Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BIOENGINEERED LIVING FIBRES AS 3D MODELS OF TENDON HEALTH AND DISEASE

The European Orthopaedic Research Society (EORS) 32nd Annual Meeting, Aalborg, Denmark, 18–20 September 2024.



Abstract

Introduction

Healthy tendons are mainly composed of aligned collagen hierarchically organized from collagen fibrils to fiber bundles with a scarce cellular population mainly composed of tenocytes and tendon stem/progenitor cells. However, injured tendon acquires a fibrotic state characterized by a loss of ECM alignment and increased cellularization. The lack of reliable 3D models that recreate the organization and microenvironment of healthy and diseased tendons is one of the main obstacles faced by the scientific community.

Method

To recreate the architecture of healthy and diseased tendons, electrospun nanofiber scaffolds with anisotropic and isotropic nanotopography were developed. These scaffolds were coated with a shell consisting of cell-laden hydrogels encapsulating human adipose-derived stem cells (hASCs) to include the living component. To show the versatility of the system, extracellular vesicles (EVs) were encapsulated in the hydrogel as biological cues. The living fibers were characterized by microscopy and morphological analysis. The morphology and phenotype of cells was evaluated using microscopy, gene expression analysis and immunostainings for tendon markers.

Results

Scaffolds mimicked the native hierarchical structure of tendons and size of tendon fascicles. hASCs showed high elongation and cytoskeleton anisotropic organization, typical of tenocytes. Moreover, the bioengineered living fibers supported the tenogenic differentiation of stem cells over time, as indicated by the sustained expression of tenogenic and extracellular matrix markers. Finally, the hydrogel layer acted not only as a hydrated biomimetic environment adequate for cell encapsulation but also as a carrier and delivery system of EVs to cells, which improved their tenogenic commitment.

Conclusion

We bioengineered composite living fibers made of hierarchically organized electrospun fibers, coated with hydrogel encapsulating hASCs and biofunctional EVs. These provide an in vitro system to recreate tendon, allowing for the study of the effects of biophysical cues in tendon microenvironments and the influence of biologics on cells behavior.

Acknowledgments

CP21/00136, PI22/01686, CA22170, 10.54499/2020.03410.CEECIND/CP1600/CT0013, 10.54499/2022.05526.PTDC


Corresponding author: Manuel Gómez-Florit