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Article focus
�� This study's aim was to develop and test 

biomechanically a prototype plate for 
fixation of proximal humerus fractures 
which integrates a new gliding screw 
concept enabling dynamic compression 
in the fracture gap.

Key messages
�� Although from biomechanical perspec-

tive plate fixation with a new gliding 

screw concept did not show considerable 
advantages over PHILOS plating, based 
on the initiation of screw telescoping it 
may represent a valid alternative to the 
latter, especially in terms of cut-out 
prevention.

Strengths and limitations
�� This study presents a novel concept for 

improvement of plate fixation in the 
treatment of proximal humeral fractures 

Biomechanical evaluation of a new  
gliding screw concept for the fixation  
of proximal humeral fractures

Aims
Plating displaced proximal humeral fractures is associated with a high rate of screw perfora-
tion. Dynamization of the proximal screws might prevent these complications. The aim of 
this study was to develop and evaluate a new gliding screw concept for plating proximal 
humeral fractures biomechanically.

Methods
Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumen-
tation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were 
fixed using the gliding plate with bone cement augmentation of its proximal screws. The 
specimens were cyclically tested under progressively increasing loading until perforation 
of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using 
optical motion tracking.

Results
Mean initial stiffness (N/mm) was 581.3 (sd 239.7) for the gliding plate, 631.5 (sd 160.0) 
for the PHILOS and 440.2 (sd 97.6) for the gliding augmented plate without significant 
differences between the groups (p = 0.11). Mean varus tilting (°) after 7500 cycles was 
comparable between the gliding plate (2.6; sd 1.9), PHILOS (1.2; sd 0.6) and gliding aug-
mented plate (1.7; sd 0.9) (p = 0.10). Similarly, mean screw migration(mm) after 7500 
cycles was similar between the gliding plate (3.02; sd 2.85), PHILOS (1.30; sd 0.44) and 
gliding augmented plate (2.83; sd 1.18) (p = 0.13). Mean number of cycles until failure with 
5° varus tilting were 12702 (sd 3687) for the gliding plate, 13948 (sd 1295) for PHILOS and 
13189 (sd 2647) for the gliding augmented plate without significant differences between 
the groups (p = 0.66).

Conclusion
Biomechanically, plate fixation using a new gliding screw technology did not show con-
siderable advantages in comparison with fixation using a standard PHILOS plate. Based on 
the finding of telescoping of screws, however, it may represent a valid approach for further 
investigations into how to avoid the cut-out of screws.
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together with new insights into the biomechanics of 
such fixed fractures, which can be used in the devel-
opment of the next generation implants. The main 
strength of this study is the application of a reliable 
tracking system for precise analysis of interfragmen-
tary and inter-implant movements.

�� The main limitation of this study is the low number of 
used specimens, restricting generalized clinical appli-
cation. In addition, the specimens were preserved 
with Thiel’s method, reported to modify the biome-
chanical bone properties. Moreover, the biomechani-
cal testing addressed loading in an idealized setting, 
neglecting such clinical aspects as muscle traction, 
soft tissue interference and compliance. In contrast to 
some previous biomechanical studies, the uniaxial 
loading was applied with the humeral axis kept at 
constant inclination, thus compromising to some 
extend the loading environment.

Introduction
Proximal humeral fractures are common. Their incidence 
in elderly patients with osteoporotic bone is increasing.1,2 
Minimally displaced fractures show good results with 
conservative treatment.3-5 In severely displaced fractures, 
internal fixation using a plate or a nail, which provides 
sufficient biomechanical stability, has become widely 
accepted.6-9 However, it is still associated with a high 
complication and reoperation rate.10-12 One severe 
adverse effect is migration of screws with perforation of 
the cortex. This occurs in 8 to 11% of the cases, with a 
glenoid damage in up to 56% of them.13 There is a con-
sensus in the literature that less rigid fixation is required, 
particularly for osteoporotic fractures, in order to reduce 
stresses at the bone-implant interface and prevent migra-
tion of the screws without compromising the stability of 
the construct.14-17 Although some semi-rigid or elastic 
implants have recently been used for fixation of proximal 
humeral fractures, no studies have investigated means of 
preventing screw cut-out in poor bone quality when 
using dynamic plating.9,18-22 Recently, a new prototype 
gliding plate, intended to enable dynamic compression 
of the fracture, was developed for fixation at the proximal 
humerus. Its design is adapted from the PHILOS plate 
(DePuy Synthes, West Chester, Pennsylvania), replacing 
the proximal locking holes with four short barrels for 
insertion of 3.5 mm gliding screws. The axes of the bar-
rels are parallel to each other in order to enhance gliding 
of the screws. The construct allows anchorage in loca-
tions with high subchondral bone mineral density (BMD) 
and the blunt tips of the screws might help to reduce per-
foration. Cement can be added around the tips of the 
screws by injection into the predrilled bone holes.

The aim of this study was to evaluate the new concept 
for plating of three-part proximal humeral fractures bio-
mechanically – with and without added bone cement – 
and compare it with the well-established PHILOS plate 

fixation. The hypothesis was that the gliding of the four 
proximal screws would prevent perforation of the joint 
better, and provide similar resistance to varus collapse, 
compared with PHILOS fixation; and that augmentation 
with cement would enhance additional resistance to 
varus collapse.

Materials and Methods
First, a pilot study, based on finite element analysis (FEA), 
was conducted to determine the optimal inclination of 
the four proximal gliding screws of the prototype plate 
which would be required to minimize stresses in the 
bone. For that purpose, three fresh-frozen (-20°C) human 
cadaveric humeri were scanned with high-resolution 
peripheral quantitative CT (HR-pQCT) using XtremeCT 
(Scanco Medical AG, Brüttisellen, Switzerland).

Implant placement, virtual osteotomies, meshing and 
material property assignments were performed using 
ScanIP software (Simpleware Ltd., Exeter, UK). Two oste-
otomies, simulating a three-part proximal humeral frac-
ture without medial support according to Neer,23 were 
created in each specimen prior to scanning (Fig. 1a).24 
The BMD, evaluated in the whole humeral head from the 
CT data, was 123 mg hydroxyapatite (HA)/cm3 for bone 
1, 114 mg HA/cm3 for bone 2 and 100 mg HA/cm3 for 
bone 3. The Young's modulus was assigned element-
wise according to the BMD-modulus relationship used by 
Dragomir-Daescu et al:25 E = 14664ρ1.49 MPa, where E is 
Young's modulus and ρ is the element's apparent BMD 
obtained from the HR-pQCT scan. Poisson's ratio was set 
to 0.3. All screws and both plate types were assigned a 
linear elastic Young's modulus of 186.4 GPa with 0.3 as 
Poisson's ratio. The three fracture fragments of each 

Load Direction
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Fracture
Lines

Fig. 1a Fig. 1b

Examples of the finite element model for evaluation of the principal compres-
sive bone strains at the tip of the four proximal screws of the prototype plate: 
a) a virtually instrumented specimen after anatomical reduction of the frag-
ments. The red arrows denote the fracture lines and the yellow arrow the 
direction of loading as adapted from Bergman et al;24 b) prototype plate with 
20° screw angle configuration.
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specimen were anatomically reduced and fixed virtually 
with either the gliding plate or PHILOS plate. The four 
most proximal screw holes of the latter were occupied 
with locking screws to ensure a similar configuration in 
the two plate constructs. The contact at the bone-screw 
interface was modelled as tied. The interaction between 
the plate and screws was modelled as surface-to-surface 
contact with a coefficient of friction of 0.1.

The FEA models were solved using Abaqus software 
v6.13 (Simulia; Dassault Systèmes, Waltham, Mass
achusetts). A compressive load of 250 N was applied to 
the articular surface of each model, with the humeral axis 
inclined at 25° adduction (Fig. 1a). The loaded surface 
area was defined by projecting a vertically aligned cylin-
der of 30 mm diameter, whose axis crossed the centre of 
the humeral head on its surface. All translations perpen-
dicular to the applied load and rotations around the com-
pressive axis were constrained. Distally, a cardan joint 
coupling to the ground was simulated by connecting the 
shaft nodes, located in the 5 mm most distal part, to a 
control node located 200 mm distally, as measured from 
the most proximal aspect of the humeral head along the 
axis of the shaft. All translations of this control node and 
the rotation around the humeral shaft axis were con-
strained. The peak principal compressive strains at the tip 
of the four proximal screws of both implant systems were 
calculated for the standard screw angles of the PHILOS 
plate as well as for 20° (Fig. 1b) and 30°angles of the glid-
ing plate. The results consistently indicated lower peak 
values for the gliding plate with 30° versus 20° screw 
angle as well as versus the PHILOS screw angles (Fig. 2). 
Based on these results, gliding plate prototypes were 

produced from stainless steel 316 L (DIN 1.4441) with a 
30° inclination of the four screws (Fig. 3).

A total of 12 paired human cadaveric proximal humeri, 
preserved with Thiel’s method,26 were used in the main 
study. Donors gave their informed consent within the 
donation of anatomical gift statement during their life-
time. The specimens were stripped of all soft tissue. The 
mean BMD of the humeral heads measured using clinical 
CT (SOMATOM Emotion 6, Siemens AG, Forchheim, 
Germany), was 87.0 mg HA/cm3 (sd 56.8).

Two osteotomies, simulating a three-part fracture with 
no medial support according to Neer,23 were created 
using a 1 mm oscillating saw blade. The three-part frac-
ture represented a standard proximal humeral fracture 
consisting of a shaft, head and greater tubercle fragment. 
Eight paired specimens were assigned to two groups with 
an equal left and right number of bones for instrumenta-
tion with either the prototype gliding plate or PHILOS 
plate. The other four pairs were assigned for instrumenta-
tion using the gliding plate with bone cement augmenta-
tion at the tip of the four proximal screws.

Instrumentation was performed after reduction of 
the fracture. All plates were fixed distally to the humeral 
shaft with three 3.5 mm cortical screws. The plates in 
group 1 (gliding plate) were fixed proximally using 
four 3.5 mm gliding screws. In group 2 (PHILOS) the 
PHILOS aiming block was used for the proximal instru-
mentation of six 3.5 mm locking screws engaging the 
six most proximal screw holes. In group 3 (gliding aug-
mented plate) the plate was fixed proximally with four 
3.5 mm gliding screws which were augmented with 1 ml 
polymethylmethacrylate (PMMA)-based bone cement 
(Traumacem, DePuy Synthes, Zuchwil, Switzerland). The 
cement was prepared and 1 ml of it injected at the tip of 
the screw before its insertion, according to Röderer 
et al,27 using a standard vertebroplasty syringe and nee-
dle of DePuy Synthes. The length of each screw was 
defined using a depth gauge. Whereas the PHILOS plate 
and all screws were made of the titanium-based alloy 
Ti-6Al-7Nb (TAN) as provided by DePuy Synthes, the glid-
ing plate prototypes were made of stainless steel (DIN 
1.4441 – 316 L medical). Each specimen was distally cut 
at a length of 150 mm, and the distal 65 mm were 
embedded in PMMA (SCS-Beracryl, Suter-Kunststoffe AG, 

0.000

0.002

0.004

0.006

0.008

Philos_Prox4Screws

1 2 3

Pe
ak

 c
o

m
p

re
ss

iv
e 

p
ri

n
ci

p
al

b
o

n
e 

st
ra

in
 a

t 
sc

re
w

 t
ip

Bone

PhilosSlide_20deg

PhilosSlide_30deg

Fig. 2

Graph showing peak principal compressive bone strains at the tip of the 
four proximal screws for the standard screw angles of the PHILOS plate 
(Philos_Prox4Screws) as well as for 20° and 30° angles of the gliding plate 
(PhilosSlide_20deg and PhilosSlide_30deg, respectively). The 30° screw angle 
configuration proved to be the most advantageous.

	 Fig. 3a	 Fig. 3b

a) Gliding plate computer model; b) photograph of the back side of the glid-
ing plate showing the four parallel aligned barrels.
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Fraubrunnen, Switzerland). Four retro-reflective marker 
sets were attached to the humeral head, the shaft, the 
most proximal screw (number one) and the plate of each 
specimen for optical motion tracking during testing.

Biomechanical testing was performed on a servo-
hydraulic test system (Bionix 858.20, MTS Systems, Eden 
Prairie, Minnesota) equipped with a 4 kN/100 Nm load 
cell. The setup is shown in Figure 4. Each specimen was 
tested in 30° adduction in correspondence with the 
humeral loading angle as measured in vivo by Bergmann 
et al.24 For that purpose, the distally embedded humerus 
was fixed to the base of the machine using an angulated 
holder. The humeral head was loaded in axial compres-
sion along the machine axis using a spherically shaped 
PMMA shell cup attached to the load cell, which itself was 
interconnected to the machine actuator.

Progressively increasing cyclical compression loading 
was applied with a physiological profile of each cycle at a 
rate of 2 Hz. While the valley load was kept at 20 N con-
stant, the peak load, starting at 100 N, increased at a rate 
of 0.05 N/cycle until indication of a screw perforation 
through the humeral head.

Axial displacement (mm) and axial load (N) were 
acquired at a rate of 128 Hz. Based on these, initial stiffness 
of the bone-implant construct (N/mm) was calculated 
from the ascending linear slope of the load-displacement 
curve between 30 N and 90 N compression in the third 
loading cycle to exclude settling effects at the beginning 
of the cyclical test. Anteroposterior radiographs were 
taken for radiological assessment under peak load using 
a triggered C-arm at the beginning of the cyclical test and 
then at timed intervals every 250 cycles. Relative move-
ments of the humeral head with respect to the shaft were 
investigated together with those between the most 

proximal screw and the plate in all six degrees of freedom 
using three-dimensional (3D) motion tracking analysis 
with five Qualisys ProReflex MCU digital cameras 
(Qualisys AB, Gothenburg, Sweden). For this purpose, 
the coordinates of the markers were continuously 
recorded throughout the cyclical test at a rate of 100 Hz. 
Based on the motion tracking data, varus tilting was cal-
culated from the rotational movements of the humeral 
head in the coronal plane with respect to the shaft. 
Moreover, the number of cycles to mechanical failure 
with the corresponding peak load at failure, arbitrarily 
defined as 5° varus collapse, were derived from the mag-
nitude series of the varus tilting over time. Furthermore, 
screw migration was calculated as the magnitude of the 
relative 3D translational movement of the humeral head 
and the tip of the most proximal screw. This screw was, 
as indicated, marked with a retro-reflective marker for 
tracking of its movement. Moreover, screw telescoping, 
defined as movement of the most proximal screw along 
its axis relative to the plate, was calculated to evaluate the 
performance of the gliding mechanism of the prototype 
plate. Finally, the number of cycles to cut-out was radio-
logically defined with the corresponding peak load at 
cut-out from the radiographs taken with the triggered 
C-arm. The outcomes varus tilting, screw migration and 
screw telescoping were derived after 7500 cycles under 
peak loading in relation to their values at cycle 1 under 
peak loading. The 7500 cycles represented the highest 
number when all specimens had not yet failed by cut-out 
and therefore were considered as an appropriate time 
point for evaluation.
Statistical analysis.  Statistical analysis was performed using 
SPSS software package (IBM SPSS Statistics, V23; IBM, 
Armonk, New York). Data were screened for normal dis-
tribution with the Shapiro-Wilk test. Differences between 
the paired treatment groups were investigated using the 
Wilcoxon-Signed Rank test. Kruskal-Wallis test was used 
to detect differences between the non-paired groups. The 
level of significance was set to 0.05 for all statistical tests.

Results
Mean BMD in the three groups was 81.3 mg HA/cm3 
(sd 52.3) for the gliding plate, 85.6 mg HA/cm3 (sd 52.8) 
for the PHILOS and 88.4 mg HA/cm3 (sd 74.3) for the glid-
ing augmented plate, with homogeneous distribution 
among the groups, p = 0.83.

The mean initial stiffness was 581.3 N/mm (sd 239.7) 
for the gliding plate, 631.5 N/mm (sd 160.0) for the 
PHILOS and 440.2 N/mm (sd 97.6) for the gliding aug-
mented plate, with no significant differences between 
the groups, p = 0.11.

Telescoping of the most proximal screw after 7500 
cycles in the two groups with prototype plates was 0.37 
mm (sd 0.31) for the gliding plate and 0.89 mm (sd 0.76) 
for the gliding augmented plate, with no significant 

Load cell

PMMA shell

Head markers

Plate markers

Screw markers

Shaft markers

Fig. 4

Test setup with a humerus instrumented with a PHILOS plate, equipped with 
four retro-reflective markers for optical motion tracking and mounted for 
biomechanical testing. The vertical arrow indicates the direction of loading 
(PMMA, polymethylmethacrylate).
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difference between them, p = 0.24. The PHILOS plate 
group was excluded from this evaluation because of its 
locking screws with no telescoping.

The mean varus tilting after 7500 cycles was 2.6°(sd 1.9°) 
for the gliding plate, 1.2° (sd 0.6°) for the PHILOS and 1.7° 
(sd 0.9°) for the gliding augmented plate, with no signifi-
cant differences between the groups, p = 0.10.

The mean screw migration was 3.02 mm (sd 2.85) for 
the gliding plate, 1.30 mm (sd 0.44) for the PHILOS and 
2.83 mm (sd 1.18) for the gliding augmented plate, with 
no significant differences between the groups, p = 0.13.

The mean number of cycles to mechanical failure and 
corresponding load at failure in the three groups was 
12702 (sd 3687) and 735.1 N (sd 184.3) for the gliding 
plate, 13948 (sd 1295) and 797.4 N (sd 64.8) for the 
PHILOS, and 13189 (sd 2647) and 759.5 N (sd 132.3) for 
the gliding augmented plate, with no significant differ-
ences between the groups, p = 0.66 (Fig. 5).

The number of cycles to cut-out and corresponding 
load at cut-out in the three groups was 15344 (sd 3056) 
and 867.2 N (sd 152.8) for the gliding plate, 14406 (sd 
1964) and 820.3 N (sd 98.2) for the PHILOS, and 14906 
(sd 2922) and 845.3 (sd 96.1) for the gliding augmented 
plate, with no significant differences between the groups, 
p = 0.74 (Fig. 5).

Examples of radiographs of the 12 humeri from the 
three groups with radiologically identified cut-out of the 
most proximal screws are shown in Figure 6.

Discussion
This study compared a new gliding screw concept versus 
conventional locking plate fixation of proximal humeral 
fractures. Although the gliding mechanism showed that 
dynamic fixation of the humeral head fragment is possi-
ble, it did not seem to be effective enough to reduce 

considerably screw perforation or varus tilting under the 
test conditions. On the other hand, PHILOS plating did 
not outperform the gliding plate fixation in any aspect, 
highlighting the potential of the gliding screw approach. 
However, some points need to be addressed in order to 
understand and further improve the gliding screw 
concept.

In its current version, the gliding plate included four 
proximal screws, whereas six were used for PHILOS plat-
ing. In addition, the angle of the proximal screw in the 
PHILOS plate was smaller than its 30° angle in the gliding 
plate. Although the 30° angle was found to be beneficial 
in FEA simulation, the influence of a varying number of 
gliding screws and/or changes in their inclination on the 
construct stability remains unknown for in vitro and 
in vivo loading scenarios.

Although augmentation with bone cement might 
increase the fixation strength when plating these frac-
tures,27-29 in the present study its addition did not result 
in superiority over the other two fixation constructs. This 
could be ascribed to the technique of augmentation 
using the injection of cement into the bone holes prior to 
insertion of the screws, which can be considered restrict-
edly effective. We anticipate that more targeted injection 
of cement using cannulated screws with perforations 
around their tip would enhance anchorage and decrease 
screw migration.

An advantage of the gliding plate is that its screws 
allow optimal anchorage in the humeral head by tar-
geting zones with the highest subchondral BMD, in 
the cranial and posterior subchondral bone.30,31 Our 
specimens included osteoporotic bone with low BMD 
compared with that of a normal lumbar vertebral 
body, with a mean BMD of 1.03 g/cm3.32 This can be 
explained by the specimens' pretreatment with the 
Thiel Method.33

The blunt tips of the screws might reduce the risk of 
perforation. The screws were inclined at 30° in order to 
be aligned towards the main trajectory of the force acting 
on the humeral head, as reported by Bergmann et al24 
who measured joint contact forces in six degrees of free-
dom using shoulder prostheses with telemetric data 
transmission. In their study the forces and moments were 
recorded during activities including abduction, flexion, 
extension, lifting a coffee pot, nailing, steering, walking 
with two crutches, lifting a weight and combing hair. The 
directions of the peak forces proved to be similar for the 
diverse activities.24,34

A previous study, that seems to be most related to the 
current work with regard to the development of implants, 
builds on a semi-rigid implant, the Humerusblock NG 
(Synthes Innovation Workshop, Salzburg, Austria), with 
modified tips of the pins for improved fixation in cancel-
lous bone.21 This development attempted to reduce the 
shortcomings of the previous Humerusblock using 
Kirschner wires, which had high rates of perforation.18 
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The improved Humerusblock NG enabled dynamic clo-
sure and compression of the fracture analogous to similar 
concepts already established for the stabilization of femo-
ral neck fractures, such as the dynamic hip screw (DePuy 
Synthes) and Targon FN (Braun Medical, Melsungen, 
Germany), thus confirming the relevance of dynamic fix-
ation. However, clinical trials analyzing this implant are 
still lacking.

Another concept addressing dynamic screw fixation 
used dynamic locking screws (DePuy Synthes) in combi-
nation with commercially available PHILOS plates.22 

This construct proved to have a lower rate of perforation 
of 7% compared with the generally published rates of 
8% to 11%.[[6,10,11,35]] One underlying reason for 
this might be the blunt tip of the 3.7-mm screws. A sec-
ond reason may be the intra- and inter-screw load distri-
bution based on the pin-sleeve design with reduced 
screw rigidity.22

In a prospective clinical study, Acklin et al9 reduced the 
rigidity of the implant by using a 5-hole instead of a 
3-hole PHILOS plate, enabling instrumentation with a 
longer working length using only very proximal and 

Fig. 6

Examples of radiographs of 12 humeri from the three groups with radiologically identified cut-out of the most proximal screw and respective number of cycles 
to cut-out.
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distal screw fixation. The authors reported a rate of perfo-
ration of 7.2% among 124 patients.9

In contrast to increasing the working length, reduc-
tion of the rigidity of the construct can also be achieved 
by changing the material of the implant, as shown by 
Schliemann et al,36 who assessed the biomechanical ben-
efits of plates made of polyetheretherketone (PEEK) in 
comparison with titanium PHILOS plates. Although the 
PEEK plates resulted in lower construct stiffness, they also 
had lower strength of fixation with increased bone-
implant movement compared with PHILOS plates. In 
contrast with the commercially available titanium plates, 
our prototype plates were made of stainless steel to facili-
tate manufacturing. This might influence screw perfora-
tion and be disadvantageous.

This study presents a novel concept for improvement 
of plate fixation in the treatment of proximal humeral 
fractures together with new insights into the biomechan-
ics of fixation of such fixed fractures, which can be used in 
the development of the next generation implants.

The limitations of the study are similar to those inher-
ent to all cadaveric studies. Only a few specimens were 
used, restricting generalized clinical application. In addi-
tion, the specimens were preserved with Thiel’s method, 
which has been reported to modify the biomechanical 
bone properties.33 The biomechanical testing addresses 
loading in an idealized setting, neglecting such clinical 
aspects as muscle traction, soft-tissue interference or 
compliance. In contrast to some previous biomechanical 
studies, the uniaxial loading was applied with the 
humeral axis kept at constant inclination, thus compro-
mising to some extent theloading environment. In two 
previous studies the authors included a torsional capa-
bility in addition to the axial loading to simulate the 
forces of a rotator cuff tendon acting on the greater 
tuberosity.37,38 In another study Brunner et al21 applied 
more physiological multiplanar loading to the humeral 
head using a test bench to simulate abduction between 
15° and 45°.

The main strength of this study was the application of 
a reliable tracking system for precise analysis of interfrag-
mentary and inter-implant movements. In addition, varus 
collapse and screw cut-out represent frequently observed 
causes of failure with PHILOS plates and therefore justify 
the appropriate definition of the used failure criteria.11

In conclusion, plate fixation using gliding screw tech-
nology did not show considerable biomechanical advan-
tages in comparison with PHILOS fixation. Based on the 
finding of screw telescoping, however, it may represent a 
valid approach for further research into mechanisms 
which might prevent the cut-out of screws.
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