Abstract
Titanium knee, shoulder and hip implants are typically grit-blasted, thermal plasma spray coated, or sintered to provide ingrowth surface features having texture with pore sizes on the order of hundreds of micrometers. This provides macro and micro-mechanical locking upon bone remodeling. However, at the nanoscale and cellular level, these surfaces appear smooth. In vitro and in vivo research shows surfaces with nanoscale features result in enhanced osseointegration, greater bone-implant contact area and pullout force, and the potential to be bactericidal via a simple hybrid anodization surface modification process. Prior processes for creating nanotube nano-textured surfaces via electrochemical anodization relied on hydrofluoric acid electrolyte and platinum cathodes. This novel process uses ammonium fluoride electrolytes and graphite cathodes which are more cost effective and easier to handle during processing. Hybrid electrolytes with differing concentrations of ethylene glycol, water, and ammonium fluoride provide a variety of nanotube morphologies and sizes. Nano-tubular surfaces on knee tibial and femoral implants, hip stems and acetabular cups, bone screws and other 3D printed parts have been enhanced by this method of nano-texturing in as little as 30 minutes.
In vivo work in a Sprague Dawley rat model showed bone-implant contact area up to 2.9-times greater, and uniaxial pullout forces up to 6.9-times greater, than implanted smooth titanium controls at 4 and 12-week time points. In these tests, 1.25mm Kirschner wires were implanted in the rat femora to simulate an intramedullary nail. Histomorphometry in the mid-shaft and distal regions showed greater trabecular thickness and bone tissue mineral density than controls. Axial pullout tests often resulted in bone failure before the bone-implant interface.
In vitro evidence suggests that nanoscale surfaces may have an antibacterial effect due to surface energy changes that reduce the ability of bacteria to adhere. However, it is recognized that silver is highly antibacterial in appropriate concentrations. It is also recognized that nanosilver, approximately 10–20nm, is especially effective. Ammonium fluoride anodization is modified using a hybrid electrolyte that includes silver fluoride. By substituting some of the ammonium fluoride with silver fluoride, to maintain a constant total fluorine mass, nanosilver is integrated within and among the nanotubes in the same single process that forms the nanotubes.
This hybrid process in nano-texturing titanium implants can be integrated into current manufacturing production at low cost.