Abstract
Introduction: Restoration of predictable and normal knee kinematics after a TKR can improve the patient’s function. Traditional designs exhibit grossly abnormal kinematics with the femur subluxing posteriorly in extension and a paradoxical forward slide in flexion. In addition, the kinematics are very variable. Newer designs were intended to overcome these problems, owing to their ability to provide ‘guided motion’ of the components. The medial pivot knee uses a specifically designed articulating surface constraining the femoral component to externally rotate about an axis through the medial compartment.
This study assesses the functional in vivo kinematics of Advanced Medial Pivot (AMP) TKR and compares it to kinematics of the normal knee.
Methods: Thirteen patients with pre-operative diagnosis of primary osteoarthritis, who had undergone a knee replacement with the AMP knee at least one-year prior were recruited in this study. All had an excellent clinical outcome (as assessed by AKSS) and underwent fluoro-scopic analysis whilst performing a step up activity. Knee kinematics were assessed by analysing the movement of the femur relative to the tibia using the Patella Tendon Angle (PTA) through the range of knee flexion. This data was compared to that of thirteen normal knees.
Results: The PTA for the normal knee has a linear relationship with knee flexion. The PTA is 14 degrees in full extension and decreases to -10 degrees at 100 degrees knee flexion during a step-up exercise. Between extension and 60 degrees of knee flexion, no significant difference was found between the PTA for the normal knee and for the AMP. The PTA for AMP is significantly higher for values of knee flexion exceeding 60 degrees. The standard deviation for different values of knee flex-ion is similar to that seen in the normal knee.
Conclusions: In extension, the PTA is near normal but in flexion PTA is higher than normal suggesting that the femur is too anterior. The variability of the kinematics for AMP TKR is similar to that of the normal knee and is better than that of most other knee designs that we have studied in the past, indicating that it is a stable TKR.
Correspondence should be addressed to Mr Carlos Wigderowitz, Senior Lecturer, University Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Dundee DD1 9SY.