Abstract
Since the publication by Berger in 1993, many total knee replacements (TKR) have been measured using his technique to assess component rotation. Whereas the femoral landmarks have been showed to be accurate and precise, the use of the tibial tuberosity to ascertain the true tibial orientation is more controversial. The goal of this study was to identify a new anatomical landmark to measure tibial component rotation.
211 CTs performed after TKR were reviewed. The authors noticed that the lateral cortex of the tibia below the tibial plateau component was flat over a depth of approximately 10mm. A protocol to measure tibial rotation in relation to this landmark was developed: the slice below the tibial plateau was identified; a primary line was drawn over the straight lateral cortex of the tibia; a perpendicular to this line defined the reference axis (A); the posterior tibial component axis was drawn (B); the angle between A and B was measured with internal rotation being negative and external positive. Two independent observers measured 31 CTs twice each and Intraclass Correlation Coefficients (ICC) were calculated for intra- and inter-observer error. The 211CTs were measured according to Berger's and this protocol.
Intra-observer ICCs were 0.812 for Observer1 and 0.806 for Observer2. The inter-observer ICCs were 0.699 for Reading1 and 0.752 for Reading2. The Berger protocol mean tibial rotation was 9.7°±5.5° (−29.0° to 5.2°) and for the new landmark 0°±5.4° (−18.6° to 14°).
This new tibial landmark appeared easy to identify and intra- and inter-observer errors were acceptable. The fact that the mean tibial rotation was 0° makes this landmark attractive. A consistent easily identified landmark for tibial rotation may allow for improvement in component rotation and the diagnosis of dissatisfaction after TKR. Further studies are under way to confirm the relevance of this landmark.