Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

STANDARD AND LINE-TO-LINE CEMENTATION OF A SHORT HIP STEM: A BIOMECHANICAL TEST

European Orthopaedic Research Society (EORS) 24th Annual Meeting, 14–16 September 2016. Part 2.



Abstract

The stem and the rasp for cemented arthroplasty are typically designed to obtain a cement mantle 2–5 mm thick. However, sometimes a line-to-line cementation is preferred, where the femoral cavity is prepared with the same dimension as the actual stem. There are contrasting reports [1,2] about the suitability of this technique to withstand the long-term fatigue loads. While the theoretical geometry allows no space for the cement, a sort of cement mantle is formed as the cement penetrates in the spongy bone. The scopes of this study were: 1) developing a dedicated in vitro method to test line-to-line cementation; 2) assessing if a short, polished hip stem designed for a standard cementation can be safely cemented line-to-line.

In order to perform long-term mechanical in vitro tests, composite bones must be used, as cadaveric bones cannot withstand millions of loading cycles [3]. For this study, the Sawbones Mod. 3406-4 were chosen: they feature an open-cell polyurethane core simulating low-density spongy bone. Post-implantation x-rays confirmed that a relevant cement-bone interdigitation was obtained. Four femurs were prepared with a CoreHip (Aesculap) with regular cement mantle (Regular). Another 4 femurs were rasped to the same rasp size, and implanted with line-to-line cementation with a larger stem (Line-to-line). The implanted femurs were subjected to an accelerated test derived from a validated protocol [3] which replicates the most demanding motor tasks of 24 years of patient activity. Implant elastic micromotions and permanent migrations were measured throughout the test. The implants were then sectioned and treated with dye penetrants to highlight the cement cracks.

Elastic and permanent motions did not show any loosening trend, and never exceeded few micrometers. As expected, some damage was visible in the cement mantles after test completion, for both types of implantation (similar to retrieved cement mantles surrounding stable implants [3]. The cement damage was similar in all specimens. No sign of major disruption was visible, neither within the Regular nor in the Line-to-line specimens: in fact, the cracks were limited in length, did not seem to cross the entire mantle thickness, and did not result in any loose cement fragments. The cracks in the line-to-line implants showed the same position and distribution compared to those found in the regular implants, but were slightly longer in some specimens.

This in vitro study confirmed the feasibility of simulating line-to-line cementation in vitro. Our results suggest that a stem designed for a regular cement mantle could induce slightly more damage when implanted line-to-line, but no significant trend toward loosening.