Advertisement for orthosearch.org.uk
Results 1 - 20 of 30
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 171 - 171
1 Jan 2013
Elnikety S Pendegrass C Blunn G
Full Access

Introduction. Demineralised Bone Matrix (DBM) is widely used in Orthopaedics and dentistry as a bone graft substitute and may be used to augment bone formation in load bearing applications. In this study we examine the effect of gamma irradiation and freeze drying on the tensile strength of Demineralised Cortical Bone (DCB). Methods. Tibias were harvested from mature ewes and cut into bony strips. Demineralisation was done using 0.6M HCL and confirmed by X-ray. Specimens were washed until a pH of 7.0 +/_ 0.2 was achieved in the washing solutions. Specimens were allocated into 4 groups; group (A) non freeze dried non gamma irradiated, group (B) freeze dried non gamma irradiated, group (C) non freeze dried gamma irradiated mention the level of gamma irradiation and group (D) freeze dried and gamma irradiated. The maximum tensile force and stress were measured. Statistical analysis using the Mann-Whitney U test was carried out. Results. The Median of maximum tensile force for group (A) was 218N, group (B) was 306N, group (C) was 263N and for group (D) was 676N. Group (D) results were statistically higher (p=< 0.05) compared to group (A) and (C), while there was no statistical significance compared to group (B). Conclusion. Previously published studies suggested the possibility of using DCB as ACL graft substitute. We examined the effect of gamma radiation as the most common sterilisation technique in medical field and the freeze drying as a possible technique for long term storage on the tensile strength of the DCB. Freeze drying significantly increases the tensile strength of the DCB while gamma irradiation has no significant effect. Our results indicate that freeze dried gamma irradiated DCB can be used as a ligament substitute


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 45 - 45
23 Feb 2023
Walker P
Full Access

This technique is a novel superior based muscle sparing approach. Acetabular reaming in all hip approaches requires femoral retraction. This technique is performed through a hole in the lateral femoral cortex without the need to retract the femur. A 5 mm hole is drilled in the lateral femur using a jig attached to the broach handle, similar to a femoral nail. Specialised instruments have been developed, including a broach with a hole going through it at the angle of the neck of the prosthesis, to allow the rotation of the reaming rod whilst protecting the femur. A special C-arm is used to push on the reaming basket. The angle of the acetabulum is directly related to the position of the broach inside the femoral canal and the position of the leg. A specialised instrument allows changing of offset and length without dislocating the hip during trialling. Some instrumentation has been used in surgery but ongoing cadaver work is being performed for proof of concept. The ability to ream through the femur has been proven during surgery. The potential risk to the bone has been assessed using finite analysis as minimal. The stress levels for any diameter maintained within a safety factor >4 compared to the ultimate tensile strength of cortical bone. The described technique allows for transfemoral acetabular reaming without retraction of the femur. It is minimally invasive and simple, requiring minimal assistance. We are incorporating use with a universal robot system as well as developing an electromagnetic navigation system. Assessment of the accuracy of these significantly cheaper systems is ongoing but promising. This approach is as minimally invasive as is possible, safe, requires minimal assistance and has a number of other potential advantages with addition of other new navigation and simple robotic attachments


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 72 - 72
1 May 2012
G. S R. A R. W J. M
Full Access

Introduction. Successful tendon repairs are reliant on the suture material having high tensile strength, no or little tissue response, good handling characteristics and little elastic/plastic deformation. Plastic deformation contributes to gap formation at a tendon repair site. Previous research has shown a gap greater than 4mm is likely to fail. Pre-tensioning is a commonly used method to improve the handling properties of sutures. This study investigates whether the plastic deformation demonstrated by two suture materials used in flexor tendon repair is affected by manual pre-tensioning. Material/Methods. Twenty lengths of 3/0 Prolene (Ethicon, UK) and 3/0 Ethibond Excel (Ethicon, UK) were selected. Half of the sutures in each group were manually pre-tensioned (longitudinal stretch of 15N for 3s) prior to knot tying (standard surgical knot with six throws) and half were knotted without pre-tensioning. The suture lengths were measured before and after a standardised cyclical loading regime on a tensile tester. The regime was designed to represent the finger flexion forces produced in an active rehabilitation programme after tendon repair. All sutures were subsequently tested to their ultimate tensile strength. Results. After cyclical loading the Prolene sutures not pre-tensioned showed a mean increase in suture length of 5.4% (range 3.3-7%). The pre-tensioned Prolene sutures demonstrated a mean increase of 0.7% (range 0.1-1.9%). This equates to 87% less plastic deformation (p < 0.05 Students' T-test) with pre-tensioning. There were no differences with Ethibond. Pre-tensioning had no effect on ultimate tensile strength for either group. Conclusion. Manual pre-tensioning reduces plastic deformation in Prolene 3/0 sutures without affecting the ultimate tensile strength. This simple technique could theoretically diminish gap formation at the site of a tendon repair


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 15 - 15
1 Apr 2018
Lee K
Full Access

Anterior cruciate ligament (ACL) reconstruction is the current standard of care for ACL tears. However, the results are not consistently successful, autografts or allografts have certain disadvantages, and synthetic grafts have had poor clinical results. The aim of this study was to determine the efficacy of tissue engineering decellularized tibialis tendons by recellularization and culture in a dynamic tissue bioreactor. To determine if recellularization of decellularized tendons combined with mechanical stimulation in a bioreactor could replicate the mechanical properties of the native ACL and be successfully used for ACL reconstruction in vivo. Porcine tibialis tendons were decellularized and then recellularized with human adult bone marrow-derived stem cells. Tendons were cultured in a tissue bioreactor that provided biaxial cyclic loading for up to 7 days. To reproduce mechanical stresses similar to hose experienced by the ACL within the knee joint, the tendons were subjected to simultaneous tension and torsion in the bioreactor. Expression of tendon-specific genes, and newly synthesized collagen and glycosaminoglycan (GAG) were used to quantify the efficacy of recellularization and dynamic bioreactor culture. The mechanical strength of recellularized constructs was measured after dynamic stimulation. Finally, the tissue-engineered tendons were used to reconstruct the ACL in mini-pigs and mechanical strength was assessed after three months. Dynamic bioreactor culture significantly increased the expression of tendon-specific genes, the quantity of newly synthesized collagen and GAG, and the tensile strength of recellularized tendons. After in vivo reconstruction, the tensile strength of the tissue-engineered tendons increased significantly up to 3 months after surgery and were within 80% of the native strength of the ACL. Our translational study indicates that the recellularization and dynamic mechanical stimuli can significantly enhance matrix synthesis and mechanical strength of decellularized porcine tibialis tendons. This approach to tissue engineering can be very useful for ACL reconstruction and may overcome some of the disadvantages of autografts and allografts


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 135 - 135
1 Jan 2016
Kwon S Kim Y Lim YW Jo WL
Full Access

The plasma spray(TPS) has come to be accepted as one of the more reliable methods of porous coating of prosthesis, it is not without some technical limitations, especially with regard to precise modulation of pore size, porosity, and roughness. However, the plasma spray(TPS) not often but seriously faces problems such as bead detachment related poor osteointegration, weakness of metal strength and high manufacturing costs in addition to its various technical limitations. Currently, there has been much research into developing a more economical and effective method for porous coating of the prosthesis. In light of such demand, 3D Printing with DMT Technology has been introduced into the field of surface treatment of prosthesis with promising expectations. DMT technology -an additive fabrication process that uses high-power laser and various metal powders in order to produce fully dense and geometrically complex metal components, molds, and dies directly from digital CAD model data of 3D subjects aims to help overcome many of the problems associated with plasma spray and thereby open a new chapter of endless possibilities for coating technology. In this study, the porous coating specimen using 3-D DMT metal printing was characterized morphologically as well as biomechanically, in terms of 1) pore size 2) porosity 3) tensile strength 4) shear strength 5) roughness respectively. The biological cyto-compatibility was evaluated by culturing human osteoblast-like cells(Saos-2: ATCC HTB85) on the surface of round discs with porous coating to demonstrate the biological influence on the porosity of the specimens with different surface treatment for comparative analysis. The evaluation was accompanied by assessment of cell proliferation and morphology with arrangement of actin filament and expression of adhesion molecule with α. v. β. 3. integrin. While 3-D DMT coating specimen showed relatively regular porosity in the range of 150–500µm with the increase of porosity about 83%, the mechanical behavior remarkably improved, compared to TPS: shear strength 13%, fatigue failure 30%, roughness 16%, respectively. Also worth noting, the tensile strength was unable to be measured because the glue for test had fallen off. (Fig. 1) There is no transitional zone underneath the porous coating layer.(Fig. 2) From the aspect of biocompatibility, 3-D coating showed better cell attachment, spreading of cytoskeleton, cell proliferation, and expression of osteogenic markers than TPS, even if not significantly.(Fig. 3) Additionally, cell migration assay was performed with double chamber study, and gene expression was evaluated by measuring alkaline phosphatase(ALP) levels and analyzing mRNA expression for ostepontin(OPG) and osteocalcin(OC). In conclusion, the study reinforces the popular stance that the implementation of 3-D DMT could open up new possibilities for coating technology and form a new chapter in the history of prosthesis development


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 103 - 103
1 May 2016
Oral E Doshi B Neils A Muratoglu O
Full Access

Introduction. Inradiation cross-linked and melted ultrahigh molecular weight polyethylene (UHMWPE) total joint implants, the oxidation potential is afforded to the material by by post-irradiation melting. The resulting cross-linked UHMWPE does not contain detectable free radicals at the time of implantation and was expected to be resistant against oxidation for the lifetime of the implants. Recently, analysis of long-term retrievals revealed detectable oxidation in irradiated and melted UHMWPEs, suggesting the presence of oxidation mechanisms initiated by mechanisms other than those involving the free radicals at the time of implantation. However, the effect of oxidation on these materials was not well studied. We determined the effects of in vitro oxidation on the wear and mechanical properties of irradiated and melted UHMWPEs. Materials and Methods. Medical grade slab compression molded UHMWPE (GUR1050) was irradiated using 10, 50, 75, 100, 120 or 150 kGy. The irradiated and melted UHMWPEs were accelerated aged at 70°C for 2, 3, 4, 6 and 8 weeks at 5 atm of oxygen. Oxidation profiles were determined by first microtoming 150 μm cross sections; these were then extracted by boiling hexane for 16 hours and vacuum dried for 24 hours. They were then analyzed on an infrared microscope as a function of depth away from the surface. An oxidation index was calculated per ASTM 2102 as the ratio of the area under the carbonyl peak at 1740 cm-1 to the area under the crystalline polyethylene 1895 cm-1 peak. The cross-link density was calculated as previously described (Oral 2010). The wear rate was determined using a custom-designed pin-on-disc wear tester against CoCr polished discs at 2 Hz and a rectangular path of 5 × 10 mm in undiluted bovine serum (Bragdon 2001). Tensile mechanical properties were determined using Type V dogbones according to ASTM D638. Results and Discussion. Oxidation increased as a function of aging duration for all UHMWPE samples. The cross-link density decreased non-linearly with increasing oxidation and the wear rate increased non-linearly. The dependence of wear on cross-link density was different for freshly irradiated, unoxidized samples in contrast to aged and oxidized samples (Figure 1). The elongation at break and the ultimate tensile strength decreased with increasing oxidation (Figure 2) and the modulus increased with increasing oxidation. There was an increase in the oxidation rates and oxidation levels of irradiated and melted UHMWPEs with increasing radiation dose (Figure 1), which suggested that regardless of the presence of residual free radicals, increased cross-linking made the material more prone to oxidation and oxidative degradation. The wear rate was not very sensitive to oxidation with an increase only observed at an oxidation index of 1 (Figure 3), suggesting a significant level of degradation and oxidative damage only at this level of oxidation. In contrast, the tensile strength and elongation-at-break were very sensitive to oxidation, showing severe degradation at low oxidation levels. Significance. This is the first study exploring the effects of simulated oxidation in irradiated and melted UHMWPEs without detectable free radicals known to cause oxidation. We have shown that when oxidation occurs, severe degradation may occur in irradiated and melted UHMWPEs


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 34 - 34
1 Feb 2012
White C Bunker T Hooper R
Full Access

Given that there is limited time available to the surgeon in arthroscopic rotator cuff repair, how is the time best spent? Should they place one Modified Mason-Allen, two mattress or four simple sutures? This study reverses current thought. In an in-vitro biomechanical single pull to failure study we compared the ultimate tensile strength of simple, mattress and grasping sutures passed with an arthroscopic suture passer (Surgical Solutions Express-Sew). The aim was to determine which suture configurations would most simply, repeatably and reliably repair the rotator cuff. The ultimate tensile strength and mode of failure of six different suture configurations was repeatedly tested on a validated porcine rotator cuff tendon model, using a standard suture material (Number 2 Fiberwire) passed with the Surgical Solutions Express-sew, in a Hounsfield type H20K-W digital tensometer. Standardising the number of suture passes to four, the strongest construct was two mattress sutures (Mean 169N), followed by single Modified Kessler (Mean 161N), four simple sutures (Mean 155N) and finally a single Mason Allen suture (Mean 140N). Suture configurations involving two passes were all weaker than those with four (one way analysis of variance p=0.026), even when Number 2 Fibertape was used to augment strength. These results show little difference in strength for varying complexity of four pass suture passage (one way analysis of variance p=0.61). In simple terms there is no demonstrable difference in the strength of construct whether the surgeon uses four simple, two mattress or one grasping suture. This study allows the surgeon to justify using the simplest configuration of suture passage that works in his hands in order to obtain a reliable and repeatable repair of the rotator cuff arthroscopically


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 37 - 37
1 Feb 2021
De Mello Gindri I Da Silva L More ADO Salmoria G De Mello Roesler C
Full Access

Introduction. According to American Joint Replacement Registry, particle mediated osteolysis represents 13 % of the knee revision surgeries performed in the United States. The comprehension of mechanical and wear properties of materials envisioned for TJR is a key step in product development. Furthermore, the maintenance of UHMWPE mechanical properties after material modification is an important aspect of material success. Initial studies conducted by our research group demonstrated that the incorporation of ibuprofen in UHMWPE had a minor impact on UHMWPE physicochemical and mechanical properties. Drug release was also evaluated and resulted in an interesting profile as a material to be used as an anti-inflammatory system. Therefore, the present study investigated the effect of drug release on the mechanical and biological properties of ibuprofen-loaded UHMWPE. Experimental. UHMWPE resin GUR 1020 from Ticona was for sample preparation. Samples with drug concentrations of 3% and 5% wt were consolidated as well as samples without anti-inflammatory addition through compression molding at 150 °C and 5 MPa for 15 minutes. Mechanical properties were evaluated via the tensile strength experiment (ASTM D638) and dynamic mechanic tests. Wear resistance was measured using the pin on disc (POD) apparatus. Finally, cytotoxicity analysis was conducted based on ISO 10993–5. Results. Dynamic-mechanic analysis demonstrated no difference in flexion modulus and stress for all materials (Table 1). No difference was also verified during cyclical loading experiments (Table 1), which indicates that the drug concentration added to material composition did not affect these properties. POD experiments were proposed to evaluate wear resistance of ibuprofen-loaded UHMWPE samples considering the combination of materials similar to those employed in TJR. Results from POD tests are presented in Table 1. Volumetric wear was close to zero for all samples after 200 thousand cycles. Comprehension of the effect of drug release on mechanical properties is essential to estimate how the material will behave after implantation. Therefore, mechanical properties were assessed after 30 days of ibuprofen release and the results were compared with those obtained in samples as prepared (Table 2). Initial results demonstrated a decrease in elastic modulus in samples prepared with ibuprofen. However, no difference was verified between UHMWPE, UHMWPE 3% IBU and UHMWPE 5% IBU after ibuprofen release. Finally, cell viability of UHMWPE 3% IBU and UHMWPE 5% was found to be superior to 100% (Figure 1). Therefore, both materials can be considered nontoxic. Conclusions. Ibuprofen-loaded UHMWPE did not demonstrate a significant influence on the mechanical and biological behavior of UHMWPE. Dynamic-mechanical tests demonstrated constancy for all samples under analysis. Wear testing resulted in gravimetric wear close to zero, for all tested materials. Mechanical properties conducted after 30 days of ibuprofen release also had a positive outcome. Although presenting a difference in modulus prior and after release tests, modulus and tensile yield stress remained inside acceptable range indicated to UHMWPE used in orthopedic implants. Furthermore, after drug elution UHMWPE 3% IBU and UHMWPE 5% IBU recovered original UHMWPE properties. Cytotoxicity assessment was performed and both ibuprofen-based formulations were considered nontoxic according to ISO 10993–5. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 35 - 35
1 May 2016
Shin T Kang K Park S Kwon S Lim Y Lim D
Full Access

Introduction. Cementless arthroplasty has been widely used for younger patients with osteoarthritis and other joint pathology. Cementless arthroplasty will be required to porous surface which is to similar to the trabecular bone for bone ingrowth. Titanium Plasma Spray (TPS) has been worldwide used for the porous coating method on arthroplasty. However, TPS coating is limited that would not to establish optimal porosity for bone ingrowth due to arbitary position of melted powder by plasma gas on substrate. Therefore, it is reported coating detached from its substrate (i.e. arthroplasty) is induced implant loosening. Thus, a novel Laser-aided Direct Metal Tooling (DMT) based on Additive Manufacturing (AM) was developed to overcome these limitations. In this study, we were done to assess stereological analysis, static tensile, shear, abrasion test, and physical analysis for evaluation of the efficacy of DMT which was newly-developed coating technology. Then, mechanical characteristics of DMT coating were compared to commercial TPS coating's. Materials and Methods. First, porosity of the DMT coating was evaluated using Microphotography and Scanning Electron Microscopy (SEM), as described in Figure 1. Static tensile and shear test for assessment of mechanical characteristic in relation to the DMT and TPS coating specimens were conducted on the basis of ASTM F1147 and F1044 using universal testing machine (Endolab®, Servohydraulic Test Frame, DE). Maximum tensile strength and maximum shear strength were evaluated for each specimen (n=5). Abrasion test was performed based on ASTM F1978 using Taber® Rotary Platform Abraser Model 5135 (TABER®Industries, USA). Abrasion losses for each specimen (n=6) were measured at 2, 5, 10, and 100 cycles, respectively. Results. Porosity of the DMT coating was found to be 64 ± 11%. Maximum tensile strength (mean ± SD) of the DMT coating (48.6 ± 4.3 MPa) was lower than TPS's (51.5 ± 11.6 MPa) about 5.6%, but detached position of one of the TPS specimens was observed at coating layer not in adhesive layer. Maximum shear strength of the DMT coating (46.3 ± 1.9 MPa) was 10.2% higher, compared to TPS's (42.0 ± 0.6 MPa). Abrasion losses of the DMT (2 cycles, 1.0 ± 0.5 mg; 5 cycles, 2.5 ± 0.9 mg; 10 cycles, 4.2 ± 0.7 mg; 100 cycles, 20 ± 1.4 mg) were significantly higher (71.9% – 77.8% higher) than that of TPS's (2 cycles, 4.5 ± 1.4 mg; 5 cycles, 9.8 ± 2.8 mg; 10 cycles, 17.0 ± 3.4 mg; 100 cycles, 71.1 ± 4.2 mg), as shown in Figure 2. Roughness of the DMT coating was Ra 62.5 ± 2 μm, Rz 316.1 ± 8.1 μm which were 33.5%, 40.6% (Ra, Rz sequence) higher than that of TPS coating (Ra 46.8 ± 8.9 μm, Rz 224.9 ± 28.8 μm), as shown in Figure 3. Conclusions. Our results suggested that a novel DMT coating technology was feasible to apply coating method on the surface of the arthroplasty in terms of outstanding mechanical characteristics which were compared to commercial TPS coating


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 44 - 44
1 Jun 2018
Hofmann A
Full Access

Since 1997, a patented rim flared cup has been used for both primary and revision total hip arthroplasty with great success. The concept was based on a “stretched” hemispherical geometry to improve initial contact between cup and bone. This improved geometry provided a 1 mm press fit predominantly at the perimeter of the acetabulum much like the footprint of the native anatomic acetabulum. Thousands of these were implanted. A second version of this concept was introduced in August 2011. This similarly “stretched” geometry provides 1.6 mm of press fit. Building on what was learned from the original design, this updated, stretched geometry was created with a single radius for a smooth transition from the apex to the peripheral press fit. Porous coating is the key to implant durability. With this aggressive “sticky” porous coating, only 0.6 mm of press fit is required. This porous coating has 60% porosity, and 150–400 mm pore size. It has a tensile strength of 5000 psi (The FDA requires a minimum of 2900 psi) and a mean thickness of 0.8 mm. Three thousand cups have been implanted with the author contributing 400. In our own primary subgroup done in 2014–15, 142 had 2–4 year follow up with zero loosening. There was one infection and 2 dislocations. One implant was revised on a patient with psoas tendonitis from an oversized cup. At retrieval it showed excellent ingrowth into the porous coating with 38% ingrowth. This graduated rim fit concept has a proven track record spanning 2 decades and provides a stable and reproducible acetabular construct


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 68 - 68
1 Apr 2019
Van Citters D Currier B
Full Access

Introduction. While advances in joint-replacement technology have made total ankle arthroplasty a viable treatment for end-stage arthritis, revision rates for ankle replacements are higher than in hip or knee replacements [1]. The questions asked in this study were (1) what retrieved ankle devices demonstrate about ankle arthroplasty failures, and (2) how do these failures compare to those seen in the hip and the knee?. Materials and Methods. An IRB-approved retrieval laboratory received retrieved polyethylene inserts and surgeon-supplied reason for revision from 70 total-ankles (7 designs, including five currently-marketed designs) from 2002 to the present. All retrievals were rated for clinical damage. Polyethylene inserts received six months or less after retrieval (n=45) were analyzed for oxidation using Fourier Transform Infrared (FTIR) spectroscopy, reported as maximum ketone oxidation index [2]. Insert sterilization method was verified using trans-vinylene index [3]. Oxidation measured in the 45 ankle inserts versus their time in vivo was compared to oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]. Statistical analysis was performed using IBM SPSS v.22. Results. The ankle devices were retrieved most commonly for loosening (n=22) followed by polyethylene fracture (n=9). These failure modes occurred after statistically different in vivo time (loosening: mean=4.4±3.6 years; polyethylene insert fracture: mean=9.5±4.1 years; p=0.002). Presence of clinical fatigue (cracking and/or delamination) was identified in 24 of the 70 retrieved inserts, and its presence correlated with in vivo time (Spearman's rho =0.449, p<0.001). Thirteen of these fatigued inserts were analyzed by FTIR. TVI analysis confirmed the sterilization method of the fatigued inserts: 12 gamma, 1 non-gamma sterilized. All 13 fatigued inserts had maximum ketone oxidation index (KOI) of 1.2 or higher. Presence of fatigue correlated with measured oxidation (Spearman's rho =0.685, p<0.001). Six of the 9 inserts that fractured in vivo were analyzed by FTIR. All were gamma-sterilized, and all had oxidation of 1.2 or higher. Oxidation rate determined for most of the 45 ankle inserts was at or above oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]. Discussion. This retrieval study concurs with the ankle arthroplasty literature that loosening is the most common reason for ankle revision [4]. Ankle inserts retrieved as a result of implant loosening had lower oxidation and no fatigue damage resulting from their shorter in vivo time. Fatigued and/or fractured inserts were in vivo for longer times, allowing more oxidation to occur. The effect of oxidation on polyethylene tensile strength and ductility has been reported for tibial inserts [5]. Oxidation above the critical value [5] has a dramatic effect on the ability of the polyethylene to resist fatigue damage and fracture, since the toughness of the polyethylene drops to near zero. All fatigued and fractured ankle inserts had oxidation that exceeded this critical oxidation. Most ankle inserts, whether gamma or non-gamma sterilized, oxidized at or above the oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 286 - 286
1 Dec 2013
Dickinson A Taylor A Roques A Browne M
Full Access

Introduction:. Novel biomaterials may offer alternatives to metal arthroplasty bearings. To employ these materials in thin, bone conserving implants would require direct fixation to bone, using Titanium/HA coatings. Standard tests are used to evaluate the adhesion strength of coatings to metal substrates [1], versus FDA pass criteria [2]. In tensile adhesion testing, a disc is coated and uniform, uniaxial tension is exerted upon the coating-substrate interface; the strength is calculated from the failure load and surface area. Rapid failure occurs when the peak interface stress exceeds the adhesion strength, as local failure will propagate into an increasing tensile stress field. Ceramics and reinforced polymers (e.g. carbon-fibre-reinforced PEEK), have considerably different stiffness (E) and Poisson's Ratio (ν) from the coating and implant metals. We hypothesised that this substrate-coating stiffness mismatch would produce stress concentrations at the interface edge, well in excess of the uniform stress experienced with coatings on similar stiffness metals. Methodology:. The interface tensile stress field was predicted for the ASTM F1147 tensile strength test with a finite element analysis model, with a 500 μm thick coating (50 μm dense Ti layer, 450 μm porous Ti/HA/adhesive layer), bonded to a stainless steel headpiece with FM1000 adhesive (Fig. 1). Solutions were obtained for:. Configuration A: ASTM-standard geometry with Ti-6Al-4V (E = 110GPa, ν = 0.31), CoCrMo (E = 196GPa, ν = 0.30), ceramic (E = 350GPa, ν = 0.22, e.g. BIOLOX delta) and CFR-PEEK (E = 15GPa, ν = 0.41, e.g. Invibio MOTIS) substrates. Modified models were used to analyse oversized substrate discs:. Configuration B: coated fully and bonded to the standard diameter headpiece, and. Configuration C: Coated only where bonded to the headpiece. Results and Discussion:. The stiffness mismatch between the coating and the ceramic and CFR-PEEK substrates was predicted to introduce, respectively, a 1.80x and 3.57x stress concentration compared to a Ti6Al4V substrate (Fig. 2), thereby reducing the failure load for a given interface strength. These predictions consider the test stress distribution only, and do not assess the coating-substrate interface strength. However, the failure load is a function of the interface strength and the peak test stress, so the standard test and stress calculation for stiffness-mismatched substrates may indicate artificially low adhesion strength. The test may be modified to suit a particular material combination. As an example, for ceramic substrates the results indicate that an oversized, fully coated specimen (B) would experience stress closest to the standard's intended uniform stress field, suggesting that this configuration would be more appropriate. The stress distribution may be sensitive to the coating thickness, so tests should be verified accordingly. Conclusion:. The ASTM coating tensile adhesion strength test standard was predicted to generate a non-uniform interfacial stress for ceramic and polymer composite substrate materials. The standard may not be directly applicable for non-metal substrates as the stiffness mismatch needs to be considered


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 69 - 69
1 Mar 2017
Muratoglu O Oral E Suhardi V Bichara D Rubash H Freiberg A Malchau H
Full Access

Introduction. Radiation cross-linking of ultrahigh molecular weight polyethylene (UHMWPE) has reduced the in vivo wear and osteolysis associated with bearing surface wear (1), significantly reducing revisions associated with this complication (2). Currently, one of the major and most morbid complications of joint arthroplasty is peri-prosthetic infection (3). In this presentation, we will present the guiding principles in using the UHMWPE bearing surface as a delivery device for therapeutic agents and specifically antibiotics. We will also demonstrate efficacy in a clinically relevant intra-articular model. Materials and Methods. Medical grade UHMWPE was molded together with vancomycin at 2, 4, 6, 8, 10 and 14 wt%. Tensile mechanical testing and impact testing were performed to determine the effect of drug content on mechanical properties. Elution of the drug was performed in phosphate buffered saline (PBS) for up to 8 weeks and the detection of the drug in PBS was done by UV-Vis spectroscopy. A combination of vancomycin and rifampin in UHMWPE was developed to address chronic infection and layered construct containing 1 mm-thick drug-containing UHMWPE in the non-load bearing regions was developed for delivery. In a lapine (rabbit) intra-articular model (n=6 each), two plug of the layered UHMWPE construct were placed in the trochlear grove of the rabbit femoral surface and a porous titanium rod with a pre-grown biofilm of bioluminescent S. Aureus was implanted in the tibia. Bioluminescent imaging was employed to visualize and quantify the presence of the bacteria up to 3 weeks. Results and Discussion. Increasing drug content decreased both the ultimate tensile strength (UTS) and the impact toughness of vancomycin-containing UHMWPE (Figure 1). Elution data and structural analysis suggested that a percolation threshold was reached at above 6 wt% drug in UHMWPE, which resulted in sustained drug delivery above the minimum inhibitory concentration (MIC; 1 mg/ml) for up to 8 weeks (Figure 2). The layered constructs implanted in rabbits were able to eradicate all detectable bacteria from the biofilm on the titanium surfaces implanted on the counterface (Figure 3), suggesting clinically relevant efficacy. Significance. To our knowledge, this is the first study showing the design and efficacy of an antibiotic-eluting UHMWPE bearing surface. Such a device has the potential of reducing all two-stage revisions to single-stage treatment with load-bearing components, enhancing the mobility and quality of life for the patients and reducing the cost of infection treatment in arthroplasty. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 39 - 39
1 Mar 2017
Muratoglu O Oral E Doshi B
Full Access

Introduction. Radiation cross-linked UHMWPE is preferred in total hip replacements due to its wear resistance [1]. In total knees, where stresses are higher, there is concern of fatigue damage [2]. Antioxidant stabilization of radiation cross-linked UHMWPE by blending vitamin E into the polymer powder was recently introduced [3]. Vitamin E greatly hinders radiation cross-linking in UHMWPE [4]. In contrast peroxide cross-linking of UHMWPE is less sensitive to vitamin E concentration [5]. In addition, exposing UHMWPE to around 300°C, increases its toughness by inducing controlled chain scission and enhanced intergranular diffusion of chains, simultaneously [6]. We present a chemically cross-linked UHMWPE with high vitamin E content and improved toughness by high temperature melting. Methods and Materials. Medical grade GUR1050 UHMWPE was blended with vitamin E and with 2,5-Di(tert-butylperoxy)-2,5-dimethyl-3-hexyne or P130 (0.5% Vitamin-E and 0.9% P130). The mixed powder was consolidated into pucks. The pucks were melted for 5 hours in nitrogen at 300, 310 and 320°C. One set of pucks melted at 310°C was accelerated aged at 70°C at 5 atm. oxygen for 2 weeks. Tensile mechanical properties were determined using ASTM D638. Izod impact toughness was determined using ASTM D256 and F648. Wear rate was determined using a bidirectional pin-on-disc (POD) tester with cylindrical pins of UHMWPE against polished CoCr discs in undiluted, preserved bovine serum. Results. The vinyl index increased as a function of temperature (Fig 1a). Cross-link density steadily decreased and impact strength increased with increasing vinyl index (Fig 1b). The ultimate tensile strength (UTS) was not affected by HTM (Table 2). Impact strength was significantly improved for all treatment temperatures (P<0.05) and wear was significantly increased only for the sample melted at 320°C (Table 2). Discussion. High temperature melting (HTM) was shown to increase toughness of UHMWPEs presumably due to controlled chain scissioning and increased intergranular diffusion of chains [6]. For radiation cross-linked UHMWPE, it was shown that an increase in elongation-at-break and impact strength could be obtained without sacrificing wear resistance up to an elongation of about 500% [7]. This vitamin E-blended, peroxide cross-linked, high temperature melted UHMWPE has very high oxidation resistance due to its high antioxidant content, high wear resistance due to cross-linking and much improved toughness, representing an optimum joint replacement surface. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 2 - 2
1 Jan 2016
Abdulkarim A Moriarity A Sheehan E
Full Access

Introduction. Surgical gloves function as a mechanical barrier that reduces transmission of body fluids and pathogens from hospital personnel to patients and vice versa. The effectiveness of this barrier is dependent upon the integrity of the glove. Infectious agents have been shown to pass through unnoticed glove microperforations which have been correlated to the duration of wear. Varying factors may influence the integrity of the glove such as the material, duration of use, activities and fit. Studies have recommended changing gloves 90 minutes into a general surgical operation, however there are no known EBM recommendations in orthopaedic surgery. Objectives. The aim of our study was to determine whether the intrinsic properties of sterile surgical gloves can be compromised when exposed to common orthopaedic materials in the operating theatre. Methods. A total of 20 unused sterile surgical gloves (neoprene and latex) were exposed to blood, bone shavings and cement over 15, 30 and 60 minute intervals. Following each time point, the palmar surface and finger tips of each glove was analyzed under the scanning electron microscope (SEM), and were tested for changes in contact angle and tensile properties. Results. Exposure to cement caused a significant increase in both the neoprene and latex glove porosities at 15 min but no significant further changes at any later time points. The latex gloves had a greater increase in pore diameter than the neoprene gloves. Exposure to cement for 15 min duration significantly decreased the tensile strength of both latex and neoprene gloves. Exposure to either blood or bone shavings did not cause any significant changes in the latex or neoprene glove properties. Conclusions. This study provides evidence that exposure to cement, a common orthopaedic material, can disrupt the intrinsic properties of the surgical gloves worn in the operating theatre. This can lead to micro or macro perforations putting both the patient and operating room personnel at risk of contamination


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2016
Beckmann N Bitsch R Seeger J Klotz M Reiner T Kretzer JP Jaeger S
Full Access

Introduction. The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer porous implants have been introduced which may provide better treatment options for revision arthroplasty. These may require cementation to other prosthesis components and occasionally to bone, however, there is currently no information on how these porous implants interface with cement. Materials and Methods. Cylindrical bone (control group) and porous metal probes with a diameter and height of 10mm were created and subsequently cemented in a standardized setting. These were placed under tensile and torsional loading scenarios. In this experimental study, 10 human femoral heads were used to create 20 cylindrical probes with a diameter and height of 10mm. One side was tapered to 6mm for cementation and interface evaluation. A further set of 20 probes of a porous metal implant (Trabecular Metal®) was created with the same geometry. After the probes were created and lavaged, they were cemented at the tapered surface using a medium viscosity cement at a constant cementation pressure (1.2N/mm2). The setup allowed for comparison of the porous metal/cement interface (group A) with the well-studied control group interface bone/cement (group B). The maximal interface stability of groups A and B were evaluated under tensile and rotational loading scenarios and the cement penetration was measured. Results. Group A showed a significantly decreased cement penetration under the same cementation pressure than group B, yet the interface showed a significantly more stable interface in the measured tests: larger maximum tensile force (effect size 2.7), superior maximum tensile strength (effect size 2.6), greater maximum torsional force (effect size 2.2), and higher rotational stiffness (effect size 1.5). Discussion and Conclusion. The porous metal/cement interface displays substantially more stability than does the bone/cement interface. Although these tests evaluate initial stability in an in-vitro setting, they appear promising with regard to their cemented stability. As a result, a multicomponent porous metal construct with cement interdigitation should not compromise the overall implant primary stability


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 30 - 30
1 Aug 2013
de Beer M
Full Access

Purpose:. The objective of this study was to determine the tensile strength of the different components of the rotator cuff tendons and their relationship to rotator cuff tears. Method:. The tests were done on a newly designed and built test-bench that performed the tests at a consistent rupture speed. The tests were done on four fresh frozen cadaver shoulders. The capsular and tendinous layers of the rotator cuff were divided leaving them only attached on the humeral side. Separate tensile tests were done on these tendons, after they were divided into 10 mm wide strips before testing. The tendon thickness was also measured. Results:. The maximum force tolerated by these tendons is comparable. The elongation however is not the same; the tendinous part of the tendon elongated more. The strength of the “rotatorhood” was then determined. This is a thin layer of tendon extending beyond the greater tuberosity, connecting the supra-spinatus to the sub-scapularis via the bicipital groove. The 10 mm of the “rotator hood” ruptured at an average force of 70 Newtons. Conclusion:. 1. The two layers of the rotator cuff contribute equally to the cuff's strength. 2. The difference in elongation of the tendinous and capsular layers makes the capsular layer more vulnerable to elongation stress. 3. The “rotatorhood” is a strong important structure with a mechanically advantageous insertion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 86 - 86
1 Feb 2017
Currier B Currier J Holdcroft L Van Citters D
Full Access

Introduction. The optimum UHMWPE orthopaedic implant bearing surface must balance wear, oxidation and fatigue resistance. Antioxidant polyethylene addresses free radicals, resulting from irradiation used in cross-linking, that could oxidize and potentially lead to fatigue damage under cycles of in vivo use. Assessing the effectiveness of antioxidant (AO) polyethylene compared to conventional gamma-sterilized or remelted highly cross-linked (HXL) polyethylene is necessary to set realistic expectations of the service lifetime of AO polyethylene in the knee. This study evaluates what short-term antioxidant UHMWPE retrievals can reveal about: (1) oxidation-resistance, and (2) fatigue-resistance of these new materials. Methods. An IRB-approved retrieval laboratory received 25 AO polyethylene tibial insert retrievals from three manufacturers with in vivo time of 0–3 years. These were compared with 20 conventional gamma-inert sterilized and 30 HXL (65-kGray, remelted) tibial inserts of the same in vivo duration range. The retrievals were. (1) analyzed for oxidation and trans-vinylene index (TVI) using an FTIR microscope, and (2) inserts of sufficient size and thickness were evaluated for mechanical properties by uniaxial tensile testing using an INSTRON load frame. Oxidation was reported as maximum oxidation measured in the scan from the articular surface to the backside of each bearing. TVI was reported as the average of all scans for each material. Average ultimate tensile strength (UTS), ultimate elongation (UE), and toughness were the reported mechanical properties for each material. Results. Maximum oxidation values differed significantly across material types (p=0.018, Figure 1). No antioxidant retrieval exhibited a subsurface oxidation peak, in contrast to conventional gamma-sterilized (55%) and highly cross-linked (37%) retrievals that exhibited subsurface oxidation peaks over the same in vivo time (Figure 2). Trans-vinylene index (TVI) correlated positively with nominal irradiation dose (p<0.001). Mechanical properties varied by material, with tensile toughness correlating negatively with increasing TVI (p<0.001, Figure 3). Discussion. AO polyethylene was developed to address the problem of free radicals in polyethylene resulting from irradiation used in cross-linking or sterilization. Each manufacturer used a different antioxidant or method of supplying the antioxidant. However, all of the antioxidant materials appeared to be effective at minimizing oxidation over the in vivo period of this study. The antioxidant materials prevented in vivo oxidation more effectively than both conventional gamma-sterilized and remelted HXL polyethylene, at least over the in vivo period represented. The toughness, or ability of the material to resist fatigue damage, decreased with increasing irradiation cross-linking dose (increasing TVI). The AO polyethylenes evaluated in this study had lower toughness than conventional gamma-sterilized polyethylene, but they avoided the loss of toughness due to remelting. Clinical relevance. Antioxidant polyethylene tibial retrievals showed superior oxidation resistance to conventional gamma-inert and remelted HXL inserts. Material toughness varied with the irradiation dose used to produce the material. Comparison of antioxidant retrieval tensile properties can be used as a guide for clinicians in choosing appropriate materials for the applications represented by their patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_27 | Pages 22 - 22
1 Jul 2013
Ismael S Lewis J
Full Access

Graphene is a two-dimensional structure that is made of a single-atom-thick sheet of carbon atoms organised in hexagonal shapes. It is considered to be the mother of all graphite or carbon-based structures. It has shown exceptional physical and chemical properties which possess potential future applications. Graphene has an elasticity index similar to rubber and a hundred times tensile strength of steel and is even sturdier than diamonds. It is a very efficient biosensor with its exceptional electronic conductivity far greater than even copper. It is a potential future low cost material and its scalable production ability makes it even more attractive. The rediscovery of Graphene in 2008 saw few potential medical applications, specifically in the field of drug delivery, gene and cancer therapy. Nao graphene has extensive thermal conductivity and reflexivity, which can conceivably change imaging especially muskeloskeletal imaging and notably as a contrast material. It has been found to be a safe and a cheaper IV contrast agent in USA in 2012. Being an efficient biosensor especially in conducting electricity, it could assist in prosthetic and bionic limbs or prosthesis. Its durable stubborn properties, a composition which exceeds the strength of steel and light weight structure may create a potential material to develop into a new generation of a low profile internal fixing devices like plats. Most importantly, its scaffolding cell culturing assets could change the whole concept of prosthesis from mechanical press fit fixation to more dependence on bio adhesiveness


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 86 - 86
1 Jan 2016
Uetsuki K Osaka Y Tomita N
Full Access

Introduction. Dl-α-Tocopherol (VE)-blended non-crosslinked UHMWPE has been developed as a bearing surface material for knee prostheses due to the radical scavenging capabilities of vitamin E and has demonstrated a low wear rate in knee simulator testing [1,2]. In previous our study, VE-blended, crosslinked UHMWPE has demonstrated a low wear rate in hip simulator testing [3, 4]. As the radical scavenging capabilities also reduce the crosslinking degree of the material, multiple dose crosslinking has been investigated. However, these crosslinked UHMWPE materials may have different mechanical properties, as each crosslinking process, especially the annealing condition, is different. Additionally, there is little information about VE-blended, crosslinked UHMWPE with different annealing conditions. In this study, the effect of annealing temperature was investigated with regard to tensile strength, crosslink density, and crystallinity of VE blended, crosslinked UHMWPE. Method. VE blended samples were manufactured via direct compression molding following the blending of UHMWPE resin powder (GUR1050, Ticona Inc.) with VE (dl-α-tocopherol, Eisai Co. Ltd.) at 0.3wt%. The virgin samples were derived similarly, but without the addition of VE. Both materials underwent crosslinking by irradiation via a 10MeV electron beam at 300kGy and were then heat treated at several temperatures (25, 80, 110, 130 and 150 °C) for 24 hours. Gel content, which can be interpreted as cross-link density, was determined by measuring the weight of the samples before and after soaking in decahydronaphthalene at 150 °C for twelve days. Tensile tests were carried out following JIS K 7113, with the cross head speed set at 50 mm/min. Crystallinity was determined by using DSC and integrating over the enthalpy curve from 80 to 150 °C and normalizing with the enthalpy of melting for 100% crystalline polyethylene. Result. Fig. 1 shows the gel content of UHMWPE samples after crosslinking. Raising the annealing temperature caused an increase in the gel content regardless the VE content. Additionally, among samples with the same annealing temperature, VE samples had the lower gel content. Fig. 2 shows the yield strength of UHMWPE samples. Higher annealing temperature decreased the yield strength, and increased elongation. Fig. 3 shows the crystallinity of each UHMWPE sample. Higher annealing temperature decreased the crystallinity of UHMWPE. Discussion. In this study, the effect of annealing temperature on the mechanical properties of crosslinked UHMWPE was investigated. The results indicated that a greater volume of crystalline UHMWPE melted and reformed at the higher annealing temperatures. This was thought to occur due to the fact that UHMWPE consists of a range of different molecular weight chains, allowing for melting below 135°C. Therefore, the crystallinity and crosslink density changed for each annealing temperature. The annealing is a simple but effective method for designing the crystallinity and crosslinking of UHMWPE