header advert
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 1, Issue 5 | Pages 78 - 85
1 May 2012
Entezari V Della Croce U DeAngelis JP Ramappa AJ Nazarian A Trechsel BL Dow WA Stanton SK Rosso C Müller A McKenzie B Vartanians V Cereatti A

Objectives. Cadaveric models of the shoulder evaluate discrete motion segments using the glenohumeral joint in isolation over a defined trajectory. The aim of this study was to design, manufacture and validate a robotic system to accurately create three-dimensional movement of the upper body and capture it using high-speed motion cameras. Methods. In particular, we intended to use the robotic system to simulate the normal throwing motion in an intact cadaver. The robotic system consists of a lower frame (to move the torso) and an upper frame (to move an arm) using seven actuators. The actuators accurately reproduced planned trajectories. The marker setup used for motion capture was able to determine the six degrees of freedom of all involved joints during the planned motion of the end effector. Results. The testing system demonstrated high precision and accuracy based on the expected versus observed displacements of individual axes. The maximum coefficient of variation for displacement of unloaded axes was less than 0.5% for all axes. The expected and observed actual displacements had a high level of correlation with coefficients of determination of 1.0 for all axes. Conclusions. Given that this system can accurately simulate and track simple and complex motion, there is a new opportunity to study kinematics of the shoulder under normal and pathological conditions in a cadaveric shoulder model


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims. An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise. Methods. A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data. Results. The patient-specific approach with engineered features achieved the highest in-clinic performance for differentiating physiotherapy exercise from non-exercise activity (area under the receiver operating characteristic (AUROC) = 0.924). Including non-exercise data in algorithm training further improved classifier performance (random forest, AUROC = 0.985). The highest accuracy achieved for classifying individual in-clinic exercises was 0.903, using a patient-specific method with deep neural network model extracted features. Grouping exercises by motion type improved exercise classification. For at-home data, OOD detection yielded similar performance with the non-exercise data in the algorithm training (fully convolutional network AUROC = 0.919). Conclusion. Including non-exercise data in algorithm training improves detection of exercises. A patient-specific approach leveraging data from earlier patient-supervised sessions should be considered but is highly dependent on per-patient data quality. Cite this article: Bone Joint Res 2023;12(3):165–177


Bone & Joint Research
Vol. 7, Issue 6 | Pages 422 - 429
1 Jun 2018
Acklin YP Zderic I Inzana JA Grechenig S Schwyn R Richards RG Gueorguiev B

Aims. Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Methods. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking. Results. Mean initial stiffness (N/mm) was 581.3 (. sd. 239.7) for the gliding plate, 631.5 (. sd. 160.0) for the PHILOS and 440.2 (. sd. 97.6) for the gliding augmented plate without significant differences between the groups (p = 0.11). Mean varus tilting (°) after 7500 cycles was comparable between the gliding plate (2.6; . sd. 1.9), PHILOS (1.2; . sd. 0.6) and gliding augmented plate (1.7; . sd. 0.9) (p = 0.10). Similarly, mean screw migration(mm) after 7500 cycles was similar between the gliding plate (3.02; . sd. 2.85), PHILOS (1.30; . sd. 0.44) and gliding augmented plate (2.83; . sd. 1.18) (p = 0.13). Mean number of cycles until failure with 5° varus tilting were 12702 (. sd. 3687) for the gliding plate, 13948 (. sd. 1295) for PHILOS and 13189 (. sd. 2647) for the gliding augmented plate without significant differences between the groups (p = 0.66). Conclusion. Biomechanically, plate fixation using a new gliding screw technology did not show considerable advantages in comparison with fixation using a standard PHILOS plate. Based on the finding of telescoping of screws, however, it may represent a valid approach for further investigations into how to avoid the cut-out of screws. Cite this article: Y. P. Acklin, I. Zderic, J. A. Inzana, S. Grechenig, R. Schwyn, R. G. Richards, B. Gueorguiev. Biomechanical evaluation of a new gliding screw concept for the fixation of proximal humeral fractures. Bone Joint Res 2018;7:422–429. DOI: 10.1302/2046-3758.76.BJR-2017-0356.R1


Bone & Joint Research
Vol. 10, Issue 2 | Pages 113 - 121
1 Feb 2021
Nicholson JA Oliver WM MacGillivray TJ Robinson CM Simpson AHRW

Aims

To evaluate if union of clavicle fractures can be predicted at six weeks post-injury by the presence of bridging callus on ultrasound.

Methods

Adult patients managed nonoperatively with a displaced mid-shaft clavicle were recruited prospectively. Ultrasound evaluation of the fracture was undertaken to determine if sonographic bridging callus was present. Clinical risk factors at six weeks were used to stratify patients at high risk of nonunion with a combination of Quick Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) ≥ 40, fracture movement on examination, or absence of callus on radiograph.


Bone & Joint Research
Vol. 1, Issue 9 | Pages 210 - 217
1 Sep 2012
Walton JR Murrell GAC

Objectives. The aim of this study was to determine whether there is any significant difference in temporal measurements of pain, function and rates of re-tear for arthroscopic rotator cuff repair (RCR) patients compared with those patients undergoing open RCR. Methods. This study compared questionnaire- and clinical examination-based outcomes over two years or longer for two series of patients who met the inclusion criteria: 200 open RCR and 200 arthroscopic RCR patients. All surgery was performed by a single surgeon. . Results. Most pain measurements were similar for both groups. However, the arthroscopic RCR group reported less night pain severity at six months, less extreme pain and greater satisfaction with their overall shoulder condition than the open RCR group. The arthroscopic RCR patients also had earlier recovery of strength and range of motion, achieving near maximal recovery by six months post-operatively whereas the open RCR patients took longer to reach the same recovery level. The median operative times were 40 minutes (20 to 90) for arthroscopic RCR and 60 minutes (35 to 120) for open RCR. Arthroscopic RCR had a 29% re-tear rate compared with 52% for the open RCR group (p < 0.001). . Conclusions. Arthroscopic RCR involved less extreme pain than open RCR, earlier functional recovery, a shorter operative time and better repair integrity


Bone & Joint Research
Vol. 8, Issue 3 | Pages 118 - 125
1 Mar 2019
Doi N Izaki T Miyake S Shibata T Ishimatsu T Shibata Y Yamamoto T

Objectives

Indocyanine green (ICG) fluorescence angiography is an emerging technique that can provide detailed anatomical information during surgery. The purpose of this study is to determine whether ICG fluorescence angiography can be used to evaluate the blood flow of the rotator cuff tendon in the clinical setting.

Methods

Twenty-six patients were evaluated from October 2016 to December 2017. The participants were categorized into three groups based on their diagnoses: the rotator cuff tear group; normal rotator cuff group; and adhesive capsulitis group. After establishing a posterior standard viewing portal, intravenous administration of ICG at 0.2 mg/kg body weight was performed, and fluorescence images were recorded. The time from injection of the drug to the beginning of enhancement of the observed area was measured. The hypovascular area in the rotator cuff was evaluated, and the ratio of the hypovascular area to the anterolateral area of the rotator cuff tendon was calculated (hypovascular area ratio).


Bone & Joint Research
Vol. 2, Issue 7 | Pages 132 - 139
1 Jul 2013
Ketola S Lehtinen J Rousi T Nissinen M Huhtala H Konttinen YT Arnala I

Objectives

To report the five-year results of a randomised controlled trial examining the effectiveness of arthroscopic acromioplasty in the treatment of stage II shoulder impingement syndrome.

Methods

A total of 140 patients were randomly divided into two groups: 1) supervised exercise programme (n = 70, exercise group); and 2) arthroscopic acromioplasty followed by a similar exercise programme (n = 70, combined treatment group).


Bone & Joint Research
Vol. 1, Issue 7 | Pages 158 - 166
1 Jul 2012
Dean BJF Franklin SL Carr AJ

Introduction

The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD.

Methods

We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria.