Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

GRAPHENE: WILL IT BE THE FUTURE MATERIAL IN ORTHOPAEDIC AND TRAUMA SURGERY?

British Orthopaedic Trainee Association Annual General Meeting (BOTA)



Abstract

Graphene is a two-dimensional structure that is made of a single-atom-thick sheet of carbon atoms organised in hexagonal shapes. It is considered to be the mother of all graphite or carbon-based structures. It has shown exceptional physical and chemical properties which possess potential future applications. Graphene has an elasticity index similar to rubber and a hundred times tensile strength of steel and is even sturdier than diamonds. It is a very efficient biosensor with its exceptional electronic conductivity far greater than even copper. It is a potential future low cost material and its scalable production ability makes it even more attractive. The rediscovery of Graphene in 2008 saw few potential medical applications, specifically in the field of drug delivery, gene and cancer therapy.

Nao graphene has extensive thermal conductivity and reflexivity, which can conceivably change imaging especially muskeloskeletal imaging and notably as a contrast material. It has been found to be a safe and a cheaper IV contrast agent in USA in 2012. Being an efficient biosensor especially in conducting electricity, it could assist in prosthetic and bionic limbs or prosthesis. Its durable stubborn properties, a composition which exceeds the strength of steel and light weight structure may create a potential material to develop into a new generation of a low profile internal fixing devices like plats. Most importantly, its scaffolding cell culturing assets could change the whole concept of prosthesis from mechanical press fit fixation to more dependence on bio adhesiveness.