Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity. HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product. It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule. Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation.
Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation.Materials and methods:
Increased failure rates due to metallic wear particle-associated adverse local tissue reactions (ALTR) is a significant clinical problem in resurfacing and total hip arthroplasty. Histological analysis and particle characterization are important elements for understanding the biological mechanisms of the reaction and different histological subtypes may have unique needs for longitudinal clinical follow-up and complication rates after revision arthroplasty. Consecutive patients (N=285 cases) presenting with ALTR from three major hip implant classes, metal-on-metal resurfacing and total hip arthroplasty (THA) and non-metal-on-metal THA with dual modular neck were identified from our prospective Osteolysis Tissue Database and Repository and 53 cases were selected for wear particle nano-analysis.
ALTR encompasses three main histological patterns: 1) macrophage predominant, 2) mixed lymphocytic and macrophagic, and 3) predominant sarcoid-like granulomas. Duration of implantation and composition of periprosthetic cellular infiltrates was significantly different among the three implant types examined. Distinct differences in the size, shape, and element composition of the metallic particulate material were detected in each implant class, with correlation of the severity of the adverse reaction with element complexity of the particles. ALTR encompasses a diverse range of histological patterns, which are reflective of both the implant configuration independent of manufacturer and clinical features such as duration of implantation. Distinct differences in the metallic particulate material can contribute to explain the histological features of the ALTR and variability of performance of the implants. ALTR exhibits different histological patterns and is dependent on the characteristics of the wear particulate material of each implant class and host immunological reaction.
There is increasing evidence for a multi-stage model of rotator cuff (RC) tendon tears, wherein healing is affected by tear size. The underlying pathophysiology however is not fully understood. Changes in the production and remodeling of the RC extracellular matrix (ECM) are likely to be important determinants of RC tendinopathy as they affect healing and the ability to bear loads. This study aimed to gain greater insight into size related tear pathogenesis by analyzing gene expression profiles from normal, small and massive RC tears. The genetic profiles of 28 human RC tendons were analyzed using microarrays representing the entire genome. 11 massive and 5 small torn RC tendon specimens were obtained from tear edges intraoperatively, and compared to 12 age matched normal controls. Semiquantitative real-time polymerase chain reaction (RT-PCR) and immunohistochemistry were performed for validation.INTRODUCTION
METHODS
Intramedullary (IM) femoral alignment guide for unicondylar knee arthroplasty (UKA) is a classic and generally accepted technique to treat unicompartmental knee osteoarthritis. However, IM system has a risk of excessive blood loss, fat embolism and activation of coagulation.Moreover, the implant placement and limb alignment may be less accurate in IM for UKA than total knee arthroplasty. So we try to use extramedullary (EM) femoral alignment for UKA to avoid above disadvantages. To our knowledge, few current studies have been reported by now. We reported a series of cases treated through a newly developed EM technique and evaluated the accuracy of femoral component alignment and preliminary clinical results. Between January 2009 and January 2010, 11 consecutive patients(15 knees)consisting of 8 males and 3 females were enrolled. There were 7 cases in unilateral knee and 4 cases in bilateral knees. The mean age was 65.2 years (range 60∼72 years). Incision, surgical time, blood loss and complications were measured. The pre- and post operative function of the knees were evaluated by HSS score system. The pre- and postoperative femoral component alignment was measured and compared. All cases were followed up for average 15 months (10-22 months). The mean length of incision was 7.2cm (range 6 to 8cm), the mean surgical time was 115.0min(range 90 to 125min),the mean blood loss was 50.8ml (range 50 to 80ml). The mean preoperative HSS score increased from 75 (range 63 to 83) to 95 (range 88 to 97) postoperatively (p<0.05). All femoral components were within the recommended range for varus/valgus (±10 degree) and lexion/extension (±5 degree) angle. None had complications associated with reamed canal injury. By using our EM technique, we could achieve an accurate femoral component alignment and satisfactory clinical effect. However, strict comparison between EM and cconventional IM technique and large amount of cases are essential. Further mid- and long-term studies are required.
Great interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has rapidly increased following the introduction of minimally invasive UKA (MI-UKA). This approach preserves the normal anatomy of knee, causes less damage to extensor mechanism and results in a more rapid post-operative recovery. However, experience with this approach is limited in China. The aim of this report was to determine the short-term clinical and radiographic outcomes of MI-UKA in the Chinese, and to identify any features that are unique to this population. Fifty two knees, in forty-eight patients, with medial compartmental osteoarthritis treated by MI-UKA via C-arm intensifier guide (CAIG) from May 2005 to January 2009 were reviewed. Pain and range of motion (ROM) was assessed using the HSS scoring system before and after surgery. Pre- and postoperative alignment of the lower limbs was measured and compared. The mean follow up time was 24 months (12-42 months). In all cases the pain over medial compartment of the knees was relieved or subsided. The post-operative ROM was 0-136 degree (mean 122degree), and the mean alignment was 2degree varus (0- 7degree varus). The HSS score increased from 72(61-82) to 92(72-95). 93% of the postoperative scores were good or excellent. Interestingly, the distribution of femoral component sizes of these patients was XS 2%, Small 83%, Medium 15%, Large 0%, XL 0%; whereas tibial component size was AA 27%, A 55%, B 15%, C 3%, D 0%, E 0%, and F 0%. The optimal fitted match between tibial and femoral size was: tibia AA and A with XS and small femur, tibia B and C with medium femur. The estimated match was: tibia D and E with large femur, tibia F with XL femur. In contrast to the Oxford report, the sizes of these components are smaller and not in correlation with the height, weight and BMI of the patients. We conclude that MI-UKA is an effective method for treating medial compartmental osteoarthritis of the knee in the Chinese population. CAIG is a feasibly intraoperative measure to predict femoral component sizes. However, component sizes and combinations are different from the Oxford guideline.
Metal and their alloys have been widely used as implantable materials and prostheses in orthopaedic surgery. However, concerns exist as the metal nanoparticles released from wear of the prostheses cause clinical complications and in some cases result in catastrophic host tissue responses. The mechanism of nanotoxicity and cellular responses to wear metal nanoparticles are largely unknown. The aim of this study was to characterise macrophage phagocytosed cobalt/chromium metal nanoparticles both in vitro and in vivo, and investigate the consequent cytotoxicity. Two types of macrophage cell lines, murine RAW246.7 and human THP-1s were used for in vitro study, and tissues retrieved from pseudotumour patients caused by metal-on-metal hip resurfacing (MoMHR) were used for ex vivo observation. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) in combination with backscatter, energy-disperse X-ray spectrometer (EDS), focused ion beam (FIB) were employed to characterise phagocytosed metal nanoparticles. Alamar blue assay, cell viability assays in addition to confocal microscopy in combination with imaging analysis were employed to study the cytotoxiticy in vitro. The results showed that macrophages phagocytosed cobalt and chromium nanoparticles in vitro and the phagocytosed metal particles were confirmed by backscatter SEM+EDS and FIB+EDS. these particles were toxic to macrophages at a dose dependent manner. The analysis of retrieved tissue from revision of MoMHR showed that cobalt/chromium metal nanoparticles were observed exclusively in living macrophages and fragments of dead macrophages, but they were not seen within either live or dead fibroblasts. Dead fibroblasts were associated with dead and disintegrated macrophages and were not directly in contact with metal particles; chromium but not cobalt was the predominant component remaining in tissue. We conclude that as an important type of innate immune cells and phagocytes, macrophages play a key role in metal nanoparticles related cytotoxicity. Metal nanoparticles are taken up mainly by macrophages. They corrode in an acidic environment of the phagosomes. Cobalt that is more soluble than chromium may release inside macrophages to cause death of individual nanoparticle-overloaded macrophages. It is then released into the local environment and results in death of fibroblasts and is subsequently leached from the tissue.
This aim of this study was to investigate apoptosis, reactive oxygen species (ROS), and their upstream markers in Anteromedial Gonarthrosis (AMG). Ten resection specimens, from patients undergoing unicompartmental knee replacement for AMG, and ten control specimens, collected from vascular disease patients undergoing above knee amputation, were used. Routine histology and immunohistochemical studies were conducted for Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Active Caspase 3, Cytochrome C, Active Bax, Bim, 3-Nitrotyrosine and Forkhead box O3A (FOXO 3A).Aim
Methods
Despite the satisfactory short-term implant survivor-ship, there is an increasing concern that the metal-on-metal hip resurfacing arthroplasty (MoMHRA) release large amount of very small wear particles and metal ions. The periprosthetic soft-tissue masses such as pseudotumours are being increasingly reported. These were found be locally destructive, requiring revision surgery in most patients. It has been suggested that either an immune reaction or cytotoxic effect of chromium(Cr) or cobalt(Co) may play a role in its aetiology. However, the effect of the phagocytosis of implant-associated metal nanoparticles on macrophages has not been elucidated. The aim of this study was to investigate the in vitro viability and proliferative response of murine macrophages to clinically relevant metal nanoparticles and ions.
At the end of day 1 and 4, two methods were used to quantify cell proliferation and viability. The AlamarBlue assay(Invitrogen) incorporates a fluorimetric growth indicator and the fluorescence signal correlates with metabolic activity of the cells. LIVE/DEAD stain kit(Molecular Probes) contains two fluorescent dyes to stain living cells green and dead cells red. The viability was calculated by the number of live cells divided by total cell numbers. Inter-group comparisons were performed using one-way ANOVA with Tukey post hoc test. Differences at p<
0.05 were considered to be significant.
Human articular cartilage samples were retrieved from the resected material of patients undergoing total knee replacement. Samples underwent automated controlled freezing at various stages of preparation: as intact articular cartilage discs, as minced articular cartilage, and as chondrocytes immediately after enzymatic isolation from fresh articular cartilage. Cell viability was examined using a LIVE/DEAD assay which provided fluorescent staining. Isolated chondrocytes were then cultured and Alamar blue assay was used for estimation of cell proliferation at days zero, four, seven, 14, 21 and 28 after seeding. The mean percentage viabilities of chondrocytes isolated from group A (fresh, intact articular cartilage disc samples), group B (following cryopreservation and then thawing, after initial isolation from articular cartilage), group C (from minced cryopreserved articular cartilage samples), and group D (from cryopreserved intact articular cartilage disc samples) were 74.7% (95% confidence interval (CI) 73.1 to 76.3), 47.0% (95% CI 43 to 51), 32.0% (95% CI 30.3 to 33.7) and 23.3% (95% CI 22.1 to 24.5), respectively. Isolated chondrocytes from all groups were expanded by the following mean proportions after 28 days of culturing: group A ten times, group B 18 times, group C 106 times, and group D 154 times. This experiment demonstrated that it is possible to isolate viable chondrocytes from cryopreserved intact human articular cartilage which can then be successfully cultured.
We studied the calcium content and mechanical strength of cortical bone from rats and dogs after different periods of demineralisation, showing that the rate of demineralisation differed considerably between the species. Specimens from the rat were further treated by chemical extraction and autolysis and tested for osteoinductive properties. We showed that partially demineralised cortical bone retained adequate mechanical strength, while retaining the biological effects of completely demineralised bone. This shows that it is possible to prepare allografts which have adequate mechanical strength and still retain osteo-inductive properties.