Neurogenic heterotopic ossification (NHO) is
a disorder of aberrant bone formation affecting one in five patients sustaining
a spinal cord injury or traumatic brain injury. Ectopic bone forms
around joints in characteristic patterns, causing pain and limiting
movement especially around the hip and elbow. Clinical sequelae
of neurogenic heterotopic ossification include urinary tract infection,
pressure injuries, pneumonia and poor hygiene, making early diagnosis
and treatment clinically compelling. However, diagnosis remains
difficult with more investigation needed. Our pathophysiological
understanding stems from
Introduction. Negative pressure wound therapy (NPWT) and vessel loop assisted
closure are two common methods used to assist with the closure of
fasciotomy wounds. This retrospective review compares these two
methods using a primary outcome measurement of skin graft requirement. Methods. A retrospective search was performed to identify patients who
underwent fasciotomy at our institution. Patient demographics, location
of the fasciotomy, type of assisted closure, injury characteristics,
need for skin graft, length of stay and evidence of infection within
90 days were recorded. Results. A total of 56 patients met the inclusion criteria. Of these,
49 underwent vessel loop closure and seven underwent NPWT assisted
closure. Patients who underwent NPWT assisted closure were at higher
risk for requiring skin grafting than patients who underwent vessel
loop closure, with an odds ratio of 5.9 (95% confidence interval
1.11 to 31.24). There was no difference in the rate of infection
or length of stay between the two groups. Demographic factors such
as age, gender, fracture
Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological
Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.Objectives
Methods
A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion. Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.Objectives
Methods
The use of two implants to manage concomitant ipsilateral femoral
shaft and proximal femoral fractures has been indicated, but no
studies address the relationship of dynamic hip screw (DHS) side
plate screws and the intramedullary nail where failure might occur
after union. This study compares different implant configurations
in order to investigate bridging the gap between the distal DHS
and tip of the intramedullary nail. A total of 29 left synthetic femora were tested in three groups:
1) gapped short nail (GSN); 2) unicortical short nail (USN), differing
from GSN by the use of two unicortical bridging screws; and 3) bicortical
long nail (BLN), with two angled bicortical and one unicortical bridging
screws. With these findings, five matched-pairs of cadaveric femora
were tested in two groups: 1) unicortical long nail (ULN), with
a longer nail than USN and three bridging unicortical screws; and
2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally
rotated 90°/sec until failure.Objectives
Methods
Heterotopic ossification (HO) is perhaps the
single most significant obstacle to independence, functional mobility, and
return to duty for combat-injured veterans of Operation Enduring
Freedom and Operation Iraqi Freedom. Recent research into the cause(s)
of HO has been driven by a markedly higher prevalence seen in these
wounded warriors than encountered in previous wars or following
civilian trauma. To that end, research in both civilian and military
laboratories continues to shed light onto the complex mechanisms
behind HO formation, including systemic and wound specific factors,
cell lineage, and neurogenic inflammation. Of particular interest,
non-invasive
Osteochondral injuries, if not treated adequately, often lead
to severe osteoarthritis. Possible treatment options include refixation
of the fragment or replacement therapies such as Pridie drilling,
microfracture or osteochondral grafts, all of which have certain
disadvantages. Only refixation of the fragment can produce a smooth
and resilient joint surface. The aim of this study was the evaluation
of an ultrasound-activated bioresorbable pin for the refixation of
osteochondral fragments under physiological conditions. In 16 Merino sheep, specific osteochondral fragments of the medial
femoral condyle were produced and refixed with one of conventional
bioresorbable pins, titanium screws or ultrasound-activated pins.
Macro- and microscopic scoring was undertaken after three months. Objectives
Methods
The objective of this study was to determine if a synthetic bone
substitute would provide results similar to bone from osteoporotic
femoral heads during Pushout studies were performed with the dynamic hip screw (DHS)
and the DHS Blade in both cadaveric femoral heads and artificial
bone substitutes in the form of polyurethane foam blocks of different
density. The pushout studies were performed as a means of comparing
the force displacement curves produced by each implant within each
material.Introduction
Methods
To investigate the differences of open reduction and internal
fixation (ORIF) of complex AO Type C distal radius fractures between
two different models of a single implant type. A total of 136 patients who received either a 2.4 mm (n = 61)
or 3.5 mm (n = 75) distal radius locking compression plate (LCP
DR) using a volar approach were followed over two years. The main
outcome measurements included motion, grip strength, pain, and the
scores of Gartland and Werley, the Short-Form 36 (SF-36) and the
Disabilities of the Arm, Shoulder, and Hand (DASH). Differences
between the treatment groups were evaluated using regression analysis
and the likelihood ratio test with significance based on the Bonferroni
corrected p-value of <
0.003.Objectives
Methods