Advertisement for orthosearch.org.uk
Results 1 - 20 of 75
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 68 - 68
11 Apr 2023
Turnbull G Picard F Clarke J Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 108 - 108
11 Apr 2023
Turnbull G Picard F Clarke J Li B Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period.

In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 20 - 20
1 Jul 2022
Chuntamongkol R Burt J Zaffar H Habbick T Picard F Clarke J Gee C
Full Access

Abstract

Introduction

There is a longstanding presumed association between obesity, complications, and revision surgery in primary knee arthroplasty. This has more recently been called into question, particularly in centres where a high volume of arthroplasty is performed. We investigated the correlation between Body Mass Index (BMI), mortality, and revision surgery.

Method

This was a cohort study of at least 10 years following primary knee arthroplasty from a single high volume arthroplasty unit. Mortality and revision rates were collected from all patients who underwent primary knee arthroplasty between 2009 and 2010. Kaplan Meier analysis was performed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 6 - 6
1 Jun 2022
Turnbull G Shu W Picard F Clarke J
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period.

In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted scaffolds and in vitro repair of an osteochondral defect model. This offers hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 3 - 3
1 Jun 2022
Chuntamongkol R Burt J Zaffar H Habbick T Picard F Clarke J Gee C
Full Access

There is a longstanding presumed association between obesity, complications, and revision surgery in primary knee arthroplasty. This has more recently been called into question, particularly in centres where a high volume of arthroplasty is performed. We investigated the correlation between Body Mass Index (BMI), mortality, and revision surgery.

This was a cohort study of at least 10 years following primary knee arthroplasty from a single high volume arthroplasty unit. Mortality and revision rates were collected from all patients who underwent primary knee arthroplasty between 2009 and 2010. Kaplan Meier analysis was performed.

There were 1161 female and 948 male patients with a mean age of 69 (21 to 97). All cause survivorship excluding mortality was 97.2% up to 13yrs with a minimum of 10 years. The revision rate in this series was 2.8% with no significant difference in revision rates after 10 year between patients with BMI above and below 40 (p=0.438). There was no significant difference in 10–year mortality between patients above and below a BMI of 40 (p=0.238).

This study shows no significant difference in the long term survival of total knee replacement between patients with normal and high BMI. Careful consideration should be given before rationing surgery based on BMI alone.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_7 | Pages 7 - 7
1 May 2019
Turnbull G Ning E Faulds K Riches P Shu W Picard F Clarke J
Full Access

Antimicrobial resistance (AMR) is projected to result in 10 million deaths every year globally by 2050. Without urgent action, routine orthopaedic operations could become high risk and musculoskeletal infections incurable in a “post-antibiotic era.” However, current methods of studying AMR processes including bacterial biofilm formation are 2D in nature, and therefore unable to recapitulate the 3D processes within in vivo infection.

Within this study, 3D printing was applied for the first time alongside a custom-developed bioink to bioprint 3D bacterial biofilm constructs from clinically relevant species including Staphylococcus aureus (MSSA), Methicillin-resistant staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa. Bacterial viability and biofilm formation in bioprinted constructs was excellent, with confocal laser scanning microscopy (CSLM) used to demonstrate biofilm production and maturation over 28 days. Bioprinted 3D MRSA and MSSA biofilm constructs had greater resistance to antimicrobials than corresponding two-dimensional (2D) cultures. Thicker 3D E.coli biofilms had greater resistance to tetracycline than thinner constructs over 7 days of treatment. Raman spectroscopy was also adapted in a novel approach to non-invasively diagnose 3D bioprinted biofilm constructs located within a joint replacement model.

In conclusion, mature bacterial biofilm constructs were reproducibly 3D bioprinted for the first time using clinically relevant bacteria. This methodology allows the study of antimicrobial biofilm penetration in 3D, and potentially aids future antimicrobial research, replicating joint infection more closely than current 2D culture models. Furthermore, by deploying Raman spectroscopy in a novel fashion, it was possible to diagnose 3D bioprinted biofilm infections within a joint replacement model.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_18 | Pages 1 - 1
1 Dec 2018
Turnbull G Shu W Picard F Riches P Clarke J
Full Access

Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater.

As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D scaffolds were successfully created in this study from hydrogels and synthetic polymers. Mesenchymal stem cells (MSCs) seeded onto polycaprolactone scaffolds with defined pore sizes and porosity maintained viability over a 7-day period, with addition of alginate hydrogel and scaffold surface treatment with NaOH increasing cell adhesion and viability. MSC-laden alginate constructs produced via extrusion bioprinting also maintained structural integrity and cell viability over 7 days in vitro culture. Growth within osteogenic media resulted in successful osteogenic differentiation of MSCs within scaffolds compared to controls (p<0.001). MSC spheroids were also successfully created and bioprinted within a novel, supramolecular hydrogel with tunable stiffness.

In conclusion, 3D constructs capable of supporting osteogenic differentiation of MSCs were biofabricated via FDM and extrusion bioprinting. Future work will look to increase osteochondral construct size and complexity, whilst maintaining cell viability.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 68 - 68
1 Dec 2017
Deep K Picard F Shankar S Ewen A
Full Access

Background

The literature quotes up to 20% dissatisfaction rates for total knee replacements (TKR). Swedish registry and national joint registry of England and Wales confirm this with high volumes of patients included. This dissatisfaction rate is used as a basis for improving/changing/modernising knee implant designs by major companies across the world.

Aim

We aimed to compare post TKR satisfaction rates for navigated and non navigated knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 29 - 29
1 Oct 2016
Komaris DS Govind C Riches P Murphy A Ewen A Picard F Clarke J
Full Access

Patients with osteoarthritis (OA) of the knee commonly alter their movement to compensate for deficiencies. This study presents a new numerical procedure for classifying sit-to-walk (STW) movement strategies.

Ten control and twelve OA participants performed the STW task in a motion capture laboratory. A full body biomechanical model was used. Participants were instructed to sit in a comfortable self-selected position on a stool height adjusted to 100% of their knee height and then stand and pick up an object from a table in front of them. Three matrices were constructed defining the progression of the torso, feet and hands in the sagittal plane along with a fourth expressing the location of the hands relative to the knees. Hierarchical clustering (HC) was used to identify different strategies. Trials were also classified as to whether the left (L) and right (R) extremities used a matching strategy (bilateral) or not (asymmetrical). Fisher's exact test was used to compare this between groups.

Clustering of the torso matrix dichotomised the trials in two major clusters; subjects leaning forward (LF) or not. The feet and hands matrices revealed sliding the foot backward (FB) and moving an arm forward (AF) strategies respectively. Trials not belonging in the AF cluster were submitted to the last HC of the fourth matrix exposing three additional strategies, the arm pushing through chair (PC), arm pushing through knee (PK) and arm not used (NA). The control participants used the LF+FBR+PK combination most frequently whereas the OA participants used the AFR+PCL. OA patients used significantly more asymmetrical arm strategies, p=0.034.

The results demonstrated that control and OA participants favour different STW strategies. The OA patients asymmetrical arm behaviour possibly indicates compensating for weakness of the affected leg. These strategy definitions may be useful to assess post-operative outcomes and rehabilitation progress.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 28 - 28
1 Oct 2016
Holloway N Deakin A Picard F
Full Access

Since the publication by Berger in 1993, many total knee replacements (TKR) have been measured using his technique to assess component rotation. Whereas the femoral landmarks have been showed to be accurate and precise, the use of the tibial tuberosity to ascertain the true tibial orientation is more controversial. The goal of this study was to identify a new anatomical landmark to measure tibial component rotation.

211 CTs performed after TKR were reviewed. The authors noticed that the lateral cortex of the tibia below the tibial plateau component was flat over a depth of approximately 10mm. A protocol to measure tibial rotation in relation to this landmark was developed: the slice below the tibial plateau was identified; a primary line was drawn over the straight lateral cortex of the tibia; a perpendicular to this line defined the reference axis (A); the posterior tibial component axis was drawn (B); the angle between A and B was measured with internal rotation being negative and external positive. Two independent observers measured 31 CTs twice each and Intraclass Correlation Coefficients (ICC) were calculated for intra- and inter-observer error. The 211CTs were measured according to Berger's and this protocol.

Intra-observer ICCs were 0.812 for Observer1 and 0.806 for Observer2. The inter-observer ICCs were 0.699 for Reading1 and 0.752 for Reading2. The Berger protocol mean tibial rotation was 9.7°±5.5° (−29.0° to 5.2°) and for the new landmark 0°±5.4° (−18.6° to 14°).

This new tibial landmark appeared easy to identify and intra- and inter-observer errors were acceptable. The fact that the mean tibial rotation was 0° makes this landmark attractive. A consistent easily identified landmark for tibial rotation may allow for improvement in component rotation and the diagnosis of dissatisfaction after TKR. Further studies are under way to confirm the relevance of this landmark.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 20 - 20
1 Feb 2016
Alho R Henderson F Rowe P Deakin A Clarke J Picard F
Full Access

The knee joint displays a wide spectrum of laxity, from inherently tight to excessively lax even within the normal, uninjured population. The assessment of AP knee laxity in the clinical setting is performed by manual passive tests such as the Lachman test. Non-invasive assessment based on image free navigation has been clinically validated and used to quantify mechanical alignment and coronal knee laxity in early flexion. When used on cadavers the system demonstrated good AP laxity results with flexion up to 40°. This study aimed to validate the repeatability of the assessment of antero-posterior (AP) knee joint laxity using a non-invasive image free navigation system in normal, healthy subjects.

Twenty-five healthy volunteers were recruited and examined in a single centre. AP translation was measured using a non-invasive navigation system (PhysioPilot) consisting of an infrared camera, externally mounted optical trackers and computer software. Each of the volunteers had both legs examined by a single examiner twice (two registrations). The Lachman test was performed through flexion in increments of 15°. Coefficients of Repeatability (CR) and Interclass Correlation Coefficients (ICC) were used to validate AP translation. The acceptable limits of agreement for this project were set at 3mm for antero-posterior tibial translation.

The most reliable and repeatable AP translation assessments were at 30° and 45°, demonstrating good reliability (ICC 0.82, 0.82) and good repeatability (CR 2.5, 2.9). The AP translation assessment at 0°, 15°, 75° and 90° demonstrated moderate reliability (ICC ≤ 0.75), and poor repeatability (CR ≥3.0mm).

The non-invasive system was able to reliably and consistently measure AP knee translation between 30° and 45° flexion, the clinically relevant range for this assessment. This system could therefore be used to quantify abnormal knee laxity and improve the assessment of knee instability and ligamentous injuries in a clinic setting.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 33 - 33
1 Feb 2016
Gregori A Smith J Picard F Lonner J Jaramaz B
Full Access

Utilisation of unicondylar knee arthroplasty (UKA) has been limited due in part to high revision rates. Only 8% of knee arthroplasty surgeries completed in England and Wales are UKAs. It is reported that the revision rate at 9 years for Total Knee Arthroplasty (TKA) was 3% compared to 12% for UKAs. In the last decade semi active robots have been developed to be used for UKA procedures. These systems allow the surgeon to plan the size and orientation of the tibial and femoral component to match the patient's specific anatomy and to optimise the balancing the soft tissue of the joint. The robotic assistive devices allow the surgeon to execute their plan accurately removing only ‘planned’ bone from the predefined area. This study investigates the accuracy of an imageless navigation system with robotic control for UKA, reporting the errors between the ‘planned’ limb and component alignment with the post-operative limb and component alignment using weight bearing long leg radiographs. We prospectively collected radiographic data on 92 patients who received medial UKA using an imageless robotic assisted device across 4 centres (4 surgeons). This system is CT free, so relies on accurate registration of intra-operative knee kinematic and anatomic landmarks to determine the mechanical and rotational axis systems of the lower limb. The surface of the condylar is based on a virtual model of the knee created intra-operatively by ‘painting’ the surface with the tip of a tracked, calibrated probe. The burring mechanism is robotically controlled to prepare the bone surface and remove the predefined volume of bone. The study shows the 89% of the patients' post-operative alignment recorded by the system was within 30 of the planned coronal mechanical axis alignment. The RMS error was 1.980. The RMS errors between the robotic system's implant plan and the post-operative radiographic implant position was; femoral coronal alignment (FCA) 2.6o, tibial coronal alignment (TCA) 2.9o and tibial slope (TS) 2.9o. In conclusion, the imageless robotic surgical system for UKA accurately prepared the bone surface of the tibia and femur which resulted in low errors when comparing planned and achieved component placement. This resulted in a high level of accuracy in the planned coronal mechanical axis alignment compared to that measured on post-operative radiographs.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 50 - 50
1 Nov 2015
Ewen A Almustafa M Clarke J Picard F
Full Access

Introduction

Surgical site infection (SSI) remains a concern following total hip arthroplasty (THA). We aimed to identify risk factors for post-operative SSI in THA.

Patients/Materials & Methods

All primary THAs performed in our institution during 2009–2010 were included, giving 1832 cases in 1716 patients. Cohort demographics were mean age 67.9 years (SD10.2), mean BMI 29.6 (SD5.3), 60% female and 90.2% primary indication of osteoarthritis. Post-operative SSI within one year was identified either through hospital infection control records or from Information Services Division (NHS Scotland). Demographic and peri-operative data for known or suspected risk factors for SSI were collected from clinical records. Groups were compared using independent t-tests and chi-squared tests as appropriate.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 13 - 13
1 Oct 2014
Wallace D Gregori A Picard F Bellemans J Lonner J Marquez R Smith J Simone A Jaramaz B
Full Access

Unicondylar knee arthroplasty (UKA) is growing in popularity with an increase in utilisation. As a less invasive, bone preserving procedure suitable for knee osteoarthritic patients with intact cruciate ligaments and disease confined to one compartment of the knee joint. The long term survival of a UKA is dependent on many factors, including the accuracy of prosthesis implantation and soft tissue balance. Robotic assisted procedures are generally technically demanding, can increase the operation time and are associated with a learning curve. The learning curve for new technology is likely to be influenced by previous experience with similar technologies, the frequency of use and general experience performing the particular procedure. The purpose of this study was to determine the time to achievement of a steady state with regards to surgical time amongst surgeons using a novel hand held robotic device.

This study examined consecutive UKA cases which used a robotic assistive device from five surgeons. The surgeons had each performed at least 15 surgeries each. Two of the surgeons had previous experience with another robotic assistive device for UKA. All of the surgeons had experience with conventional UKA. All of the surgeons have used navigation for other knee procedures within their hospital. The system uses image free navigation with infrared optical tracking with real time feedback. The handheld robotic assistive system for UKA is designed to enable precision of robotics in the hands of the surgeon. The number of surgeries required to reach ‘steady state’ surgical time was calculated as the point in which two consecutive cases were completed within the 95% confidence interval of the surgeon's ‘steady state’ time.

The average surgical time (tracker placement to implant trial acceptance phase) from all surgeons across their first 15 cases was 56.8 minutes (surgical time range: 27–102 minutes). The average improvement was 46 minutes from slowest to quickest surgical times. The ‘cutting’ phase was reported as decreasing on average by 31 minutes. This clearly indicates the presence of a learning curve. The surgeons recorded a significant decrease in their surgical time where the most improvement was in the process of bone cutting (as opposed to landmark registration, condyle mapping and other preliminary or planning steps). There was a trend towards decreasing surgical time as case numbers increase for the group of five surgeons. On average it took 8 procedures (range 5–11) to reach a steady state surgical time. The average steady state surgical time was 50 minutes (range 37–55 minutes).

In conclusion, the average operative time was comparable with clinical cases reported using other robotic assistive devices for UKA. All five surgeons using the novel handheld robotic-assisted orthopaedic system for UKA reported significant improvement in bone preparation and overall operative times within the first 15 cases performed, reaching a steady state in surgical times after a mean of 8 cases. Therefore, this novel handheld device has a similar learning curve to other devices on the market.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 12 - 12
1 Oct 2014
Smith J Picard F Lonner J Hamlin B Rowe P Riches P Deakin A
Full Access

Knee osteoarthritis results in pain and functional limitations. In cases where the arthritis is limited to one compartment of the knee joint then a unicondylar knee arthroplasty (UKA) is successful, bone preserving option. UKA have been shown to result in superior clinical and functional outcomes compared to TKA patients. However, utilisation of this procedure has been limited due primarily to the high revision rates reported in joint registers. Robotic assisted devices have recently been introduced to the market for use in UKA. They have limited follow up periods but have reported good implant accuracy when compared to the pre-operative planned implant placement.

UKA was completed on 25 cadaver specimens (hip to toe) using an image-free approach with infrared optical navigation system with a hand held robotically assisted cutting tool. Therefore, no CT scan or MRI was required. The surface of the condylar was mapped intra operatively using a probe to record the 3 dimensional surface of the area of the knee joint to be resurfaced. Based on this data the size and orientation of the implant was planned. The user was able to rotate and translate the implant in all three planes. The system also displays the predicted gap balance graph through flexion as well as the predicted contact points on the femoral and tibial component through flexion. The required bone was removed using a bur. The depth of the cut was controlled by the robotically controlled freehand sculpting tool.

Four users (3 consultant orthopaedic surgeon and a post-doctoral research associate) who had been trained on the system prior to the cadaveric study carried out the procedures. The aim of this study was to quantify the differences between the ‘planned’ and ‘achieved’ cuts. A 3D image of the ‘actual’ implant position was overlaid on the ‘planned’ implant image. The errors between the ‘actual’ and the ‘planned’ implant placement were calculated in three planes and the three rotations. The maximum femoral RMS angular error was 2.34°. The maximum femoral RMS translational error across all directions was up to 1.61mm. The maximum tibial RMS angular error was 2.60°. The maximum tibial RMS translational error across all directions was up to 1.67mm.

In conclusion, the results of this cadaver study reported low RMS errors in implant position placement compared to the plan. The results were comparable with those published from clinical studies investigating other robotic orthopaedic devices. Therefore, the freehand sculpting tool was shown to be a reliable tool for cutting bone in UKA and the system allows the surgeon to plan the placement of the implant intra operatively and then execute the plan successfully.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 25 - 25
1 Oct 2014
Picard F Gregori A Bellemans J Lonner J Smith J Gonzales D Simone A Jaramaz B
Full Access

For patients suffering from osteoarthritis confined to one compartment of the knee joint, a successful unicondylar knee arthroplasty (UKA) has demonstrated an ability to provide pain relief and restore function while preserving bone and cruciate ligaments that a total knee arthroplasty (TKA) would sacrifice. Long-term survival of UKA has traditionally been inconsistent, leading to decreased utilisation in favour of alternative surgical treatment. Robot-assisted UKA has demonstrated an ability to provide more consistent implantation of UKA prosthesis, with the potential to increase long-term survivorship.

This study reports on 65 patients undergoing UKA using an image-free, handheld robotic assistive navigation system. The condylar surface was mapped by the surgeon intra-operatively using a probe to capture a 3-dimensional representation of the area of the knee joint to be replaced. The intra operative planning phase allows the surgeon to determine the size and orientation of the femoral and tibial implant to suit the patients’ anatomy. The plan sets the boundaries of the bone to be removed by the robotic hand piece. The system dynamically adjusts the depth of bone being cut by the bur to achieve the desired result. The planned mechanical axis alignment was compared with the system's post-surgical alignment and to post-operative mechanical axis alignment using long leg, double stance, weight bearing radiographs.

All 65 knees had knee osteoarthritis confined to the medial compartment and UKA procedures were completed using the handheld robotic assistive navigation system. The average age and BMI of the patient group was 63 years (range 45–82 years) and 29 kg/m2 (range 21–37 kg/m2) respectively. The average pre-operative deformity was 4.5° (SD 2.9°, Range 0–12° varus). The average post-operative mechanical axis deformity was corrected to 2.1° (range 0–7° varus). The post-operative mechanical axis alignment in the coronal plane measured by the system was within 1° of intra-operative plan in 91% of the cases. 3 out of 6 of the cases where the post-operative alignment was greater than 1° resulted due to an increase in the thickness of the tibia prosthesis implanted. The average difference between the ‘planned’ mechanical axis alignment and the post-operative long leg, weight bearing mechanical axis alignment was 1.8°. The average Oxford Knee Score (old version) pre and post operation was 38 and 24 respectively, showing a clinical and functional improvement in the patient group at 6 weeks post-surgery.

The surgical system allowed the surgeons to precisely plan a UKA and then accurately execute their intra operative plan using a hand held robotically assisted tool. It is accepted that navigation and robotic systems have a system error of about 1° and 1mm. Therefore, this novel device recorded accurate post-operative alignment compared to the ‘planned’ post-operative alignment. The patients in this group have shown clinical and functional improvement in the short term follow up. The importance of precision of component alignments while balancing existing soft-tissue structures in UKA has been documented. Utilisation of robotic-assisted devices may improve the accuracy and long-term survivorship UKA procedure.


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives

We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting.

Methods

A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 74 - 74
1 Aug 2013
Jaramaz B Picard F Gregori A
Full Access

NavioPFS™ unicondylar knee replacement (UKR) system combines CT-free planning and navigation with robotically assisted bone preparation. In the planning procedure, all relevant anatomic information is collected under navigation, either directly with the point probe or by kinematic manipulation. In addition to key anatomic landmarks and the maps of the articulating surfaces of the femur and tibia, kinematic assessment of the joint laxity is performed. Relative positions of femur and tibia are collected through the flexion/extension range, with the pressure applied to fully stretch the collateral ligament on the operative side.

The planning procedure involves three stages: (1) the implant sizing and initial placement,(2) balancing of the gap on the operative side and (3) evaluating the contact points for the recorded flexion data and the planned placement of implants. In the gap balancing stage, the implants are repositioned until they allow for a positive gap, preferably uniform, throughout the entire range of flexion. UKR was planned and prepared on six cadaver knees with the help of NavioPFS system. All knees were normal without any signs of osteoarthritis. Two surgeons have performed medial UKR (4+2), and the bones were prepared using the NavioPFS handheld robotic tool.

Postoperatively, we have re-used the data collected during the planning procedure to compare the kinematic (gap balancing) performance of the used implant with three different commercial implant designs. All implants were placed in the orientation recommended by the respective manufacturer, sized to best fit the original bone geometry, and repositioned optimally balance the gap curve through the entire flexion range, without any negative gaps (overlaps). Since these were nonarthritic cadaver knees, the intent was to restore the original preoperative varus/valgus in neutral (zero) flexion.

The three implant designs demonstrated variable degree of capability to uniformly balance the knee gap over the entire range of flexion. The first implant (A) required a gap larger than 2 mm in one case out of six, the second (B) was capable of producing the positive gap curve under 2mm of gap in all six cases, and the third (C) required a gap larger than 2 mm in 3 (50%) of cases. All three designs exhibit the reduced gap space in mid (30°–90°) flexion.

Despite the best attempts, the artificial implants do not fully replicate the healthy knee kinematics. This is manifested by increased tightness in the mid flexion. In order to balance the gap in mid flexion, additional laxity has to be allowed in full flexion, extension, or both. NavioPFS allows for patient specific planning that takes into account this information, only available intraoperatively. This kind of evaluation on a patient specific basis is a very important planning tool and it allows the insight on the implant performance in mid flexion, typically not available using conventional planning techniques. It can also help in improving kinematic performance of future implant designs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 79 - 79
1 Aug 2013
Sciberras N Deakin A Picard F
Full Access

The Columbus® knee system was designed as a standard knee implant that allows high flexion without the need for additional bone resection. The aim of this retrospective study was to investigate the correlation between the maximum flexion achieved at five years and the slope of the tibial component. The hypothesis was that increased slope would give increased flexion.

The study design was a retrospective cohort study at a single centre. The inclusion criterion was having had a navigated cemented Columbus primary TKA implanted between March 2005 and December 2006 using the image free OrthoPilot® navigation system (Aesculap, Tuttlingen, Germany) in our institution. Follow-up had been carried out at review clinics by an independent arthroplasty team. Patient-related data had been recorded either in case notes, the departmental proprietary database or as radiographic images. In addition to demographics, five-year follow-up range of motion (ROM) was collected. All available radiographs on the national Picture Archiving and Communication System (Eastman Kodak Company, 10.1_SP1, 2006), whether taken at our institution or at the patient's local hospital, were analysed by a trainee orthopaedic surgeon (NCS) who was independent of the patients' care. Component position according to the Knee Society TKA scoring system was determined from the five-year review lateral x-ray. The tibial slope was calculated as 90° minus the angle of the tibial component so giving a posterior slope as a positive number and an anterior slope as a negative number. The correlation between maximum flexion angle and tibial slope was calculated. Further to this a subgroup of only CR prostheses and patients with BMI <35 were analysed for a relationship. The tibial slope of the group of patients having 90° or less of flexion (poor flexion) was compared to those having 110° or more (good flexion) using a t-test, as was the flexion of the those with BMI <30 to those with BMI > 35.

A total of 219 knees in 205 patients were identified. 123 had five-year radiograph and maximum flexion measurement available. Cohort demographics were mean age 68(8.6), mean BMI 32.0(5.9) and mean maximum flexion at five years of 101°(11°). The tibial slope angle showed variation around the mean of 2°(2.8°). There was no correlation between tibial slope and maximum flexion for either that whole cohort (r=-0.051, p=0.572, Figure 1b) or the subgroup of CR and BMI <35 patients (n=78, r = −0.089, p=0.438). The mean tibial slope of those patients having poor flexion was 2° (SD2.6°) and this was not significantly different to the mean for those with good flexion, 3° (SD3.1°) p=0.614. The mean flexion of those with BMI <30 was 100° (SD8.7°) and this was not significantly different to those with BMI >35, mean 101° (SD11.4°).

This study did not find any correlation between the tibial slope and maximum flexion angle in 123 TKAs at five year follow up. Further studies with a more accurate measurement of tibial slope should be carried out to confirm whether a relationship exists in the clinical setting.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 92 - 92
1 Aug 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Non-invasive assessment of lower limb mechanical alignment and assessment of knee laxity using navigation technology is now possible during knee flexion owing to recent software developments. We report a comparison of this new technology with a validated commercially available invasive navigation system.

We tested cadaveric lower limbs (n=12) with a commercial invasive navigation system against the non-invasive system. Mechanical femorotibial angle (MFTA) was measured with no stress, then with 15Nm of varus and valgus moment. MFTA was recorded at 10° intervals from full knee extension to 90° flexion. The investigator was blinded to all MFTA measurements. Repeatability coefficient was calculated to reflect each system's level of precision, and agreement between the systems; 3° was chosen as the upper limit of precision and agreement when measuring MFTA in the clinical setting based on current literature.

Precision of the invasive system was superior and acceptable in all conditions of stress throughout flexion (repeatability coefficient <2°). Precision of the non-invasive system was acceptable from extension until 60° flexion (repeatability coefficient <3°), beyond which precision was unacceptable. Agreement between invasive and non-invasive systems was within 1.7° from extension to 50° flexion when measuring MFTA with no varus / valgus applied. When applying varus / valgus stress agreement between the systems was acceptable from full extension to 20° & 30° knee flexion respectively (repeatability coefficient <3°). Beyond this the systems did not demonstrate sufficient agreement.

These results indicate that the non-invasive system can provide reliable quantitative data on MFTA and laxity in the range relevant to knee examination.