Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
Bone & Joint Research
Vol. 5, Issue 2 | Pages 52 - 60
1 Feb 2016
Revell PA Matharu GS Mittal S Pynsent PB Buckley CD Revell MP

Objectives. T-cells are considered to play an important role in the inflammatory response causing arthroplasty failure. The study objectives were to investigate the composition and distribution of CD4+ T-cell phenotypes in the peripheral blood (PB) and synovial fluid (SF) of patients undergoing revision surgery for failed metal-on-metal (MoM) and metal-on-polyethylene (MoP) hip arthroplasties, and in patients awaiting total hip arthroplasty. Methods. In this prospective case-control study, PB and SF were obtained from 22 patients (23 hips) undergoing revision of MoM (n = 14) and MoP (n = 9) hip arthroplasties, with eight controls provided from primary hip osteoarthritis cases awaiting arthroplasty. Lymphocyte subtypes in samples were analysed using flow cytometry. Results. The percentages of CD4+ T-cell subtypes in PB were not different between groups. The CD4+ T-cells in the SF of MoM hips showed a completely different distribution of phenotypes compared with that found in the PB in the same patients, including significantly decreased CD4+ T-central memory cells (p < 0.05) and increased T-effector memory cells (p < 0.0001) in the SF. Inducible co-stimulator (ICOS) was the only co-stimulatory molecule with different expression on CD4+ CD28+ cells between groups. In PB, ICOS expression was increased in MoM (p < 0.001) and MoP (p < 0.05) cases compared with the controls. In SF, ICOS expression was increased in MoM hips compared with MoP hips (p < 0.05). Conclusions. Increased expression of ICOS on CD4+ T-cells in PB and SF of patients with failed arthroplasties suggests that these cells are activated and involved in generating immune responses. Variations in ICOS expression between MoM and MoP hips may indicate different modes of arthroplasty failure. Cite this article: Professor P. A. Revell. Increased expression of inducible co-stimulator on CD4+ T-cells in the peripheral blood and synovial fluid of patients with failed hip arthroplasties. Bone Joint Res 2016;5:52–60. doi: 10.1302/2046-3758.52.2000574


Bone & Joint Research
Vol. 1, Issue 4 | Pages 56 - 63
1 Apr 2012
Langton DJ Sidaginamale R Lord JK Nargol AVF Joyce TJ

Objectives. An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer. Methods. Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated. Results. The measured rates of wear and distribution of material loss from the taper surfaces appeared to show that the primary factor leading to taper failure is the increased lever arm acting on this junction in contemporary large-diameter metal-on-metal hip replacements. Conclusions. Our analysis suggests that varus stems, laterally engaging taper systems and larger head diameters all contribute to taper failure


Bone & Joint Research
Vol. 1, Issue 3 | Pages 25 - 30
1 Mar 2012
Wroblewski BM Siney PD Fleming PA

Objectives

Metal-on-metal (MoM) hip resurfacing was introduced into clinical practice because it was perceived to be a better alternative to conventional total hip replacement for young and active patients. However, an increasing number of reports of complications have arisen focusing on design and orientation of the components, the generation of metallic wear particles and serum levels of metallic ions. The procedure introduced a combination of two elements: large-dimension components and hard abrasive particles of metal wear. The objective of our study was to investigate the theory that microseparation of the articular surfaces draws in a high volume of bursal fluid and its contents into the articulation, and at relocation under load would generate high pressures of fluid ejection, resulting in an abrasive water jet.

Methods

This theoretical concept using MoM resurfacing components (head diameter 55 mm) was modelled mathematically and confirmed experimentally using a material-testing machine that pushed the head into the cup at a rate of 1000 mm/min until fully engaged.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 270 - 277
6 May 2022
Takegami Y Seki T Osawa Y Imagama S

Aims. Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems. Methods. We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes. Results. There was a significant difference in fracture torque between the three stem types (p = 0.036). Particularly, the median fracture torque for the CPT stem was significantly lower than that for the CMK stem (CPT vs CMK: 164.5 Nm vs 200.5 Nm; p = 0.046). The strain values for the CPT stem were higher than those for the other two stems at the most proximal site. The fracture pattern of the CPT and Versys stems was Vancouver type B, whereas that of the CMK stem was type C. Conclusion. Our study suggested that the cobalt-chromium alloy material, polished surface finish, acute-square proximal form, and the absence of a collar may be associated with lower fracture torque, which may be related to PPF. Cite this article: Bone Joint Res 2022;11(5):270–277


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Bone & Joint Research
Vol. 9, Issue 9 | Pages 534 - 542
1 Sep 2020
Varga P Inzana JA Fletcher JWA Hofmann-Fliri L Runer A Südkamp NP Windolf M

Aims. Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA). Methods. A total of 64 cement augmentation configurations were analyzed using six screws of a locking plate to virtually fix unstable three-part fractures in 24 low-density proximal humerus models under three physiological loading cases (4,608 simulations). The biomechanical benefit of augmentation was evaluated through an established FEA methodology using the average peri-screw bone strain as a validated predictor of cyclic cut-out failure. Results. The biomechanical benefit was already significant with a single cemented screw and increased with the number of augmented screws, but the configuration was highly influential. The best two-screw (mean 23%, SD 3% reduction) and the worst four-screw (mean 22%, SD 5%) combinations performed similarly. The largest benefits were achieved with augmenting screws purchasing into the calcar and having posteriorly located tips. Local bone mineral density was not directly related to the improvement. Conclusion. The number and configuration of cemented screws strongly determined how augmentation can alleviate the predicted risk of cut-out failure. Screws purchasing in the calcar and posterior humeral head regions may be prioritized. Although requiring clinical corroborations, these findings may explain the controversial results of previous clinical studies not controlling the choices of screw augmentation


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims

Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs).

Methods

A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 317 - 326
23 May 2022
Edwards TC Guest B Garner A Logishetty K Liddle AD Cobb JP

Aims

This study investigates the use of the metabolic equivalent of task (MET) score in a young hip arthroplasty population, and its ability to capture additional benefit beyond the ceiling effect of conventional patient-reported outcome measures.

Methods

From our electronic database of 751 hip arthroplasty procedures, 221 patients were included. Patients were excluded if they had revision surgery, an alternative hip procedure, or incomplete data either preoperatively or at one-year follow-up. Included patients had a mean age of 59.4 years (SD 11.3) and 54.3% were male, incorporating 117 primary total hip and 104 hip resurfacing arthroplasty operations. Oxford Hip Score (OHS), EuroQol five-dimension questionnaire (EQ-5D), and the MET were recorded preoperatively and at one-year follow-up. The distribution was examined reporting the presence of ceiling and floor effects. Validity was assessed correlating the MET with the other scores using Spearman’s rank correlation coefficient and determining responsiveness. A subgroup of 93 patients scoring 48/48 on the OHS were analyzed by age, sex, BMI, and preoperative MET using the other metrics to determine if differences could be established despite scoring identically on the OHS.


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims

Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane.

Methods

Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 595 - 600
1 Nov 2018
Bergiers S Hothi HS Henckel J Eskelinen A Skinner J Hart A

Objectives. Previous studies have suggested that metal-on-metal (MoM) Pinnacle (DePuy Synthes, Warsaw, Indiana) hip arthroplasties implanted after 2006 exhibit higher failure rates. This was attributed to the production of implants with reduced diametrical clearances between their bearing surfaces, which, it was speculated, were outside manufacturing tolerances. This study aimed to better understand the performance of Pinnacle Systems manufactured before and after this event. Methods. A total of 92 retrieved MoM Pinnacle hips were analyzed, of which 45 were implanted before 2007, and 47 from 2007 onwards. The ‘pre-2007’ group contained 45 implants retrieved from 21 male and 24 female patients, with a median age of 61.3 years (interquartile range (IQR) 57.1 to 65.5); the ‘2007 onwards’ group contained 47 implants retrieved from 19 male and 28 female patients, with a median age of 61.8 years (IQR 58.5 to 67.8). The volume of material lost from their bearing and taper surfaces was measured using coordinate and roundness measuring machines. These outcomes were then compared statistically using linear regression models, adjusting for potentially confounding factors. Results. There was no significant difference between the taper and bearing wear rates of the ‘pre-2007’ and ‘2007 onwards’ groups (p = 0.67 and p = 0.39, respectively). Pinnacles implanted from 2007 onwards were revised after a mean time of 50 months, which was significantly earlier than the ‘pre-2007’ hips (96 months) (p < 0.001). A reduction in the time to revision was present year on year from 2003 to 2011. Conclusion. We found no difference in the wear rate of these implants based on the year of implantation. The ‘pre-2007’ hips had a two-fold greater time to revision than those implanted after 2007; this may be due to the increased surveillance of MoM hips following UK regulatory advice and several high-profile failures. Interestingly, we observed a decreasing trend in the mean time to revision every year from 2003 onwards. Cite this article: S. Bergiers, H. S. Hothi, J. Henckel, A. Eskelinen, J. Skinner, A. Hart. Wear performance of retrieved metal-on-metal Pinnacle hip arthroplasties implanted before and after 2007. Bone Joint Res 2018;7:595–600. DOI: 10.1302/2046-3758.711.BJR-2018-0143.R1


Bone & Joint Research
Vol. 10, Issue 12 | Pages 830 - 839
15 Dec 2021
Robertson G Wallace R Simpson AHRW Dawson SP

Aims

Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning.

Methods

A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 574 - 590
7 Sep 2021
Addai D Zarkos J Pettit M Sunil Kumar KH Khanduja V

Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO), and surgical hip dislocation (SHD). This SR was registered with PROSPERO. An electronic database search of PubMed, Medline, and EMBASE for English and German language articles over the last 20 years was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We specifically analyzed and compared changes in patient-reported outcome measures (PROMs), α-angle, rate of complications, rate of revision, and conversion to total hip arthroplasty (THA). A total of 48 articles were included for final analysis with a total of 4,384 hips in 4,094 patients. All subgroups showed a significant correction in mean α angle postoperatively with a mean change of 28.8° (95% confidence interval (CI) 21 to 36.5; p < 0.01) after AMO, 21.1° (95% CI 15.1 to 27; p < 0.01) after SHD, and 20.5° (95% CI 16.1 to 24.8; p < 0.01) after HA. The AMO group showed a significantly higher increase in PROMs (3.7; 95% CI 3.2 to 4.2; p < 0.01) versus arthroscopy (2.5; 95% CI 2.3 to 2.8; p < 0.01) and SHD (2.4; 95% CI 1.5 to 3.3; p < 0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. All three surgical approaches offered significant improvements in PROMs and radiological correction of cam deformities. All three groups showed similar rates of revision procedures but SHD had the highest rate of conversion to a THA. Revision rates were similar for all three revision procedures.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 204 - 207
1 Apr 2017
Fernandez MA Aquilina A Achten J Parsons N Costa ML Griffin XL

Objectives. The Sliding Hip Screw (SHS) is commonly used to treat trochanteric hip fractures. Fixation failure is a devastating complication requiring complex revision surgery. One mode of fixation failure is lag screw cut-out which is greatest in unstable fracture patterns and when the tip-apex distance of the lag screw is > 25 mm. The X-Bolt Dynamic Hip Plating System (X-Bolt Orthopaedics, Dublin, Ireland) is a new device which aims to reduce this risk of cut-out. However, some surgeons have reported difficulty minimising the tip-apex distance with subsequent concerns that this may lead to an increased risk of cut-out. Patients and Methods. We measured the tip-apex distance from the intra-operative radiographs of 93 unstable trochanteric hip fractures enrolled in a randomised controlled trial (Warwick Hip Trauma Evaluation, WHiTE One trial). Participants were treated with either the sliding hip screw or the X-Bolt dynamic hip plating system. We also recorded the incidence of cut-out in both groups, at a median follow-up time of 17 months. Results. There was a significantly increased tip-apex distance with the use of the X-Bolt (mean difference 3.7mm (95% confidence interval 1.58 to 5.73); SHS mean 17.1 mm, X-Bolt mean 20.8; p = 0.001. However, this was not associated with an increased incidence of cut-out at a median follow-up time of 17 months, with three cut-outs (6%) in the SHS group and 0 (0%) in the X-Bolt group. Conclusion. The X-Bolt is a safe implant with no increased risk for cut-out. Concerns about minimising the tip-apex distance may be justified but do not appear to be clinically important. Cite this article: M. A. Fernandez, A. Aquilina, J. Achten, N. Parsons, M. L. Costa, X. L. Griffin. The tip-apex distance in the X-Bolt dynamic plating system. Bone Joint Res 2017;6:–207. DOI: 10.1302/2046-3758.64.BJR-2015-0016.R2


Bone & Joint Research
Vol. 10, Issue 6 | Pages 354 - 362
1 Jun 2021
Luo Y Zhao X Yang Z Yeersheng R Kang P

Aims

The purpose of this study was to examine the efficacy and safety of carbazochrome sodium sulfonate (CSS) combined with tranexamic acid (TXA) on blood loss and inflammatory responses after primary total hip arthroplasty (THA), and to investigate the influence of different administration methods of CSS on perioperative blood loss during THA.

Methods

This study is a randomized controlled trial involving 200 patients undergoing primary unilateral THA. A total of 200 patients treated with intravenous TXA were randomly assigned to group A (combined intravenous and topical CSS), group B (topical CSS), group C (intravenous CSS), or group D (placebo).


Bone & Joint Research
Vol. 6, Issue 1 | Pages 8 - 13
1 Jan 2017
Acklin YP Zderic I Grechenig S Richards RG Schmitz P Gueorguiev B

Objectives. Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible. The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws. Materials and Methods. A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm. 3. (standard deviation (. sd). 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups. Results. Initial axial construct stiffness was not significantly different between the groups (p = 0.463). Interfragmentary displacement and gap angle at the fracture site were also not statistically significantly different between the groups throughout the evaluated cycles (p ⩾ 0.249). Similarly, cycles to failure were not statistically different between Group 1 (8438, . sd. 6968) and Group 2 (10 213, . sd. 10 334), p = 0.379. Failure mode in both groups was characterised by screw cutting through the cancellous bone. Conclusion. From a biomechanical point of view, pubic ramus stabilisation with either one large or two small fragment screw osteosynthesis is comparable in osteoporotic bone. However, the two-screw fixation technique is less demanding as the smaller screws deflect at the cortical margins. Cite this article: Y. P. Acklin, I. Zderic, S. Grechenig, R. G. Richards, P. Schmitz, B. Gueorguiev. Are two retrograde 3.5 mm screws superior to one 7.3 mm screw for anterior pelvic ring fixation in bones with low bone mineral density? Bone Joint Res 2017;6:8–13. DOI: 10.1302/2046-3758.61.BJR-2016-0261


Bone & Joint Research
Vol. 5, Issue 8 | Pages 338 - 346
1 Aug 2016
MacLeod AR Sullivan NPT Whitehouse MR Gill HS

Objectives. Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection. Materials and Methods. Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences. Results. 36 mm diameter heads had significantly lower pull-off forces than 28 mm heads when impacted at 4 kN and 5 kN (p < 0.001; p < 0.001), but not at 6 kN (p = 0.21). Mean pull-off forces at 4 kN and 5 kN impaction forces were approximately 20% larger for 28 mm heads compared with 36 mm heads. Finite element and analytical models demonstrate that the differences in pull-off strength can be explained by differences in structural rigidity and the resulting interface pressures. Conclusion. This is the first study to show that 36 mm Co-Cr heads have up to 20% lower pull-off connection strength compared with 28 mm heads for equivalent assembly forces. This effect is likely to play a role in the high failure rates of large diameter MoM hips. Cite this article: A. R. MacLeod, N. P. T. Sullivan, M. R. Whitehouse, H. S. Gill. Large-diameter total hip arthroplasty modular heads require greater assembly forces for initial stability. Bone Joint Res 2016;5:338–346. DOI: 10.1302/2046-3758.58.BJR-2016-0044.R1


Bone & Joint Research
Vol. 3, Issue 5 | Pages 150 - 154
1 May 2014
M. Takamura K Maher P Nath T Su EP

Objectives. Metal-on-metal hip resurfacing (MOMHR) is available as an alternative option for younger, more active patients. There are failure modes that are unique to MOMHR, which include loosening of the femoral head and fractures of the femoral neck. Previous studies have speculated that changes in the vascularity of the femoral head may contribute to these failure modes. This study compares the survivorship between the standard posterior approach (SPA) and modified posterior approach (MPA) in MOMHR. . Methods. A retrospective clinical outcomes study was performed examining 351 hips (279 male, 72 female) replaced with Birmingham Hip Resurfacing (BHR, Smith and Nephew, Memphis, Tennessee) in 313 patients with a pre-operative diagnosis of osteoarthritis. The mean follow-up period for the SPA group was 2.8 years (0.1 to 6.1) and for the MPA, 2.2 years (0.03 to 5.2); this difference in follow-up period was statistically significant (p < 0.01). Survival analysis was completed using the Kaplan–Meier method. . Results. At four years, the Kaplan–Meier survival curve for the SPA was 97.2% and 99.4% for the MPA; this was statistically significant (log-rank; p = 0.036). There were eight failures in the SPA and two in the MPA. There was a 3.5% incidence of femoral head collapse or loosening in the SPA and 0.4% in the MPA, which represented a significant difference (p = 0.041). There was a 1.7% incidence of fractures of the femoral neck in the SPA and none in the MPA (p = 0.108). . Conclusion. This study found a significant difference in survivorship at four years between the SPA and the MPA (p = 0.036). The clinical outcomes of this study suggest that preserving the vascularity of the femoral neck by using the MPA results in fewer vascular-related failures in MOMHRs. Cite this article: Bone Joint Res 2014;3:150–4


Aims

To investigate the effect of polyethylene manufacturing characteristics and irradiation dose on the survival of cemented and reverse hybrid total hip arthroplasties (THAs).

Methods

In this registry study, data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man (NJR) were linked with manufacturing data supplied by manufacturers. The primary endpoint was revision of any component. Cox proportional hazard regression was a primary analytic approach adjusting for competing risk of death, patient characteristics, head composition, and stem fixation.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 270 - 276
1 May 2017
Gosiewski JD Holsgrove TP Gill HS

Objectives. Fractures of the proximal femur are a common clinical problem, and a number of orthopaedic devices are available for the treatment of such fractures. The objective of this study was to assess the rotational stability, a common failure predictor, of three different rotational control design philosophies: a screw, a helical blade and a deployable crucifix. Methods. Devices were compared in terms of the mechanical work (W) required to rotate the implant by 6° in a bone substitute material. The substitute material used was Sawbones polyurethane foam of three different densities (0.08 g/cm. 3. , 0.16 g/cm. 3. and 0.24 g/cm. 3. ). Each torsion test comprised a steady ramp of 1°/minute up to an angular displacement of 10°. Results. The deployable crucifix design (X-Bolt), was more torsionally stable, compared to both the dynamic hip screw (DHS, p = 0.008) and helical blade (DHS Blade, p= 0.008) designs in bone substitute material representative of osteoporotic bone (0.16 g/cm. 3. polyurethane foam). In 0.08 g/cm. 3. density substrate, the crucifix design (X-Bolt) had a higher resistance to torsion than the screw (DHS, p = 0.008). There were no significant differences (p = 0.101) between the implants in 0.24 g/cm. 3. density bone substitute. Conclusions. Our findings indicate that the clinical standard proximal fracture fixator design, the screw (DHS), was the least effective at resisting torsional load, and a novel crucifix design (X-Bolt), was the most effective design in resisting torsional load in bone substitute material with density representative of osteoporotic bone. At other densities the torsional stability was also higher for the X-Bolt, although not consistently significant by statistical analysis. Cite this article: J. D. Gosiewski, T. P. Holsgrove, H. S. Gill. The efficacy of rotational control designs in promoting torsional stability of hip fracture fixation. Bone Joint Res 2017;6:270–276. DOI: 10.1302/2046-3758.65.BJR-2017-0287.R1


Bone & Joint Research
Vol. 6, Issue 2 | Pages 113 - 122
1 Feb 2017
Scholes SC Hunt BJ Richardson VM Langton DJ Smith E Joyce TJ

Objectives. The high revision rates of the DePuy Articular Surface Replacement (ASR) and the DePuy ASR XL (the total hip arthroplasty (THA) version) have led to questions over the viability of metal-on-metal (MoM) hip joints. Some designs of MoM hip joint do, however, have reasonable mid-term performance when implanted in appropriate patients. Investigations into the reasons for implant failure are important to offer help with the choice of implants and direction for future implant designs. One way to assess the performance of explanted hip prostheses is to measure the wear (in terms of material loss) on the joint surfaces. Methods. In this study, a coordinate measuring machine (CMM) was used to measure the wear on five failed cementless Biomet Magnum/ReCap/ Taperloc large head MoM THAs, along with one Biomet ReCap resurfacing joint. Surface roughness measurements were also taken. The reason for revision of these implants was pain and/or adverse reaction to metal debris (ARMD) and/or elevated blood metal ion levels. Results. The mean wear rate of the articulating surfaces of the heads and acetabular components of all six joints tested was found to be 6.1 mm. 3. /year (4.1 to 7.6). The mean wear rate of the femoral head tapers of the five THAs was 0.054 mm. 3. /year (0.021 to 0.128) with a mean maximum wear depth of 5.7 µm (4.3 to 8.5). Conclusion. Although the taper wear was relatively low, the wear from the articulating surfaces was sufficient to provide concern and was potentially large enough to have been the cause of failure of these joints. The authors believe that patients implanted with the ReCap system, whether the resurfacing prosthesis or the THA, should be closely monitored. Cite this article: S. C. Scholes, B. J. Hunt, V. M. Richardson, D. J. Langton, E. Smith, T. J. Joyce. Explant analysis of the Biomet Magnum/ReCap metal-on-metal hip joint. Bone Joint Res 2017;6:113–122. DOI: 10.1302/2046-3758.62.BJR-2016-0130.R2