Aim. The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. Infection of implanted medical devices (biomaterials), like
We present the indications and outcomes of a series of custom 3D printed
Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare
Polyetheretherketone (PEEK) interbody fusion cages combined with autologous bone graft is the current clinical gold standard treatment for spinal fusion, however, bone graft harvest increases surgical time, risk of infection and chronic pain. We describe novel low-stiffness 3D Printed
Aims. Only a small number of studies exist that report the results of EBM-produced porous coated trabecular
Introduction: The mechanobiology and response of bone formation to strain under physiological loading is well established, however investigation into exceedingly soft scaffolds relative to cancellous bone is limited. In this study we designed and 3D printed mechanically-optimised low-stiffness implants, targeting specific strain ranges inducing bone formation and assessed their biological performance in a pre-clinical in vivo load-bearing tibial tuberosity advancement (TTA) model. The TTA model provides an attractive pre-clinical framework to investigate implant osseointegration within an uneven loading environment due to the dominating patellar tendon force. A knee finite element model from ovine CT data was developed to determine physiological target strains from simulated TTA surgery. We 3D printed low-stiffness Ti wedge osteotomy implants with homogeneous stiffness of 0.8 GPa (Ti1), 0.6 GPa (Ti2) and a locally-optimised design with a 0.3 GPa cortex and soft 0.1 GPa core (Ti3), for implantation in a 12-week ovine tibial advancement osteotomy (9mm). We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Optimised Ti3 implants exhibited evenly high strains throughout, despite uneven wedge osteotomy loading. We demonstrated that higher strains above 3.75%, led to greater bone formation. Histomorphometry showed uniform bone ingrowthin optimised Ti3 compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1. Results from our study indicate lower stiffness and higher strain ranges than normally achieved in Ti scaffolds stimulate early bone formation. By accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. Design and 3D printing of exceedingly soft
Periprosthetic infection remains a clinical challenge that may lead to revision surgeries, increased spending, disability, and mortality. The cost for treating hip and knee total joint infections is anticipated to be $1.62 billion by 2020. There is a need for implant surface modifications that simultaneously resist bacterial biofilm formation and adhesion, while promoting periprosthetic bone formation and osseointegration. In vitro research has shown that nanotextured
Background. One of the serious postoperative complications associated with joint replacement is bacterial infection. In our recent investigations, iodine supported
Introduction. Cobalt chrome femoral head has been used widely in total hip arthroplasty and has shown favorable outcome. However, there is still of concern of potential metal toxicity from the wear debris. In the other hand,
During revision total knee arthroplasty (rTKA), proximal tibial bone loss is frequently encountered and can result in a less-stable bone-implant fixation. A 3D printed titanium alloy (Ti6Al4V) revision augment that conforms to the irregular shape of the proximal tibia was recently developed. The purpose of this study was to evaluate the fixation stability of rTKA with this augment in comparison to conventional cemented rTKA. Eleven pairs of thawed fresh-frozen cadaveric tibias (22 tibias) were potted in custom fixtures. Primary total knee arthroplasty (pTKA) surgery was performed on all tibias. Fixation stability testing was conducted using a three-stage eccentric loading protocol. Static eccentric (70% medial/ 30% lateral) loading of 2100 N was applied to the implants before and after subjecting them to 5×103 loading cycles of 700 N at 2 Hz using a joint motion simulator. Bone-implant micromotion was measured using a high-resolution optical system. The pTKA were removed. The proximal tibial bone defect was measured. One tibia from each pair was randomly allocated to the experimental group, and rTKA was performed with a
Background. Prospective study to compare patient reported outcome measures (PROM) for sacroiliac joint (SIJ) fusion using HA-coated screw (HACS) vs triangular
Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous
Introduction. Trabecular
It is very important to fix implant to bone. Bioactive materials as hydroxyapatite or glass-ceramics have bone-bonding ability. Hydroxyapatite-coating is applied to cementless THA or TKA. I and coworkers investigated bone-bonding mechanism of bioactive material and found that bone-like apatite formation play key role for bonding. If the surface of metal is changed to form apatite on it in body, the inert metal changes into bone-bonding material. We developed alkaline and heat treatment of
Corrosion in modular taper connections of total joint replacement has become a hot topic in the orthopaedic community and failures of modular systems have been reported. The objective of the present study was to determine in vivo
Abstract. Background. Prospective study to compare patient reported outcome measures (PROM) for sacroiliac joint (SIJ) fusion using HA-coated screw (HACS) vs triangular
INTRODUCTION. Trabecular
Periprosthetic joint infection (PJI) remains one of the most devastating complications that can occur following total joint arthroplasty. Failure rate of standard treatment for PJI is estimated to be around 40% at two years post revision surgery. A major clinical challenge contributing to treatment failure and antibiotics tolerance is the biofilm formation on implant surfaces. Lytic bacteriophages (phages) can target biofilm associated bacteria at localized sites of infection by penetrating and disrupting biofilm matrices; furthermore, phage replication within the biofilm leads to high local concentrations resulting in a powerful therapeutic effect. The aim of this study is to test if phage cocktail has better antimicrobial effect than vancomycin or a single agent phage against biofilm forming MRSA clinical strain Staphylococcus aureus (S. aureus). S. aureus BP043 was utilized in this study. This strain is a PJI clinical isolate, methicillin resistant (MRSA) and biofilm-former. Three lytic phages, namely, 44AHJD, Team1 and P68, known to infect S. aureus, were tested for their efficiency against S. aureus BP043. The ability of the phages to eliminate S. aureus BP043 planktonic or biofilm cultures was tested either as singular phages or as a cocktail of the three phages. Planktonic cells were adjusted to ∼ 1×109 CFU/mL in tryptic soy broth (TSB) and each phage was added alone or as a cocktail at ∼ 1×109 PFU/mL with moi of 1 (a multiplicity of infection). Bacterial growth was assessed by measuring optical densities at 24hr and was compared to the control of S. aureus BP043 with no phage. BP043 biofilms was grown for 24hr on plasma sprayed
PEEK rods construct has been proposed to allow better load sharing among spinal components when compared to the more traditional