Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models.Introduction
Method
Bone metastases radiographically appear as regions with high (i.e. blastic metastases) or low (i.e. lytic metastases) bone mineral density. The clinical assessment of metastatic features is based on computed tomography (CT) but it is still unclear if the actual size of the metastases can be accurately detected from the CT images and if the microstructure in regions surrounding the metastases is altered (Nägele et al., 2004, Calc Tiss Int). This study aims to evaluate (i) the capability of the CT in evaluating the metastases size and (ii) if metastases affect the bone microstructure around them. Ten spine segments consisted of a vertebra with lytic or mixed metastases and an adjacent control (radiologically healthy) were obtained through an ethically approved donation program. The specimens were scanned with a clinical CT (AquilionOne, Toshiba: slice thickness:1mm, in-plane resolution:0.45mm) to assess clinical metastatic features and a micro-CT (VivaCT80, Scanco, isotropic voxel size:0.039mm) to evaluate the detailed microstructure. The volume of the metastases was measured from both CT and micro-CT images (Palanca et al., 2021, Bone) and compared with a linear regression. The microstructural alteration around the metastases was evaluated in the volume of interest (VOI) defined in the micro-CT images as the volume of the vertebral body excluding the metastases. Three 3D microstructural parameters were calculated in the VOI (CTAn, Bruker SkyScan): Bone Volume Fraction (BV/TV), Trabecular Thickness (Tb.Th.), Trabecular Spacing (Tb.Sp.). Medians of each parameter were compared (Kruskal-Wallis, p=0.05). One specimen was excluded as it was not possible to define the size of the metastases in the CT scans. A strong correlation between the volume obtained from the CT and micro-CT images was found (R2=0.91, Slope=0.97, Intercept=2.55, RMSE=5.7%, MaxError=13.12%). The differences in BV/TV, Tb.Th. and Tb.Sp. among vertebrae with lytic and mixed metastases and control vertebrae were not statistically significant (p-value>0.6). Similar median values of BV/TV were found in vertebrae with lytic (13.2±2.4%) and mixed (12.8±9.8%) metastases, and in controls (13.0±10.1%). The median Tb.Th. was 176±18 ∓m, 179±43 ∓m and 167±91 ∓m in vertebrae with lytic and mixed metastases and control vertebrae, respectively. The median Tb. Sp. was 846±26 ∓m, 849±286 ∓m and 880±116 ∓m in vertebrae with lytic and mixed metastases and control vertebrae, respectively. In conclusion, the size of vertebral metastases can be accurately assess using CT images. The 3D microstructural parameters measured were comparable with those reported in the literature for healthy vertebrae (Nägele et al., 2004, Calc Tiss Int, Sone et al., 2004, Bone) and showed how the microstructure of the bone tissue surrounding the lesion is not altered by the metastases.
The anatomy of the femur shows a high inter-patient variability, making it challenging to design standard prosthetic devices that perfectly adapt to the geometry of each individual. Over the past decade, Statistical Shape Models (SSMs) have been largely used as a tool to represent an average shape of many three-dimensional objects, as well as their variation in shape. However, no studies of the morphology of the residual femoral canal in patients who have undergone an amputation have been performed. The aim of this study was therefore to evaluate the main modes of variation in the shape of the canal, therefore simulating and analysing different levels of osteotomy. To assess the variability of the femoral canal, 72 CT-scans of the lower limb were selected. A segmentation was performed to isolate the region of interest (ROI), ranging from the lesser tip of the trochanter to the 75% of the length of the femur. The canals were then sized to scale, aligned, and 16 osteotomy levels were simulated, starting from a section corresponding to 25% of the ROI and up to the distal section. For each level, the main modes of variations of the femoral canal were identified through Principal Component Analysis (PCA), thus generating the mean geometry and the extreme shapes (±2 stdev) of the principal modes of variation. The shape of the canals obtained from these geometries was reconstructed every 10 mm, best- fitted with an ellipse and the following parameters were evaluated: i) Results from PCA pointed out that the first three PCs explained more than the 87% of the total variance, for each level of simulated osteotomy. By analysing the extreme geometries for a distal osteotomy (e.g. 80% of the length of the canal), the first PC was associated to a combination of ROC (var%=41%), conicity (var%=28%) and ellipticity (var%=7%). PC2 was still associated with the ROC (var%=16%), while PC3 turned out to be associated with the diameter (var%=38%). Through the SSM presented in this study, a quantitatively evaluation of the deformation of the intramedullary canal has been made possible. By analysing the extreme geometries obtained from the first three modes of variance, it is clear that the first three PCs accounted for the variations in terms of curvature, conicity, ellipticity and diameter of the femoral canal with a different weight, depending on the level of osteotomy. Through this work, it was also possible to parametrize these variations according to the level of excision. The results given for the segment corresponding to the 80% of the length of the canal showed that, at that specified level, the ROC, conicity and ellipticity were the anatomical parameters with the highest range of variability, followed by the variation in terms of diameter. Therefore, the analysis carried out can provide information about the relevance of these parameters depending on the level of osteotomy suffered by the amputee. In this way, optimal strategies for the design and/or customization of osteo-integrated stems can be offered depending on the patient's residual limb.
Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation.
The standard treatment of proximal humerus fractures includes pre-contoured metal plates and up to nine cortical and trabecular screws. Frequent failures are reported, especially in case of poor bone quality. The scope of this study was to assess the strength of an innovative reconstruction technique ( Six pairs of cadaveric humeri were obtained through an ethically-approved donation program. The humeri were osteotomized to simulate a reproducible four-fragment fracture with the aid of a dedicated jig. Preparation included the simulation of a bone defect in the humeral head. One humerus of each pair was randomly assigned to one of two reconstruction techniques: (i) Introduction
Materials and Methods
DVC allowed measurements of displacement and strain distribution in bone through the comparison of two, or more, 3D images. Hence, it has a potential as a diagnostic tool in combination with clinical CT. Currently, traditional computed tomography (CT) allows for a detailed 3D analysis of hard tissues, but imaging in a weight-bearing condition is still limited. PedCAT-CT (Curvebeam, USA) emerged as a novel technology allowing, for the first time, 3D imaging under full-weight bearing (Richter, Zech et al. 2015). Specifically, a PedCAT-CT based DVC was employed to establish its reliability through the strain uncertainties produced on bone structure targets, preliminarily to any further clinical studies. In addition, a reverse engineering FE modeling was used to predict possible force associated to displacement errors from DVC. Three porcine thoracic vertebrae were used as bone benchmark for the DVC (Palanca, Tozzi et al. 2016, Tozzi, Dall'Ara et al. 2016). The choice of using porcine vertebrae (in a CT designed for foot/ankle) was driven by availability, as well as similar dimensions to the calcaneus. Each vertebra was immersed in saline solution and scanned twice without any repositioning (zero-strain-test) with a pedCAT-CT (Curvebeam, USA) obtaining an isotropic voxel size of 370 micrometers. Volumes of interest of 35 voxel were cropped inside the vertebrae. Displacement and strains were evaluated using DVC (DaVis-DC, LaVision, Germany), with different spatial resolution. The displacement maps were used to predict the force uncertainties via FE (Ansys Mechanical v.14, Ansys Inc, Canonsburg, PA). Each element was assigned a linear elastic isotropic constitutive law (Young modulus: 8 GPa, Poisson's ratio: 0.3, as in (Follet, Peyrin et al. 2007)). Overall, the precision error of strain measurement was evaluated as the average of the standard deviation of the absolute value of the different component of strain (Liu and Morgan 2007). The force uncertainties obtained with the FE analysis produced magnitudes ranging from 231 to 2376 N. No clear trend on the force was observed in relation to the spatial resolution. Precision errors were smaller than 1000 microstrain in all cases, with the lowest ranging from 83 microstrain for the largest spatial resolution. Full-field strain on the bone tissue did not seem to highlight a preferential distribution of error in the volume. The precision errors showed that the pedCAT-CT based DVC can be sufficient to investigate the bone tissue failure (7000–10000 microstrain) or, physiological deformation if well-optimized. FE analysis produced important force uncertainties up to 2376 N. However, this is a preliminary investigation. Further investigation will give a clearer indication on DVC based PedCAT-CT, as well as force uncertainties predicted. So far, the DVC showed its ability to measure displacement and strain with reasonable reliability with clinical-CT as well.
Tendon regeneration is complex since the scaffold has to bear high loads and stress concentrations, while providing suitable deformability. Previous studies demonstrated a physiological orientation of the fibers and good cell adhesion on electrospun polymeric scaffolds [1]. The aims of this work were to: (i) prepare and characterize electrospun resorbable scaffolds with different compositions and (ii) develop a process to produce a multiscale bundle assembly to mimic the hierarchical structure and biomechanical properties of a real tendon. We produced fibrous scaffolds made of blends of poly-L-lactic acid (PLLA) and collagen (Coll):
Pure PLLA; PLLA/Coll 75/25 w/w; PLLA/Coll 50/50 w/w. In order to prepare 3D bundles made of aligned fibres, we used a high-speed rotating collector. The electrospun nanofibers were deposited tangentially onto the drum, the electrospun layer was manually rolled transversely along the drum and then removed. The bundles were approximately 150 mm long and 300–450 mm in diameter. Five specimens were prepared and tested for each blend. To evaluate the mechanical properties of the bundles a tension test was applied with capstan grips on a testing machine with a 100N load cell, under the following conditions:
Gauge length: 20 mm. Monotonic ramp to break detection. Actuator speed 5 mm/min. For all the bundles, the stress-strain curve showed an initial non-linear part (toe region), similar to the laxity of the tendon at rest. The mechanical analysis confirmed the outstanding ductility and toughness of pure PLLA. Increasing the percentage of collagen resulted in a reduction of ductility. The PLLA/Coll 50/50 had a rather brittle behaviour. The values of mechanical properties found for the different compositions were slightly lower but of the same order of magnitude as tendon fibers (Failure stress: 33.7±19.2 MPa; Failure strain: 21.0±9.1 %; Young Modulus: 257±101 MPa [2]). The bundles made of pure PLLA had a failure stress of 13.2±0.8 MPa; failure strain of 84.7±9.4%; Young Modulus of 78.6±7.5 MPa. The bundles made of PLLA/Coll 50/50 had: failure stress of 10.5±1.5 MPa; failure strain of 21.4±2.7%, Young Modulus of 65.7±9.8 MPa. The most promising composition was the PLLA/Coll 75/25, with a failure stress of 14.0±0.7 MPa; failure strain of 40.3±2.2 %, Young Modulus of 98.6±12 MPa. We also tested bundles mechanical properties after aging samples in phosphate buffer at 37 °C for 48 hours, 7 and 14 days. After ageing, stress and strain values were progressively lower, while the toughness increased, compared to the dry samples. The promising results found in this work for the electrospun PLLA-collagen blends confirm their potential use for tendon tissue regeneration. This is a starting point for developing multiscale scaffolds mimicking the structure of tendon tissue, which can potentially be used in human regenerative medicine both as bioresorbable prosthesis, or inserted in a bioreactor for in vitro production of tendon tissue.
DVC is a novel full-field and contactless measurement technique for calculating displacements and strains inside bones (Grassi and Isaksson 2015) through the comparison of 3D reconstructions (CT, micro-CT, MRI, etc.) from unloaded and loaded samples. Recent in zero-strain tests to estimate the measurement precision by applying a known state of strain (Palanca, Tozzi et al. 2015) suggested that DVC is suitable to identify regions where bone tissue is yielded (i.e. subjected to high strains). Conversely to reliably measure strain in the physiological range a severe compromise with spatial resolution is necessary (Dall'Ara, Barber et al. 2014, Palanca, Tozzi et al. 2015). In order to use DVC to explore the relationship between the local physiological strain and bone microarchitecture, an error lower than 200 microstrain (an order of magnitude lower than the mean strain) and a spatial resolution of the strain measurement lower than 100 μm is required. The aim of this work is to define if, and to what extend, high-quality images obtained by synchrotron radiation micro computed tomography (SR-μCT) improve the precision of a global DVC approach. Cylindrical specimens of cortical and trabecular bone were extracted from a fresh bovine femur and embedded in acrylic resin. Both samples were scanned twice without any repositioning (‘repeated scantest’) at beamline l13–2 of Diamond Light Source (Oxford, UK). 4000 projections of 53 ms exposure were collected via fly-scanning with a CdWO4scintillator-coupled pco.edge 5.5 detector with 4× magnification and an effective pixel size of 1.6μm. Strains were evaluated using a global DVC approach (ShIRT-FE) in two cubic volumes of interest (VOI) of 1,000 voxels in side length, for each specimen, exploring a DVC spatial resolution from 16 to 498 μm. The precision of measurements was evaluated extracting a similar indicator to (Liu and Morgan 2007). Precision improved with decreasing spatial resolution, confirming a trend similar to that obtained with ‘laboratory source’ μCT on similar specimens (Palanca, Tozzi et al. 2015). To obtain a precision of better than 200 microstrains the cortical and trabecular samples required spatial resolutions of 41 and 80 μm respectively. Comparing these results to those of previous studies, where similar specimens were scanned with ‘laboratory source’ μCT (effective voxel size of the order of ten μm) the errors were vastly reduced (approximately one order of magnitude). In fact, in order to obtain a precision of better than 200 microstrain, spatial resolutions of 550 (cortical) and 480 (trabecular) μm were needed (Dall'Ara, Barber et al. 2014). This work showed that using high-quality tomograms obtained by synchrotron radiation μCT decreases the measurement uncertainties of a global DVC approach with respect to those obtained with laboratory source μCT. DVC could therefore be used with μCT data to evaluate displacement and strain in the physiological range with remarkable spatial resolution.
The definition of a robust and reproducible reference frame is the first step in order to perform a consistent biomechanical test [1]. The aims of the current study was to define an anatomical reference frame for pelvis which can also be applied to a hemi-pelvis. A robust alignment method was sought so as to replicate the anatomical pose during The anatomical reference frame was derived from the anterior pelvic plane [2] and was adapted for The alignment procedure represented an improved version of a previous procedure [3]. The hemi-pelvis has been positioned on blocks of plasticine close to the landmarks on a 5-screws adjustable plate. Three steps were performed: position of the landmarks at the same height; alignment of the PSIS and PT on a horizontal line parallel to x- direction; position of the setup in front of a 6 degrees of freedom manipulator so that both the manipulator and the 5-screws adjustable plate are in the same reference frame. The manipulator was used to move the specimen in the following steps: clamping and lifting up of the specimen; rotation around x-axis in the posterior direction by 45°; rotation around y-axis in the medial direction by 90°; rotation around x-axis (antero-posterior direction) until PT and ASIS lay in the same vertical plane. Five operators performed the alignment of a male and a female hemi-pelvis, three times each. The repeatability of the current procedure was good, with uncertainties below 1.0° within the same operator, and of less than ±1.5° between operators for the male hemipelvis, and ±2° for the female one. Thanks to the good results the reference frame and the alignment procedure may be adopted for
The causes of spine disease are often biomechanical ones (e.g. disc degeneration, vertebral fracture). Currently, a deep investigation of the spine biomechanics is missing, due to the high complexity of the spine system (Fung 1980, Brandolini, Cristofolini et al. 2014): vertebrae and intervertebral discs. Recently, the Digital Image Correlation allowed measuring Segment of four vertebrae were extracted from porcine spines. All ligaments and muscles were removed, without damaging the spine segment (vertebrae and intervertebral discs). A suitable non-conventional white-on-black speckle pattern was prepared on the surface with airbrush airgun to track the movements of the specimen with DIC (Lionello, Sirieix et al. 2014). The endplates of the extreme vertebrae were potted in poly-methyl-methacrylate. The spine segments were tested in pure axial loading with cycles of increasing magnitude, up to fialure. A commercial 3D-DIC (Dantec Dynamics, Denmark) was used. In the present configuration, it allowed a resolution of 30 micrometers. It was used to measure the displacements and strains in a full-field and contactless way on the frontal surface of the spine segments. DIC allowed measuring with success the displacement and strain during the entire test, in the elastic regime and up to failure. The displacements and strains could be measured on the entire specimen, both in the vertebrae (hard tissue) and in the intervertebral discs (soft tissue). The axial strain evaluated prior to failure was close to 10’000 microstrain on the vertebral body surface and exceed 70’000 microstrain on the intervertebral discs, where failure was localized. The pattern, prepared in a dedicated way showed its suitability for both the bone and the disc. The evaluated failure strains were in agreement with the literature (Bayraktar, Morgan et al. 2004) (Spera, Genovese et al. 2011). To the authors' best knowledge, this kind of measurement including strain on soft and hard tissue simultaneously has never been performed before. This work showed the capability of DIC in providing full-field measures on the surface with complex geometry, such as the spine. The assertion of these potentialities could open the way to further application of DIC to study the behaviour of human spines, including improvement of spinal fixation devices.
The stem and the rasp for cemented arthroplasty are typically designed to obtain a cement mantle 2–5 mm thick. However, sometimes a line-to-line cementation is preferred, where the femoral cavity is prepared with the same dimension as the actual stem. There are contrasting reports [1,2] about the suitability of this technique to withstand the long-term fatigue loads. While the theoretical geometry allows no space for the cement, a sort of cement mantle is formed as the cement penetrates in the spongy bone. The scopes of this study were: 1) developing a dedicated In order to perform long-term mechanical Elastic and permanent motions did not show any loosening trend, and never exceeded few micrometers. As expected, some damage was visible in the cement mantles after test completion, for both types of implantation (similar to retrieved cement mantles surrounding stable implants [3]. The cement damage was similar in all specimens. No sign of major disruption was visible, neither within the This
Total Hip Replacement (THR) is one of the most successful operations in all of medicine, however surgeons just rely on their experience and expertise when choosing between cemented or cementless stem, without having any quantitative guidelines. The aim of this project is to provide clinicians with some tools to support in their decision making. A novel method based on bone mineral density (BMD) measurements and assessments was developed 1) to estimate the periprosthetic fracture risk (FR) while press-fitting cementless stem; 2) to evaluate post-operative bone remodeling in terms of BMD changes after primary THR. Data for 5 out of over 70 patients (already involved in a previous study1) that underwent primary THA in Iceland were selected for developing novel methods to assess intra-operative FR and bone mineral density (BMD) changes after the operation. For each patient three CT images were acquired (Philips Brilliance 64 Spiral-CT, 120 kVp, slice thickness: 1 mm, slice increment: 0.5 mm): pre-op, 24 hours and 1 year post-operative. Pre-op CT scan was used to create 3D finite element model (Materialise Mimics) of the proximal femur. The material properties were assigned based on Hounsfield Units. Different strategies were analyzed for simulating the press-fitting operation, developing what has already been done in prior study1. In the finite element simulation (Ansys Workbench), a pressure (related to the implant hammering force of 9.25 kN2) was applied around the femur's hollow for the stem and the distribution of maximum principal elastic strain over the bone was calculated. Assuming a critical failure value3 of 7300 με, the percentage of fractured elements was calculated (i.e. FR). Post 24 hours and Post 1 year CT images were co-registrated and compared (Materialise Mimics) in order to assess BMD changes. Successively, volumes of bone lost and bone gained were calculated and represented in a 3D model. Age and gender should not be taken as unique indicators to choose between implants typologies, since also three dimensional BMD distribution along with volume of cortical bone influence the risk of periprosthetic fractures. Highest FR values were experienced in the calcar-femorale zone and in similar location on the posterior side. BMD loss volume fractions after 1 year were usually higher than BMD gain ones. Consistently with prior studies4, BMD loss was mainly concentrated around the proximal end (lesser trochanter area, outer bone). If present, BMD gain occurred at the distal end (below stem's tip) or proximally (lesser trochanter area, interface contact with the stem). The use of clinical data for BMD assessments serves as an important tool to develop a quantitative method which will support surgeons in their decisions, guiding them to the optimal implant for the patient. Knowing the risk of fracture if choosing a cementless stem and being aware of how the bone will remodel around the stem in one year's time can eventually lead to reduction in revisions and increased quality of life for the patient. Further work will target analysis of a larger cohort of patients and validate FE models.
Prophylactic augmentation is meant to reinforce the vertebral body (VB), but in some cases it is suspected to actually weaken it. To elucidate the biomechanical efficacy of prophylactic augmentation, the full-field three-dimensional strain distributions were measured for the first time inside prophylactic-augmented vertebrae. Twelve thoracic porcine vertebrae were assigned to three groups: 4 were augmented with bone cement for vertebroplasty (Mendec-Spine, Tecres), 4 were treated with another bone cement for vertebroplasty (Calcemex-Spine, Tecres) while the other 4 were tested untreated as a control. Destructive tests were carried out under axial compression, in a step-wise fashion (unloaded, 5%, 10% and 15% compression). At each loading step, μCT-images were acquired. The internal strain distribution was investigated by means of DVC analysis. Some augmented specimens were stronger than the respective control, while others were weaker. In most of the specimens, the strain distribution in the elastic regime (5% compression) seemed to predict the location of the micro-damage initiation before it actually became identifiable (at 10% and 15% compression). The measured strain had the same order of magnitude for all groups. However, in the control vertebrae, the highest strain would unpredictably appear at any location inside the VB. Conversely, for both augmentation groups, the highest strains were measured in the regions adjacent to the injected cement mass, whereas the cement-interdigitated-bone was less strained. Localization of high strains and failure was consistent between specimens, but different between the two cement types: with Mendec-Spine failure the highest strains were mainly localized at mid-height and at the same level where the cement mass was localized; with Calcemex-Spine failure the highest strains were mainly cranial and caudal to the cement mass. Both the micro-CT images, and the DVC strain analysis highlighted that:
The cement mass was less strained than any other regions in the vertebra. Failure never started inside the cement mass. This can be explained with the additional stiffening and reinforcement associated with the infiltration of the cement inside the trabecular bone. The highest strains and failure were localized in the bone adjacent to the cement-bone interdigitated region. This can be explained by the strain concentration between the cement-interdigitated bone (stiffer and stronger), and the adjacent non-augmented trabecular bone The strain maps in the elastic regime and the localization of failure was different in the augmented vertebrae, when compared to the natural controls. This suggests an alteration of the load sharing in the augmented structure where the load is mostly carried by the cement region. The different localization of failure initiation between the two augmented groups could be explained by the different mechanical properties of the two cements. This study has demonstrated the potential of DVC in measuring the internal strain and failure in prophylactic-augmented vertebrae. It has been shown that failure starts inside the augmented VB, next to the injected cement mass. This can help establishing better criteria (in terms of localization of the cement mass) in order to improve clinical protocols for vertebroplasty surgical procedures.
The increasing use of hip resurfacing is associated with early neck fractures of the implanted femur. The aim of this study was to elucidate if such fractures could be caused by a non-physiological state of stress/strain post-implantation. While the possible role of notching at the neck-implant interface has already been elucidated, it is not know whether a resurfacing implant could make the principal strain vary in magnitude and direction in a way that could compromise integrity of the proximal femur. The aim of this study was to measure if the direction of the principal strain in the proximal femur was affected by the presence of a resurfacing prosthesis. Seven human cadaver femurs were instrumented with 12 triaxial strain gauges to measure the magnitude and alignment of principal strains in the head-neck region. Each femur was implanted with a typical resurfacing prosthesis (BHR). All femurs were tested BACKGROUND
METHODS
Pre-clinical validation of implantable devices, including prostheses, generally aims at demonstrating that a new device offers some advantage compared to existing ones, while not introducing additional hazards. This process involves the assessment of a number of possible failure scenarios and claimed benefits, in order to obtain certification of the device (e.g. FDA or CE-mark), and to support its marketing strategy. While until the 90ies A possible paradigm for pre-clinical validation can be summarized as follows (Fig. 1):
Preliminary Potential hazards must be identified. For each hazard, the probability of occurrence and the risk must be identified using either a top-down Fault Tree Analysis (FTA), or a bottom-up Failure Mode and Effect Analysis (FMEA). To assess the risk of occurrence of each mode of failure, the most appropriate approach must be chosen (either experimental, or numerical). For instance, Preliminarily assess the intended implant performance, and explore possible failure modes. Measure the actual material properties and interface conditions. Perform tests on specimens that include a real bone, the typical uncertainty related to implantation (interface condition, press-fit), etc. Conversely, numerical models are advantageous to: Estimate biomechanical quantities (e.g. state of stress/strain) in regions that are not accessible experimentally. Explore the effect of design factors (material, surface finish, geometric features, etc), surgical factors (e.g. implant malpositioning) on the outcome.
Predict the post-operative evolution of the implant over time, including progressive failure, tissue adaptation, etc. Therefore,
In finite element (FE) analysis of long bones it is now common practice to calculate the material properties based on CT data. Although a unique material property is calculated for each element, assigning each element an individual material property results in excessively large models. To avoid this, it is usual to group the elements based on their material properties and to assign each group a single material property (Zannoni 1998). No study has analysed the effect the number of material properties used in a long bone FE model has on the accuracy of the results. The aim of this study was to evaluate the variation in the calculated mechanical environment as a function of the number of material properties used in an FE model. An FE mesh of a cadaveric human tibia containing 47,696 ten-node tetrahedron elements and 75,583 nodes was created using CT scans. Material properties were calculated for each element of the mesh based on previous work (Rho 1995, 1996). Eleven FE models were created by varying the number of groups (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024) the elements were divided into. A single material property was assigned to each group. All models were subject to an axial point load of 300N applied on the medial condyle of the tibial plateau while the distal end was fixed. The variation in maximum and minimum principal strains and deflections, at 17 well distributed surface nodes and at 65 randomly distributed nodes within the bone were plotted against the number of element groups. The total strain energy was also plotted against the number of groups. The errors for strain, deflection, and total strain energy were calculated for each model assuming that the model using 1024 element groups was accurate. The parameter to converge with the least number of element groups was the total strain energy. At 512 element groups the error was less than 0.001% (0.7% for the two material model). The next to converge were the displacements. Using 512 materials the maximum error in displacement at the surface nodes was 0.001% (4.7% for the 2 material model), while for the internal nodes the maximum error was 0.53% (36.7% for the 2 material model). The least convergence occurred for principal strains. The maximum errors when 512 materials were used were 1.06% (57.7% for the 2 material model) and 3.02% (104.5% for the 2 material model) for the surface and the internal nodes respectively. This study demonstrates the relationship between the accuracy of calculated mechanical environment and the number of material properties assigned to the model. While this study will allow the analyst to make an informed decision on the number of material properties for modelling the human tibia it also helps examine the validity of previous studies which, usually due to limited resources, used fewer material properties.
Finite element (FE) analysis is widely used to calculate stresses and strains within human bone in order to improve implant designs. Although validated FE models of the human femur have been created (Lengsfeld et al., 1998), no equivalent yet exists for the tibia. The aim of this study was to create such an FE model, both with and without the tibial component of a knee replacement, and to validate it against experimental Results: A set of reference axes was marked on a cleaned, fresh frozen cadaveric human tibia. Seventeen triaxial stacked strain rosettes were attached along the bone, which was then subjected to nine axial loading conditions, two four-point bending loading conditions, and a torsional loading condition using a materials testing machine (MTS 858). Deflections and strain readings were recorded. Axial loading was repeated after implantation of a knee replacement (medial tibial component, Biomet Oxford Unicompartmental Phase 3). The intact tibia was CT scanned (GE HiSpeed CT/i) and the images used to create a 3D FE mesh. The CT data was also used to map 600 transversely isotropic material properties (Rho, 1996) to individual elements. All experiments were simulated on the FE model. Measured principal strains and displacements were compared to their corresponding FE values using regression analysis. Experimental results were repeatable (mean coefficients of variation for intact and implanted tibia, 5.3% and 3.9%). They correlated well with those of the FE analysis (R squared = 0.98, 0.97, 0.97, and 0.99 for axial (intact), axial (implanted), bending, torsional loading). For each of the load cases the intersects of the regression lines were small in comparison to the maximum measured strains (<
1.5%). While the model was more rigid than the bone under torsional loading (slope =0.92), the opposite was true for axial (slope = 1.14 (intact) 1.24 (implanted)) and bending (slope = 1.06) loads. This is probably due to a discrepancy in the material properties of the model.
Based on the complexity of the anatomical structures and the nearly unknown loading conditions at the moment only contradictory knowledge exists about the kinematics after TDA and in particular the location of the center of rotation in the human lumbar spine [ The objective of our study was to evaluate the kinematics of the human lumbar spine and the ability of TDA to restore the native conditions in regard to range of motion (ROM), neutral zone (NZ) and center of rotation (COR).
Therefore a spinal simulator has been customized, applying pure moments for flexion/extension, lateral bending and axial rotation (+/−7.5Nm) and axial preload (FP=400N) with a defined velocity (1°/s). The instantaneous COR has been calculated based on the velocity pole method using a 3D ultrasonic motion analysis system, measuring the twelve components of motion.
After insertion of the lumbar artificial disc the instability can be reduced to the native grade of motion and the COR is located again in the main axis of the spinal column in the upper third of the inferior vertebra.
Finite element (FE) analysis is widely used to calculate stresses and strains within human bone in order to improve implant designs. Although validated FE models of the human femur have been created (Lengsfeld et al., 1998), no equivalent yet exists for the tibia. The aim of this study was to create such an FE model, both with and without the tibial component of a knee replacement, and to validate it against experimental results. A set of reference axes was marked on a cleaned, fresh frozen cadaveric human tibia. Seventeen triaxial stacked strain rosettes were attached along the bone, which was then subjected to nine axial loading conditions, two four-point bending loading conditions, and a torsional loading condition using a materials testing machine (MTS 858). Deflections and strain readings were recorded. Axial loading was repeated after implantation of a knee replacement (medial tibial component, Biomet Oxford Unicompartmental Phase 3). The intact tibia was CT scanned (GE HiSpeed CT/i) and the images used to create a 3D FE mesh. The CT data was also used to map 600 transversely isotropic material properties (Rho, 1996) to individual elements. All experiments were simulated on the FE model. Measured principal strains and displacements were compared to their corresponding FE values using regression analysis. Experimental results were repeatable (mean coeffi-cients of variation for intact and implanted tibia, 5.3% and 3.9%). They correlated well with those of the FE analysis (R squared = 0.98, 0.97, 0.97, and 0.99 for axial (intact), axial (implanted), bending, torsional loading). For each of the load cases the intersects of the regression lines were small in comparison to the maximum measured strains (<
1.5%). While the model was more rigid than the bone under torsional loading (slope =0.92), the opposite was true for axial (slope = 1.14 (intact) 1.24 (implanted)) and bending (slope = 1.06) loads. This is probably due to a discrepancy in the material properties of the model.