Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BIOLOGICAL AND BIOMECHANICAL EVALUATION OF IODINE-TREATED TITANIUM IMPLANTS

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 4.



Abstract

Background

One of the serious postoperative complications associated with joint replacement is bacterial infection. In our recent investigations, iodine supported titanium implants demonstrated antibacterial activity in both in vitro studies and clinical trials. But it is not clear whether iodine treated titanium implants produce strong bonding to bone. This study evaluated the bone bonding ability of titanium implants with and without iodine surface treatments.

Methods

Titanium rods were implanted in intramedullary rabbit femur models, in regard to the cementless hip stem. The implant rods were 5mm in diameter and 25mm in length. Half of the implants were treated with iodine (ID implants) and the other half were untreated (CL implants). The rods were inserted into the distal femur; ID implants into the right femur and CL implants into the left. We assessed the bonding strength by a measuring pull-out test at 4, 8, and 12 weeks after implantation. The bone-implant interfaces were evaluated at 4 weeks after implantation.

Results

Pull-out test results of the ID implants were 202, 355, and 344 N, at 4, 8, and 12 weeks, respectively, significantly higher than those of the CL implants (102, 216, and 227 N). Histological examination revealed that new bone formed on the surface of both types of implants, but significantly more bone made direct contact with the surfaces of the ID implants.

Conclusion

This research showed that new type of coating, iodine coated titanium has low toxicity and good osteoconductivity.


*Email: