Loading of the implant/cement bond during polymerization is possible when a joint is put through passive range of motion shortly after implantation. This may adversely affect the integrity of the cement – implant interface. The aim of this study was to evaluate the effect of implant motion during cement polymerization on the mechanical properties of the cement – implant interface. Simulated titanium tibial trays (15 mm dial tray, 15 mm keel) were used in this study and implanted in cellular rigid polyurethane foam (12.5 pcf) (Sawbones Vashon, WA, USA). Surface roughness (Ra) of implants was verified as 3.60μm with a 2μm tip at 0.5 mm/s over a length of 1.6 mm (SurfAnalyzer, MAHR Federal Inc., Providence, RI, USA). Palacos cement (Heraeus Medical, Wehrheim, Germany) was mixed for 2 minutes followed by implantation and one of 3 motion regimes at two time points. Six groups were tested. Motion was applied at three minutes for three groups. This motion was 1)axial micromotion for 20 cycles at 100 microns and 0.5 Hz, 2)rotational of 20 cycles at +/− 1.5 degrees and 0.5 Hz, or 3)both motions sumultaneously. An additional three groups were tested at 6 minutes under the same conditions. Motion was applied using calibrated mechanical testing equipment (MTS systems, Eden Prarie, MN, USA). Implants were tested in tension to failure at 0.5 mm/min, 24 hrs after implantation. The peak load, stiffness and energy were determined for each sample. Data was analysed using an Analysis of Variance and a Games Howell post hoc tests where appropriate.Introduction
Methods
This study reports a clinical comparison of new and old establishing whether this modified implant has maintained the established normal kinematic profile of the Oxford UKR.
Knee kinematics were assessed by analysing the movement of the femur relative to the tibia using the PTA.
We randomised 62 knees to receive either cemented or cementless versions of the Oxford unicompartmental knee replacement. The implants used in both arms of the study were similar, except that the cementless components were coated with porous titanium and hydroxyapatite. The tibial interfaces were studied with fluoroscopically-aligned radiographs. At one year there was no difference in clinical outcome between the two groups. Narrow radiolucent lines were seen at the bone-implant interfaces in 75% of cemented tibial components. These were partial in 43%, and complete in 32%. In the cementless implants, partial radiolucencies were seen in 7% and complete radiolucencies in none. These differences are statistically significant (p <
0.0001) and imply satisfactory bone ingrowth into the cementless implants.
This study assesses the functional in vivo kinematics of Advanced Medial Pivot (AMP) TKR and compares it to kinematics of the normal knee.