Advertisement for orthosearch.org.uk
Results 1 - 20 of 401
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 7 - 7
17 Apr 2023
Righelli L Gonçalves A Rodrigues M Gomes M El Haj A
Full Access

Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic nanoparticles (MNPs), it is possible to remotely induce the tenogenic differentiation of human adipose stem cells (hASCs). In this study, we investigated the tenogenic regenerative potential of remotely-activated MNPs-labelled hASCs in an in vivo rat model. We consider the potential for magnetic controlled nanoparticle mediated tendon repair strategies. hASCs were labelled with 250 nm MNPs functionalized with anti-Activin Receptor IIA antibody. Using a rapid curing fibrin gel as delivery method, the MNPs-labelled cells were delivered into a Ø2 mm rat patellar tendon defect. The receptor was then remotely stimulated by exposing the rats to a variable magnetic gradient (1.28T), using a customised magnetic box. The stimulation was performed 1 hour/day, 3 days/week up to 8 weeks. Tenogenesis, iron deposition and collagen alignment were assessed by histological staining and IHC. Inflammation mediators levels were assessed by ELISA and IHC. The presence of human cells in tendons after 4 and 8 weeks was assessed by FISH analysis. Histological staining showed a more organised collagen arrangement in animals treated with MNPs-labelled cells compared to the controls. IHC showed positive expression of tenomodulin and scleraxis in the experimental groups. Immunostaining for CD45 and CD163 did not detect leukocytes locally, which is consistent with the non-significant levels of the inflammatory cytokines analysis performed on plasma. While no iron deposition was detected in the main organs or in plasma, the FISH analysis showed the presence of human donor cells in rat tendons even after 8 weeks from surgery. Our approach demonstrates in vivo proof of concept for remote control stem cell tendon repair which could ultimately provide injectable solutions for future treatment. We are grateful for ERC Advanced Grant support ERC No.789119, ERC CoG MagTendon No.772817 and FCT grant 2020.01157.CEECIND


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits. ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat. Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons. These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 24 - 24
11 Apr 2023
Solis J Edwards J Fermor H Riches P Brockett C Herbert A
Full Access

Decellularised porcine superflexor tendon (pSFT) has been demonstrated to be a suitable scaffold for anterior cruciate ligament reconstruction[1]. While the role of collagen in tendons is well known, the mechanical role of glycosaminoglycans (GAGs) is less clear and may be altered by the decellularisation process. To determine the effects of decellularisation on pSFT GAG content and mechanical function and to investigate the consequences of GAG loss in tensile and compressive loading. pSFTs were decellularised following previous techniques [2]. For GAG removal, native pSFTs were treated with chondroitinase ABC (ChABC; 0.1U/mL, 72h). Cell and GAG removal was validated using histology and quantitative assays. Native, decellularised and ChABC treated groups (n=6) were biomechanically characterised. In tension, specimens underwent stress relaxation and strength testing using previous protocols [1]. Stress relaxation data was fitted to a modified Maxwell-Weichert model to determine time-dependent (E1 & E2) and time-independent moduli (E0). The toe and linear region moduli (Etoe, Elinear), in addition to tensile strength (UTS) and failure strain were determined from strength testing. In compression, specimens underwent confined loading conditions (ramp at 10 s-1 to 10% strain and hold). The aggregate modulus (HA) and zero-strain permeability (k0) were determined using previous techniques [3]. Data was analysed by one-way ANOVA with Tukey post-hoc test to determine significant differences between test groups (p<0.05). Quantitative assays showed no GAG reduction post-decellularisation, but a significant reduction after ChABC treatment. HA was only significantly reduced in the ChABC group. k0 was significantly higher for the ChABC group compared to decellularised. E0 was significantly reduced in the decellularised group compared to native and ChABC groups, while E1 and E2 were not different between groups. Etoe, Elinear, UTS and failure strain were not different between groups. Decellularisation does not affect GAG content or impair mechanical function in pSFT. GAG loss adversely affects pSFT compressive properties, revealing major mechanical contribution under compression, but no significant role under tension


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 136 - 136
1 Nov 2018
Traweger A
Full Access

There is a growing socio-economic need (i.e. “ageing society”) for effective and reproducible strategies to repair musculoskeletal tissue. In particular, acute tendon injury and chronic tendinopathies remain clinically challenging and novel treatment modalities are urgently needed. Tendons resemble a connective tissue rich in highly organized collagen fibers, displaying a remarkably high tensile strength. However, partly due to the low number of cells and their more or less avascular nature tendons heal relatively slowly. Ultimately, tendon regeneration encompasses the full restoration of the biological, biochemical and biomechanical properties, which are often impaired by endogenous healing cascades. Usually, a connective scar tissue forms at the injury site and the replaced tissue does not function adequately at high strain levels, increasing the chance of re-rupture. Despite significant advancements in tissue regeneration and engineering strategies, the clinical impact for the regeneration of tendon remains limited. For the development of novel methods to repair tendons we need to pin down the molecular and cellular mechanisms amenable to modulate endogenous (or exogenous) cell behaviour towards functional tissue regeneration. By comparing the gene expression profile of Achilles tendon tissue harvested from young-mature and old mice we demonstrate profound changes in the expression of ECM-related proteins and a previously unknown role of Secreted protein acidic and rich in cysteine (Sparc; also known as BM-40 or osteonectin) in tendons. Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties potentially drives adipogenic differentiation of tendon stem and progenitor cells (TDSPCs) and consequently lipid accretion in tendons. Generally, the fate of stem/ progenitor cells is largely determined by stimuli from the stem cell niche. In tendons, we describe a novel cellular barrier, most likely preventing the leakage of blood-borne products into the tendon proper. We propose that this “blood-tendon barrier” is part of the stem cell niche in tendons controlling TDSCP fate, preventing erroneous differentiation. By investigating the developmental programs driving tendon tissue formation and on the other hand the mechanisms contributing to the senescence of tendons, ultimately resulting in decreased quality of tendons in the elderly, novel targets for clinical intervention potentially can be discovered


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 22 - 22
2 Jan 2024
Muller S
Full Access

Tendons mainly consist of collagen in order to withstand high tensile forces. Compared to other, high turnover tissues, cellularity and vascularity in tendons are low. Thus, the natural healing process of tendons takes long and can be problematic. In case of injury to the enthesis, the special transition from tendon over cartilage to bone is replaced by a fibrous scar tissue, which remains an unsolved problem in rotator cuff repair. To improve tendon healing, many different approaches have been described using scaffolds, stem cells, cytokines, blood products, gene therapy and others. Despite promising in vitro and in vivo results, translation to patient care is challenging. In clinics however, tendon auto- or allografts remain still first choice to augment tendon healing if needed. Therefore, it is important to understand natural tendon properties and natural tendon healing first. Like in other tissues, senescence of tenocytes seems to play an important role for tendon degeneration which is interestingly not age depended. Our in vivo healing studies have shown improved and accelerated healing by adding collagen type I, which is now used in clinics, for example for augmentation of rotator cuff repair. Certain cytokines, cells and scaffolds may further improve tendon healing but are not yet used routinely, mainly due to missing clinical data, regulatory issues and costs. In conclusion, the correct diagnosis and correct first line treatment of tendon injuries are important to avoid the necessity to biologically augment tendon healing. However, strategies to improve and accelerate tendon healing are still desirable. New treatment opportunities may arise with further advances in tendon engineering in the future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 72 - 72
2 Jan 2024
Loiselle A
Full Access

During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged tendons heal with insufficient ECM


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 129 - 129
2 Jan 2024
Gehwolf R
Full Access

Tendons are characterised by an inferior healing capacity when compared to other tissues, ultimately resulting in the formation of a pathologically altered extracellular matrix structure. Although our understanding of the underlying causes for the development and progression of tendinopathies remains incomplete, mounting evidence indicates a coordinated interplay between tendon-resident cells and the ECM is critical. Our recent results demonstrate that the matricellular protein SPARC (Secreted protein acidic and rich in cysteine) is essential for regulating tendon tissue homeostasis and maturation by modulating the tissue mechanical properties and aiding in collagen fibrillogenesis [1,2]. Consequently, we speculate that SPARC may also be relevant for tendon healing. In a rat patellar tendon window defect model, we investigated whether the administration of recombinant SPARC protein can modulate tendon healing. Besides the increased mRNA expression of collagen type 1 and the downregulation of collagen type 3, a robust increase in the expression of pro-regenerative fibroblast markers in the repair tissue after a single treatment with rSPARC protein was observed. Additionally, pro-fibrotic markers were significantly decreased by the administration of rSPARC. Determination of structural characteristics was also assessed, indicating that the ECM structure can be improved by the application of rSPARC protein. Therefore, we believe that SPARC plays an important role for tendon healing and the application of recombinant SPARC to tendon defects has great potential to improve functional tendon repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 139 - 139
11 Apr 2023
Jeong S Suh D Park J Moon J
Full Access

Olecranon plates used for the internal fixation of complex olecranon fractures are applied directly over the triceps tendon on the posterior aspect of the olecranon. The aim of the study is to describe the relationship of the plates and screws to the triceps tendon at the level of the olecranon. Eight cadaveric elbows were used. Dimensions of the triceps tendon at the insertion and 1cm proximal were measured. A long or a short olecranon plate was then applied over the olecranon and the most proximal screw applied. The length of the plate impinging on the tendon and the level of the screw tract on the tendon and bone were measured. The mean olecranon height was 24.3cm (22.4-26.9cm) with a tip-to-tendon distance of 14.5cm (11.9-16.2cm). The triceps tendon footprint averaged 13.3cm (11.7-14.9cm) and 8.8cm (7.6-10.2cm) in width and length, respectively. The mean width of the central tendon 1 cm proximal to the footprint was 6.8 cm. The long olecranon plate overlay over more movable tendon length than did the short plate and consequently the superior screw pierced the triceps tendon more proximally with the long plate. Using the Mann-Whitney U test, the differences were significant. The long olecranon plates encroach on more triceps tendon than short plates. This may be an important consideration for olecranon fractures with regards implant loosening or triceps tendon injury


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 76 - 76
2 Jan 2024
Zamboulis D Ali F Thorpe C
Full Access

Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to age-related injury. Tendons have poor healing capacity and a lack of effective treatments can lead to ongoing pain, reduced function and re-injury. It is therefore important to identify the mechanisms underpinning age-related tendinous changes in order to develop more effective treatments. Our recent single cell sequencing data has shown that tendon cell populations have extensive heterogeneity and cells housed in the tendon interfascicular matrix (IFM) are preferentially affected by ageing. There is, however, a lack of established surface markers for cell populations in tendon, limiting the capacity to isolate distinct cell populations and study their contribution to age-related tendon degeneration. Here, we investigate the presence of the cell surface proteins MET proto-oncogene (MET), integrin subunit alpha 10 (ITGA10), fibroblast activation protein alpha (FAP) and platelet derived growth factor receptor alpha (PDGFRA) in the equine SDFT cell populations and their co-localisation with known markers. Using Western blot we validated the specificity of selected antibodies in equine tissue before performing immunohistochemistry to establish the location of the respective proteins in the SDFT. We subsequently used double labelling immunofluorescence with the established mural cell marker desmin (DES) to distinguish between tenocyte and mural cell populations. In situ, MET, ITGA10, and FAP presence was found in cells throughout the tendon whereas PDGFRA was present in cells within the IFM. Double labelling immunofluorescence with the mural cell marker DES showed lack of co-localisation between PDGFRA and DES suggesting PDGFRA is labelling an IFM cell population distinct from those associated with blood vessels. PDGFRA is a promising target for the specific cell sorting of IFM-localised tenocytes, enabling their isolation and subsequent characterisation. Acknowledgments: The authors acknowledge the Biotechnology and Biological Sciences Research Council (BB/W007282/1) for funding this work


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 127 - 127
2 Jan 2024
Moschini G
Full Access

Tendinopathy is the most common form of chronic tendon disorders, accounting for up 30% of all musculoskeletal clinic visits [1]. In tendon disease, the largely avascular tendon tissue often becomes hypervascularized and fibrotic [2]. As blood vessel growth and angiogenic signaling molecules are often induced by the lack of adequate nutrients and oxygen, hypoxic signaling is speculated to be a root cause of tendon neovascularization and tendinopathy [3,4,5]. However, how the vascular switch is initiated in tendons, and how vascularization contributes to tendon pathology remains unknown. In this talk, we provide evidence that HIF-1α is implicated in tendon disease and HIF-1α stabilization in human tendon cells induces vascular recruitment of endothelial cells via VEGFa secretion. More interesting, HIF-1α stabilization in tendon cells in vivo, seems to recapitulate all main features of fibrotic human tendon disease, including vascular ingrowth, matrix disorganization, changes in tissue mechanics, cell proliferation and innervation. Surprisingly, in vivo knock-out of VEGFa rescued angiogenesis in the tendon core but it did not affect tendon mechanical properties and tissue pathophysiological changes, suggesting that blood vessels ingrowth might not be a primary cause but a consequence of HIF-1α activation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 75 - 75
2 Jan 2024
Marr N Zamboulis D Beaumont R Tatarczyk Z Meeson R Thorpe C
Full Access

Tendon injuries occur frequently in athletes and the general population, with inferior healing leading to deposition of fibrotic scar tissue. New treatments are essential to limit fibrosis and enable tendon regeneration post-injury. In this study, we tested the hypothesis that rapamycin improves tendon repair and limits fibrosis by inhibiting the mTOR pathway. The left hindlimb of female adult Wistar rats was injured by needle puncture and animals were either given daily injections of rapamycin (2mg/kg) or vehicle. Animals were euthanized 1 week or 3 weeks post-injury (n=6/group). Left and right Achilles tendons were harvested, with the right limbs acting as controls. Tendon sections were stained with haematoxylin & eosin, and scored by 2 blinded scorers, assessing alterations in cellularity, cell morphology, vascularity, extracellular matrix (ECM) organization and peritendinous fibrosis. Immunohistochemistry was performed for the tendon pan-vascular marker CD146 and the autophagy marker LC3. Injury resulted in significantly altered ECM organization, cell morphology and cellularity in both rapamycin and vehicle-treated groups, but no alterations in vascularity compared to uninjured tendons. Rapamycin had a limited effect on tendon repair, with a significant reduction in peritendinous fibrosis 3 weeks after injury (p=0.028) but no change in cell morphology, cellularity or ECM organization compared to vehicle treated tendons at either 1 week or 3 weeks post injury. CD146 labelling was increased at the site of injury, but there was no apparent difference in CD146 or LC3 labelling in rapamycin and vehicle treated tendons. The decrease in peritendinous fibrosis post-injury observed in rapamycin treated tendons indicates rapamycin as a potential therapy for tendon adhesions. However, the lack of improvement of other morphological parameters in response to rapamycin treatment indicates that rapamycin is not an effective therapy for injuries to the tendon core. Acknowledgements: This study was funded by Versus Arthritis (22607)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 26 - 26
2 Jan 2024
Legerlotz K
Full Access

As high incidences of tendinopathies are observed particularly in those who intensively use their tendons, we assume that pathological changes are caused, at least partially, by mechanical overload. This has led to the so-called overload hypothesis, explaining the development of tendinopathies by structural failure resulting from excessive load. At the same time, tendon loading is an important part in tendon rehabilitation. Currently, exercise treatment approaches such as eccentric training or heavy load resistance training are widely applied in tendinopathy rehabilitation, with good clinical results such as an improvement in function and a reduction in pain. Particularly those rehabilitative approaches which impose high strains on the tendon may induce an adaptation of the tendon's mechanical properties such as increased tendon stiffness. An increased tendon stiffness is often interpreted as desirable, as it may protect the tendon from overloading and thus prevent future strain injuries. However, the tendinopathic tendon is not necessarily less stiff than the tendon in the contralateral leg and an improvement in tendon stiffness is not necessarily accompanied by an improvement in tendon pain or function. In addition, metabolic factors, resulting e.g. in low-level systemic inflammation, may contribute to pathological tendon tissue changes and are not necessarily affected by an exercise program, while nutritional interventions or dietary supplements may potentially affect tendon cell metabolism. Indeed, dietary supplements have been introduced as an additional therapeutic approach in the treatment of tendinopathies in recent years, and their positive curative effects have been reported for both the general population and athletes. In the management of tendinopathies, it may thus be advisable if therapeutic approaches aim to address both tendon mechanics and tendon metabolism for better treatment effectiveness and a sustainable improvement in pain and function


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 69 - 69
2 Jan 2024
Dintheer A Jaeger P Hussien A Snedeker J
Full Access

Extracellular matrix (ECM) mechanical cues guide healing in tendons. Yet, the molecular mechanisms orchestrating the healing processes remain elusive. Appropriate tissue tension is essential for tendon homeostasis and tissue health. By mapping the attainment of tensional homeostasis, we aim to understand how ECM tension regulates healing. We hypothesize that diseased tendon returns to homeostasis only after the cells reach a mechanically gated exit from wound healing. We engineered a 3D mechano-culture system to create tendon-like constructs by embedding patient-derived tendon cells into a collagen I hydrogel. Casting the hydrogel between posts anchored in silicone allowed adjusting the post stiffness. Under this static mechanical stimulation, cells remodel the (unorganized) collagen representing wound healing mechanisms. We quantified tissue-level forces using post deflection measurements. Secreted ECM was visualized by metabolic labelling with non-canonical amino acids, click chemistry and confocal microscopy. We blocked cell-mediated actin-myosin contractility using a ROCK inhibitor (Y27632) to explore the involvement of the Rho/ROCK pathway in tension regulation. Tissue tension forces reached the same homeostatic level at day 21 independent of post compliance (p = 0.9456). While minimal matrix was synthesized in early phases of tissue formation (d3-d5), cell-deposited ECM was present in later stages (d7-d9). More ECM was deposited by tendon constructs cultured on compliant (1Nm) compared to rigid posts (p = 0.0017). Matrix synthesized by constructs cultured on compliant posts was less aligned (greater fiber dispersion, p = 0.0021). ROCK inhibition significantly decreased tissue-level tensional forces (p < 0.0001). Our results indicate that tendon cells balance matrix remodeling and synthesis during tissue repair to reach an intrinsically defined “mechanostat setpoint” guiding tension-mediated exit from wound healing towards homeostasis. We are identifying specific molecular mechanosensors governing tension-regulated healing in tendon and investigate the Rho/ROCK system as their possible downstream pathway


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 84 - 84
17 Apr 2023
Gonçalves A Rodrigues M Gomes M
Full Access

Tissue engineering and regenerative medicine (TERM) hold the promise to provide therapies for injured tendons despite the challenging cues of tendon niche and the lack of specific factors to guide regeneration. The emerging potential of magnetic responsiveness and magnetic nanoparticles (MNPs) functionalities offers new perspectives to tackle TERM challenges. Moreover, pulsed electromagnetic field (PEMF) is FDA approved for orthopaedics with potential to control inflammation upon injury. We previously demonstrated that magnetic cell-sheets assisted by PEMF trigger the inflammation resolution by modulating cytokine-enriched environments [1]. To further understand the potential of magnetically assisted living patches, we have recently conducted in vivo studies using a rat patellar defect model. After labeling of human adipose stem cells with iron oxide MNPs for 16h, magCSs were cultured up to 3 days in α-MEM medium under non-magnetic or PEMF conditions. MagCSs were evaluated by immunocytochemistry, and real time RT-PCR for tendon markers. Cell metabolic activity was also assessed by MTS and ECM proteins quantified by Sirius Red/Fast Green. The MagCSs effect in ameliorating healing was assessed after implantation in window defects created in the patellar tendon of rats. PEMF was externally applied (3mT, 70Hz) 3d/week for 1h (magnetotherapy). After 4 and 8w, tendons were histologically characterized for immune-detection of tendon and inflammatory markers, and for Perls van Gieson and HE stains. Blood and detoxification organs were screened for inflammatory mediators and biodistribution of MNPs, respectively. In vitro results suggest that PEMF stimulates cellular metabolic activity, influences protein synthesis and the deposition of collagen and non-collagenous proteins is significantly increased compared to non-magnetic conditions. No adverse reactions, as infection or swelling, were observed after surgery or during follow-up. After 8w, magCSs remained at the implantation site and no MNPs were detected on detoxification organs. Plasma levels of IL1α, β, IL6 and TNFα assessed by multiplex assay were below detectable values (<12.5pg/ml). Thus, the combination of cell sheets and magnetic technologies hold promise for the development of living tendon substitutes. Acknowledgement to ERC-COG MagTendon772817, H2020 Achilles 810850, FCT - 2020.01157.CEECIND


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 32 - 32
2 Jan 2024
Traweger A
Full Access

Approximately 30% of general practice consultations for musculoskeletal pain are related to tendon disorders, causing substantial personal suffering and enormous related healthcare costs. Treatments are often prone to long rehabilitation times, incomplete functional recovery, and secondary complications following surgical repair. Overall, due to their hypocellular and hypovascular nature, the regenerative capacity of tendons is very poor and intrinsically a disorganized scar tissue with inferior biomechanical properties forms after injury. Therefore, advanced therapeutic modalities need to be developed to enable functional tissue regeneration within a degenerative environment, moving beyond pure mechanical repair and overcoming the natural biological limits of tendon healing. Our recent studies have focused on developing biologically augmented treatment strategies for tendon injuries, aiming at restoring a physiological microenvironment and boosting endogenous tissue repair. Along these lines, we have demonstrated that the local application of mesenchymal stromal cell-derived small extracellular vesicles (sEVs) has the potential to improve rotator cuff tendon repair by modulating local inflammation and reduce fibrotic scarring. In another approach, we investigated if the local delivery of the tendon ECM protein SPARC, which we previously demonstrated to be essential for tendon maturation and tissue homeostasis, has the potential to enhance tendon healing. Finally, I will present results demonstrating the utility of nanoparticle-delivered, chemically modified mRNAs (cmRNA) to improve tendon repair


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 128 - 128
2 Jan 2024
Ackerman J
Full Access

Tendon injuries present a major clinical challenge, as they necessitate surgical intervention and are prone to fibrotic progression. Despite advances in physical therapy and surgical technique, tendons fail to return to full native functioning, underlining the need for a biological therapeutic to improve tendon healing. Myofibroblasts are activated fibroblasts that participate in the proliferative and remodeling phases of wound healing, and while these matrix-producing cells are essential for proper healing, they are also linked to fibrotic initiation. A subset of tenocytes has been shown to give rise to the myofibroblast fate, and potentially contribute to fibrotic tendon healing. A viable anti-fibrotic therapy in other tissues has been reprogramming the fibroblast-myofibroblast differentiation route, avoiding a more pro-fibrotic myofibroblast phenotype. Thus, defining the molecular programs that underlie both physiological and pathological tendon healing is critical for the development of potential pharmacologic treatments. Towards that end, we have taken advantage of spatial transcriptomics, using the tenocyte marker Scleraxis as a tool, and have outlined three major spatiotemporally distinct tenocyte differentiation trajectories (synthetic, proliferative, and reactive) following acute tendon injury in mouse FDL. We have further outlined key transcriptional controls that may be manipulated to alter the differentiation process and influence the resulting myofibroblast phenotype, thereby promoting regenerative tendon healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 14 - 14
11 Apr 2023
Chen Z Chen P Tai A Bassonga E Mitchell C Wang A Zheng M
Full Access

Tendinopathy is the most frequent musculoskeletal disease that requires medical attention. Mechanical overload has been considered as a key driver of its pathology. However, the underline mechanism on how overload induces tendinopathy and inflammation is unclear. Extracellular mitochondria (EM) are newly identified as cell-to-cell communicators. The aim of this study is to elucidate the role of mitochondria in overload-induced inflammation. We performed three-dimensional uniaxial stretching to mouse tendon organoid in bioreactors. Cyclic strain of uniaxial loadings included underload, normal load, and overload, according to previous work. We then harvested microvesicles including EM, from the bioreactor by differential centrifugation and evaluated their characteristics by flow cytometry and super-resolution confocal microscopy. Raw 264.7 mouse macrophage cell line was used for chemotaxis assay in a Boyden Chamber System with Magnetic-Activated Cell Sorting Technology. EM induced cytokines secretion by macrophages was analyzed by a bead-based multiplex assay panel. N-Acetyl-L-cysteine (NAC) was used as the antioxidant to tendon organoid to regulate mitochondrial fitness. We showed mechanical load induced tendon organoid to release microvesicles including mitochondria. The size of microvesicles is mainly in the range from 220nm to 880nm. More than 75% of microvesicles could be stained by PKH26, confirming they were with lipophilic membrane. Super-resolution confocal microscopy identified two forms of mitochondria, including mitochondria encapsulated in vesicles and free mitochondria. Overload led to the degeneration of the organoid and induced microvesicles release containing most EM. Chemotaxis assay showed that EM from overloaded tendon organoid induced macrophages chemotaxis. In addition, microvesicles extracted from overloaded tendon organoid induced the production of proinflammatory cytokines including IL-6, KC (Keratinocyte-Derived Chemokine) and IL-18. NAC treatment to tendon cells could attenuate overload-induced macrophage chemotaxis. Overload induces EM releasing from tendon cells, which leads to chemotaxis of macrophages toward tendon, resulting in induction of inflammation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 6 - 6
1 Dec 2022
Roversi G Nusiner F De Filippo F Rizzo A Colosio A Saccomanno M Milano G
Full Access

Recent studies on animal models focused on the effect of preserving tendon remnant of rotator cuff on tendon healing. A positive effect by combining tendon remnant preservation and small bone vents on the greater tuberosity in comparison with standard tendon-to-bone repair has been shown. The purpose of the present clinical study was to evaluate the efficacy of biologic augmentation of arthroscopic rotator cuff repair by maintaining tendon remnant on rotator cuff footprint combined with small bone vents of the greater tuberosity. A retrospective study was conducted. All patients who underwent arthroscopic rotator cuff repair associated with small bone vents (nanofractures) and tendon footprint preservation were considered eligible for the study. Inclusion criteria were: diagnosis of full-thickness rotator cuff tear as diagnosed at preoperative magnetic resonance imaging (MRI) and confirmed at the time of surgery; minimum 24-month of follow-up and availability of post-operative MRI performed not earlier than 6 months after surgery. Exclusion criteria were: partial thickness tears, irreparable tears, capsulo-labral pathologies, calcific tendonitis, gleno-humeral osteoarthritis and/or previous surgery. Primary outcome was the ASES score. Secondary outcomes were: Quick-DASH and WORC scores, and structural integrity of repaired tendons by magnetic resonance imaging (MRI) performed six months after surgery. A paired t-test was used to compare pre- and postoperative clinical outcomes. Subgroup analysis was performed according to tear size. Significance was set at p < 0.05. The study included 29 patients (M:F = 15:14). Mean age (+ SD) of patients was 61.7 + 8.9 years. Mean follow-up was 27.4 ± 2.3 months. Comparison between pre- and postoperative functional scores showed significant clinical improvement (p < 0.001). Subgroup analysis for tear size showed significant differences in the QuickDASH score (0.04). Particularly, a significant difference in the QuickDASH score could be detected between medium and large tears (p=0.008) as well as medium and massive lesions (p=0.04). No differences could be detected between large and massive tears (p= 0.35). Postoperative imaging showed healed tendons in 21 out of 29 (72%) cases. Preservation of tendon remnant combined with small bone vents in the repair of medium-to-massive full-thickness rotator cuff tears provided significant improvement in clinical outcome compared to baseline conditions with complete structural integrity in 72% of the cases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 12 - 12
2 Jan 2024
Montes A Mauro A Cerveró-Varona A Prencipe G El Khatib M Tosi U Wouters G Stöckl J Russo V Barboni B
Full Access

Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models. Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches. ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h). Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration. Acknowledgements: This research is part of the P4FIT project ESR5, under the H2020MSCA-ITN-EJD-P4 FIT-Grant Agreement ID:955685


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 105 - 105
2 Jan 2024
Screen H
Full Access

Tendon injury is debilitating and recalcitrant. With limited knowledge of disease aitiology we have are lacking in effective treatments for this prevalent musculoskeletal complaint. This presentation will outline our findings over the past few years in which we have demonstrated the importance of the interfascicular matrix (IFM) niche in maintaining healthy tendon function and driving disease progression. 1,2. It will also continue to describe our progress in developing both in vivo and in vitro models to interrogate disease progression. We have developed and validated a rat Achilles tendon overload model, in order to explore the impact of loading on IFM and fascicle structure, and the resulting cell response. Data highlights that structural disruption and inflammatory response both initiate in the IFM region, and can be seen in the absence of demonstrable changes to animal gait, indicating a sub-injury response in the tendon which we hypothesis may drive increased matrix turnover and repair. 3. . We are now looking to interrogate the pathways driving this inflammatory behaviour in an organ-chip model, exploring the interplay between IFM cells and cells within fascicles. We have demonstrated phenotypic distinction of cells from the two niche environments, localized the progenitor phenotype to the IFM region and demonstrated significant mechanosensitivity in the IFM cell population. 4. We are currently building appropriate niche environments to maintain cell phenotype in our in vitro models, to explore the metabolic changes associated with disease progression. Acknowledgements: This body of work has received funding from: BBSRC (BB/K008412 /1); Versus Arthritis (project grant 20262); Horserace Betting Levy Board (T5); Dunhill Medical Charity (project grant RPGF1802\23); MRC (MR/T015462/1)