyproline are variably elevated, while other biochemical indices are normal. Most patients had an associated deafness of early onset and loss of dentition. No previous description of this disease has been found in the literature


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 2 | Pages 305 - 310
1 Mar 1986
Dohler Souter W Beggs I Smith G

Hyperphosphatasia, or hereditary bone dysplasia with hyperphosphatasaemia, is a rare genetic disorder which is characterised by failure to transform woven into lamellar bone. Clinical, radiological and histological features establish the diagnosis, fractures, deformities, diffuse sclerosis on radiographs and high serum alkaline phosphatase being characteristic. We report the case of a 27-year-old man with follow-up at the same hospital for 20 years. Attempts at treatment with calcitonin and disocium etidronate (EHDP) failed, but stapling of the growth plates at the knee was successfully performed. Transverse "brittle" fractures of the humerus, lower leg and ribs healed normally, but internal fixation and late bone grafting were required for a subtrochanteric stress fracture of the femur at the age of 24 years. At present the patient has no clinical problems and leads a normal life


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 444 - 449
1 Apr 2004
Evans CE Butcher C

There is increasing evidence that non-steroidal anti-inflammatory drugs (NSAIDs) can adversely affect bone repair. We have, therefore, studied the in vitro effects of NSAIDs, which differentially inhibit cyclooxygenases (COX), the prostaglandin/thromboxane synthesising enzymes, on human osteoblasts. Indomethacin and the new nitric oxide (NO)-donating NSAIDs block the activity of both COX-1 and COX-2. Indomethacin and 5,5-dimethyl-3-(3 fluorophenyl)-4-(4 methylsulphonal) phenyl-2 (5H)-furanone (DFU) reduced osteoblast numbers in a dose-dependant manner and increased collagen synthesis and alkaline phosphatase activity. The reduction in osteoblast numbers was not caused by loss of adhesion and was reversible. Neither NSAID influenced DNA synthesis. There was no difference between the effects of indomethacin and DFU. NO-NSAIDs did not affect cell numbers. These results suggest that care should be taken when administering NSAIDs to patients with existing skeletal problems and that NO-NSAIDs may be safer


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 759 - 770
1 Jul 2004
Vermes C Chandrasekaran R Dobai JG Jacobs JJ Andersson GBJ An H Hallab NJ Galante JO Glant TT

Periprosthetic bone loss after total joint arthroplasty is a major clinical problem resulting in aseptic loosening of the implant. Among many cell types, osteoblasts play a crucial role in the development of peri-implant osteolysis. In this study, we tested the effects of calcitriol (1α,25-dihydroxy-vitamin-D. 3. ) and the bisphosphonate pamidronate on titanium-particle- and TNF-α-induced release of interleukin-6 and suppression of osteoblast-specific gene expressions in bone-marrow-derived stromal cells with an osteoblastic phenotype. We monitored the expression of procollagen α1[1], osteocalcin, osteonectin and alkaline phosphatase mRNAs by Northern blots and real-time reverse transcription and polymerase chain reaction analyses. The release of various cytokines was also analysed by ELISA. We found that calcitriol or pamidronate could only partially recover the altered functions of osteoblasts when added alone. Only a combination of these compounds restored all the tested functions of osteoblasts. The local delivery of these drugs may have therapeutic potential to prevent or to treat periprosthetic osteolysis and aseptic loosening of implants


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 2 | Pages 215 - 218
1 Mar 1992
Wittenberg R Peschke U Botel U

From 1981 to 1986 we treated 413 patients for acute spinal-cord injuries. We reviewed 356 patients followed for a minimum of two years of whom 71 (20%) developed heterotopic ossification around one or more joints. Heterotopic ossification occurred more often in male patients (23%) than in female (10%), and was most frequent in the 20- to 30-year age group. It was also more common after injuries of the lower cervical or thoracic spine than after those of the lumbar spine. Patients with severe neurological deficits (Frankel grades A and B) showed significantly more heterotopic ossification but there was no correlation with the number or severity of associated head and limb injuries. Serum calcium levels did not change significantly in either group for 30 weeks after injury, but the erythrocyte sedimentation rate and the alkaline phosphatase level were significantly increased at six weeks in patients with heterotopic ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 290 - 296
1 Mar 2000
Sovak G Weiss A Gotman I

Coating titanium alloy implants with titanium nitride (TiN) by the method of Powder Immersion Reaction Assisted Coating (PIRAC) produces a stable layer on their surface. We have examined the ability of the new TiN coating to undergo osseointegration. We implanted TiN-coated and uncoated Ti6Al4V alloy pins into the femora of six-month-old female Wistar rats. SEM after two months showed a bone collar around both TiN-coated and uncoated implants. Morphometrical analysis revealed no significant differences between the percentage of the implant-bone contact and the area and volume of the bone around TiN-coated compared with uncoated implants. Electron-probe microanalysis indicated the presence of calcium and phosphorus at the implant-bone interface. Mineralisation around the implants was also confirmed by labelling with oxytetracycline. Strong activity of alkaline phosphatase and weak activity of tartrate-resistant acid phosphatase were shown histochemically. Very few macrophages were detected by the non-specific esterase reaction at the site of implantation. Our findings indicate good biocompatibility and bone-bonding properties of the new PIRAC TiN coatings which are comparable to those of uncoated Ti6Al4V alloy implants


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims

This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model.

Methods

The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims

Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear.

Methods

Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 4 | Pages 804 - 825
1 Nov 1966
Baker SL Dent CE Friedman M Watson L

1. A clinical, radiological and histological description of a patient with fibrogenesis imperfecta ossium is given. We think that this is the first case in which diagnosis has been made during the life of the patient. 2. The disease is characterised by a defect in the formation of the collagen fibres of the bone matrix. There is also a failure of normal calcification of the matrix, giving rise to the appearance of wide "osteoid" seams. When examined with the polarising microscope and when stained with Gomori's reticulin stain the collagen fibres can be seen to be grossly deficient and abnormal. 3. The patient presented at the age of fifty-four years with bone pain and multiple fractures. The only biochemical abnormality detected in the plasma was an elevated alkaline phosphatase. He was also in negative calcium balance. 4. Treatment with vitamin D. 2. , later changed to dihydrotachysterol, appears to have produced clinical, biochemical and radiological improvement. It appears that a direct action of the vitamin on the abnormal bone collagen must be postulated, in addition to its known actions on the calcifying mechanisms. 5. An unusual feature of the case was the slow development of a total unresponsiveness to large doses of vitamin D. 2. , in spite of a markedly elevated level of vitamin D in the plasma. There was later a response to a much smaller dose of dihydrotachysterol, which is being maintained to date


Bone & Joint Research
Vol. 13, Issue 9 | Pages 497 - 506
16 Sep 2024
Hsieh H Yen H Hsieh W Lin C Pan Y Jaw F Janssen SJ Lin W Hu M Groot O

Aims

Advances in treatment have extended the life expectancy of patients with metastatic bone disease (MBD). Patients could experience more skeletal-related events (SREs) as a result of this progress. Those who have already experienced a SRE could encounter another local management for a subsequent SRE, which is not part of the treatment for the initial SRE. However, there is a noted gap in research on the rate and characteristics of subsequent SREs requiring further localized treatment, obligating clinicians to extrapolate from experiences with initial SREs when confronting subsequent ones. This study aimed to investigate the proportion of MBD patients developing subsequent SREs requiring local treatment, examine if there are prognostic differences at the initial treatment between those with single versus subsequent SREs, and determine if clinical, oncological, and prognostic features differ between initial and subsequent SRE treatments.

Methods

This retrospective study included 3,814 adult patients who received local treatment – surgery and/or radiotherapy – for bone metastasis between 1 January 2010 and 31 December 2019. All included patients had at least one SRE requiring local treatment. A subsequent SRE was defined as a second SRE requiring local treatment. Clinical, oncological, and prognostic features were compared between single SREs and subsequent SREs using Mann-Whitney U test, Fisher’s exact test, and Kaplan–Meier curve.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 3 | Pages 572 - 581
1 Aug 1963
Trueta J Buhr AJ

1. It has been shown that in experimental rickets the well known changes in the epiphysial cartilage which so seriously affect growth are accompanied by severe interference with the progress of the metaphysial vessels into the growth cartilage. 2. Further evidence has been found that, by the repeated increase in their number, the cartilage cells occupying the more distal part of the proliferative segment become more and more affected by their remoteness from the epiphysial vessels, which supply the transudates to these cells. At a given distance these cells are affected and change, becoming hypertrophic, with increasingly large vacuolae, and are rich in glycogen and alkaline phosphatase. 3. The hypertrophic cells alter the nature of the intercellular substance they deposit and this becomes calcifiable. Provided that the metaphysial vessels are situated at an appropriate distance–about three cell capsules away–and that the blood has its necessary components, calcification occurs. 4. Calcification produces the advancing, rigid multitubular structure within which the progressing metaphysial vessels are protected. 5. The interruption of calcification by the withdrawal of fat-soluble vitamins breaks down the whole mechanism of growth and stops the vessels growing into their proper position. The administration of the required vitamins re-establishes the normal sequence of events and allows the vessels to play their decisive role in osteogenesis. 6. Any mechanism which causes the interruption of the vascular progression, whether from metaphysial ischaemia (Trueta and Amato 1960), from severe pressure (Trueta and Trias 1961) or from lack of calcification by withdrawing the fat-soluble vitamins, equally interrupts growth


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 283 - 289
1 Mar 2000
Heinemann DEH Lohmann C Siggelkow H Alves F Engel I Köster G

Periprosthetic osteolysis is a major cause of aseptic loosening in artificial joint replacement. It is assumed to occur in conjunction with the activation of macrophages. We have shown in vitro that human osteoblast-like cells, isolated from bone specimens obtained from patients undergoing hip replacement, phagocytose fine particles of titanium alloy (TiAlV). The human osteoblast-like cells were identified immunocytochemically by the presence of bone-specific alkaline phosphatase (BAP). With increasing duration of culture, a variable number of the osteoblastic cells became positive for the macrophage marker CD68, independent of the phagocytosis of particles, with a fine granular cytoplasmic staining which was coexpressed with BAP as revealed by immunodoublestaining. The metal particles were not toxic to the osteoblastic cells since even in culture for up to four weeks massively laden cells were vital and had a characteristic morphology. Cells of the human osteosarcoma cell line (HOS 58) were also able to phagocytose metal particles but had only a low expression of the CD68 antigen. Fluorescence-activated cell scanning confirmed our immunocytochemical results. Additionally, the cells were found to be negative for the major histocompatibility complex-II (MHC-II) which is a marker for macrophages and other antigen-presenting cells. Negative results of histochemical tests for tartrate-resistant acid phosphatase excluded the contamination by osteoclasts or macrophages in culture. Our observations suggest that the osteoblast can either change to a phagocytosing cell or that the phagocytosis is an underestimated property of the osteoblast. The detection of the CD68 antigen is insufficient to prove the monocytic lineage. In order to discriminate between macrophages and osteoblasts additional markers should be used. To our knowledge, this is the first demonstration of cells of an osteoblastic origin which have acquired a mixed phenotype of both osteoblasts and macrophages


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 457 - 461
1 Apr 2002
Wang FS Yang KD Chen RF Wang CJ Sheen-Chen SM

Extracorporeal shock-wave (ESW) treatment hasbeen shown to be effective in promoting the healing of fractures. We aimed to determine whether ESW could enhance the growth of bone-marrow osteoprogenitor cells. We applied ESW to the left femur of rats 10 mm above the knee at 0.16 mJ/mm. 2. in a range of between 250 and 2000 impulses. Bone-marrow cells were harvested after ESW for one day and subjected to assessment of colony-forming unit (CFU) granulocytes, monocytes, erythocytes, megakaryocytes (CFU-Mix), CFU-stromal cells (CFU-S) and CFU-osteoprogenitors (CFU-O). We found that the mean value for the CFU-O colonies after treatment with 500 impulses of ESW was 168.2 CFU-O/well (. sem. 11.3) compared with 88.2 CFU-O/well (. sem. 7.2) in the control group. By contrast, ESW treatment did not affect haematopoiesis as shown by the CFU-Mix (p = 0.557). Treatment with 250 and 500 impulses promoted CFU-O, but not CFU-Mix formations whereas treatment with more than 750 impulses had an inhibiting effect. Treatment with 500 impulses also enhanced the activity of bone alkaline phosphatase in the subculture of CFU-O (p< 0.01), indicating a selective promotion of growth of osteoprogenitor cells. Similarly, formation of bone nodules in the long-term culture of bone-marrow osteoprogenitor cells was also significantly enhanced by ESW treatment with 500 impulses. The mean production of TGF-β1 was 610 pg/ml (. sem. 84.6) in culture supernatants from ESW-treated rats compared with 283 pg/ml (. sem. 36.8) in the control group. Our findings suggest that optimal treatment with ESW could enhance rat bone-marrow stromal growth and differentiation towards osteoprogenitors presumably by induction of TGF-β1


Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims

Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy.

Methods

The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 2 | Pages 402 - 418
1 May 1963
Trueta J

We have attempted to summarise in a short space investigations that have occupied several years, and we realise that whatever the merits of such an effort the results can only be modest. Many important aspects of the osteogenetic process still remain a mystery and thus are subjected to theory and controversy. Such is the case with this constant attendant at osteogenesis which is alkaline phosphatase. But of one thing we are certain, namely that bone is an organised "soft" tissue of which only part has been made rigid by the deposit of calcium salts. The organiser is the osteogenetic vessel from which springs the syncytial frame of cells and their connections on which the bone architecture is established. Endothelial cell, intermediate cell, osteoblast, osteocyte, osteoclast; these constitute the normal sequence of cellular phylogeny in the constant elaboration and removal of the bone substance. The initial cells on which the whole process rests are those of the capillary-sinusoid vessel which is responsible for providing the transudates on which the life and health of the whole syncytium depends. If our findings were confirmed, a better understanding of the nature and characteristics of primitive malignant bone tumours would be possible. Each type of tumour from endothelioma to malignant osteoclastoma, including reticulum-cell sarcoma and osteogenic sarcoma, would be initiated by a different cell of the syncytium, but in its monstrous deviation from the normal would still preserve most of the characteristics of its healthy ancestor. Thus the endothelioma causes bone expansion, bone reaction and even bone necrosis, but not proper bone formation, whereas the osteogenic sarcoma or osteoblastoma forms bone; and with the same fidelity to their origin osteoclasts are seen in the malignant osteolytic tumour. Over thirty years ago the late Sir Arthur Keith (1927) expressed his suspicion that the cells which assume a bone-forming role are derived from the endothelium of the capillary system. We hope we have contributed to show that his suspicion was right


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 203 - 211
1 Feb 2024
Park JH Won J Kim H Kim Y Kim S Han I

Aims

This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival.

Methods

This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival.


The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 3 | Pages 403 - 423
1 Aug 1967
Chalmers J Conacher WDH Gardner DL Scott PJ

1. The clinical features, diagnosis and treatment of osteomalacia are discussed in relation to thirty-seven recently recognised cases. It is suggested that this disease is not uncommon in elderly women, among whom it is liable to be confused with senile osteoporosis. Osteomalacia may be distinguished by, firstly, the history, in which persistent skeletal pain of long duration and muscular weakness are typical of osteomalacia, but not of osteoporosis in which transient episodes of pain usually associated with a fracture are more characteristic. There is a high incidence of previous gastric surgery in the osteomalacia patients. Secondly, the physical examination shows skeletal tenderness in osteomalacia but this is not a particular feature of osteoporosis. A shuffling "penguin gait" suggests osteomalacia. Thirdly, the biochemistry shows a low plasma calcium and phosphate, and raised alkaline phosphatase levels commonly in osteomalacia but these are usually normal in osteoporosis. Reduced twenty-four-hour urinary calcium is characteristic of osteomalacia but not of osteoporosis. Fourthly, radiology will show diminished bone density which is common to both diseases, but if the changes are more marked in the peripheral bones than in the axial skeleton osteomalacia is suggested; the opposite is typical of osteoporosis. Skeletal deformity without fracture suggests osteomalacia, as do stress fractures and greenstick fractures in the elderly. Looser's zones are diagnostic of osteomalacia in which they are the most important radiological feature. Finally, histology will show the presence of excess osteoid tissue in undecalcified sections of bone in osteomalacia. This may be the earliest and most sensitive index of the disease and biopsy is indicated in all doubtful cases. 2. The etiology is discussed and it is suggested that a dietary deficiency of vitamin D, limited exposure to sunlight and mild degrees of malabsorption may all be important either alone or in combination. No satisfactory explanation is offered for the predominant female incidence. 3. A practical method of treatment is given and the dangers of uncontrolled administration of vitamin D indicated. 4. Treatment of osteomalacia is rapidly and consistently successful, and well justifies a thorough screening of all elderly patients presenting with weakness, skeletal pain, pathological fractures or with diminished radiographic density of bone


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims

To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction.

Methods

In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.


Bone & Joint 360
Vol. 13, Issue 2 | Pages 44 - 46
1 Apr 2024

The April 2024 Research Roundup360 looks at: Prevalence and characteristics of benign cartilaginous tumours of the shoulder joint; Is total-body MRI useful as a screening tool to rule out malignant progression in patients with multiple osteochondromas?; Effects of vancomycin and tobramycin on compressive and tensile strengths of antibiotic bone cement: a biomechanical study; Biomarkers for early detection of Charcot arthropathy; Strong association between growth hormone therapy and proximal tibial physeal avulsion fractures in children and adolescents; UK pregnancy in orthopaedics (UK-POP): a cross-sectional study of UK female trauma and orthopaedic surgeons and their experiences of pregnancy; Does preoperative weight loss change the risk of adverse outcomes in total knee arthroplasty by initial BMI classification?.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims

The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects.

Methods

HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims

Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD.

Methods

We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Bone & Joint 360
Vol. 11, Issue 5 | Pages 37 - 38
1 Oct 2022


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims

The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures.

Methods

A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 237 - 249
1 Apr 2021
Chen X Chen W Aung ZM Han W Zhang Y Chai G

Aims

LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling.

Methods

The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 188 - 191
1 Mar 2021
Nicholson T Scott A Newton Ede M Jones SW


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.