Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

GENETIC PROFILING OF CHANGES UNDERLYING DIFFERENT SIZED HUMAN ROTATOR CUFF TENDON TEARS

European Federation of National Associations of Orthopaedics and Traumatology (EFORT) - 12th Congress



Abstract

INTRODUCTION

There is increasing evidence for a multi-stage model of rotator cuff (RC) tendon tears, wherein healing is affected by tear size. The underlying pathophysiology however is not fully understood. Changes in the production and remodeling of the RC extracellular matrix (ECM) are likely to be important determinants of RC tendinopathy as they affect healing and the ability to bear loads. This study aimed to gain greater insight into size related tear pathogenesis by analyzing gene expression profiles from normal, small and massive RC tears.

METHODS

The genetic profiles of 28 human RC tendons were analyzed using microarrays representing the entire genome. 11 massive and 5 small torn RC tendon specimens were obtained from tear edges intraoperatively, and compared to 12 age matched normal controls. Semiquantitative real-time polymerase chain reaction (RT-PCR) and immunohistochemistry were performed for validation.

RESULTS

Numerous insightful gene changes were detected. Key changes included upregulation of aggrecan in massive tendon tears compared to normal controls, but not in small tears (p < 0.05 and > 2-fold change). Matrix metallopeptidases (MMP)-3,-10,-12,-13,-15,-21,-25 and a disintegrin and metallopeptidase (ADAMs)-12,-15,-22 were significantly upregulated in tears. Aggrecan was upregulated in massive tendon tears but not in small tears. Amyloid was downregulated in the small and massive tear groups when compared to normals. BMP-5 was upregulated in small tears only when compared to normals. As part of the chemotaxis pathway, IL-3,-10,-13,-15,-18 were upregulated in tears, whereas downregulation of IL-1,-8,-11,-27, was seen. RT-PCR and immunohistochemistry confirmed altered gene expression.

CONCLUSION

The gene profiles of normal, small and massive RC tear groups suggested they are biologically distinct groups. In addition to confirming altered gene expression in pathways reported in previous studies, this study has identified a number of novel pathways which are affected between the different tendon tear and normal groups. This study identified that RC tear pathogenesis is contributed to by ECM remodeling genes, chemotaxis genes, aggrecan and amyloid. Further investigation is required to determine whether some of these genes may potentially have a role as biomarkers of failure. Modulating these ECM pathways may be a useful treatment strategy for improving clinical outcomes.