There is currently no commercially available and clinically successful treatment for scapholunate interosseous ligament rupture, the latter leading to the development of hand-wrist osteoarthritis. We have created a novel biodegradable implant which fixed the dissociated scaphoid and lunate bones and encourages regeneration of the ruptured native ligament. To determine if scaphoid and lunate kinematics in cadaveric specimens were maintained during
Introduction. Orthopedics is experiencing a significant transformation with the introduction of technologies such as
Introduction and Objective. Total knee arthroplasty (TKA) is a frequently and increasingly performed surgery in the treatment of disabling knee osteoarthritis. The rising number of procedures and related revisions pose an increasing economic burden on health care systems. In an attempt to lower the revision rate due to component malalignment and soft tissue imbalance in TKA,
Objectives. This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing
There has been significant interest in day-case and rapid discharge pathways for unicompartmental knee replacements (UKR). Pathways to date have shown this to be a safe and feasible option; however, no studies to date have published results of rapid-discharge pathways using the NAVIO
Abstract. OBJECTIVES. Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips. METHODS. Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a
Robotic assistance in knee arthroplasty has become increasingly popular due to improved accuracy of prosthetic implantation. However, literature on the mid-term outcomes is limited especially that of hand-held robotic-assisted devices. We present one of the longest follow-up series to date using this novel technology and discuss the learning curve for introducing
In this study, we aimed to investigate tibiofemoral and allograft loading parameters after OCA transplantation using tibial plateau shell grafts to characterize the clinically relevant biomechanics that may influence joint kinematics and OCA osseointegration after transplantation. The study was designed to test the hypothesis that there are significant changes in joint loading after tibial plateau OCA transplantation that may require unique post-operative rehabilitation regimens in patients to restore balance in the knee joint. Fresh-frozen cadaveric knees (n=6) were thawed and mounted onto a 6 DOF KUKA
Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid
The use of intraoperative navigation and
Abstract. Background. Ultrasonic cutting of bone boasts many advantages over alternatively powered surgical instruments, including but not limited to: elimination of swarf, reduced reaction forces, increased precision in cutting and reduced adjacent soft tissue damage, reduced post-operative complications such as bleeding and bone fracture, reduced healing time, reduced intra-operative noise and ease of handling. Despite ultrasonic cutting devices being well established in oral and maxillofacial surgery, applications in orthopaedic surgery are more niche and are not as well understood. The aim of this study was to investigate the cutting speed (mm/s) and cutting forces (N) of orthopaedic surgeons using a custom-designed state of the art ultrasonic cutting tool to cut fresh human bone samples. Methods. A setup based on the
Abstract. Introduction. Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and
Abstract. OBJECTIVES. Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM). METHODS. Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a
The future of work brings several challenges and opportunities for occupational health and safety on three major drivers: the rapid progress of technological innovation; demographic changes, in particular ageing of the workforce and migration; and changes in the labour market, especially owing to new ways of per-forming jobs. Innovation technologies are leading to an overall transformation of industrial processes that offer huge developmental perspectives in the world of work and opportunities for society. In the field of prevention of musculoskeletal disorders, relevant progresses have been made in the clinical setting and in the context of care, also in relation to the ageing society. In the near future, the adaptation of workstations and the implementation of sensors and enabling technologies (collaborative
Abstract. Objectives. Dual mobility (DM) hip implants whereby the polyethylene liner is “free-floating” are being used increasingly clinically. The motion of the liner is not well understood and this may provide insight into failure mechanisms; however, there are no published methods on tracking liner motion while testing under clinically relevant conditions. The aim was to develop and evaluate a bespoke inertial tracking system for DM implants that could operate submerged in lubricant without line-of-sight and provide 3D orientation information. Methods. Trackers (n=5) adhered to DM liners were evaluated using a
Abstract. Background. The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the tibial component wall, are most common. Anterior/posterior dislocations are rare. For a dislocation to occur distraction of the joint is required. We have developed and validated a dislocation analysis tool based on a computer model of the ODL with a
Introduction. Despite decades of clinical research in artificial joints and underlying failure mechanisms, systematical and reproducible identification of reasons for complications in total knee replacements (TKR) remains difficult. Due to the complex dynamic interaction of implant system and biological situs, malfunction eventually leading to failure is multifactorial and remains not fully understood. The aim of present study was to evaluate different TKR designs and positions with regard to joint kinematics and stability under dynamic conditions by using a robot-based hardware-in-the-loop (HiL) setup. Material & methods. An industrial 6-axis
Background. Treating fractures is expensive and includes a long post-operative care. Intra-articular fractures are often treated with open surgery that require massive soft tissue incisions, long healing time and are often accompanied by deep wound infections. Minimally invasive surgery (MIS) is an alternative to this but when performed by surgeons and supported by X-rays does not achieve the required accuracy of surgical treatment. Methods. Functional and non-functional requirements of the system were established by conducting interviews with orthopaedic surgeons and attending fracture surgeries at Bristol Royal Infirmary to gain first-hand experience of the complexities involved. A robot-assisted fracture system (RAFS) has been designed and built for a distal femur fracture but can generally serve as a platform for other fracture types. Results. The RAFS system has been tested in BRL and the individual
Summary Statement. ACL reconstruction using a quadriceps tendon autograft was quantitatively evaluated using a
Summary Statement. Uptake of robotically-assisted orthopaedic surgery may be limited by a perceived steep learning curve. We quantified the technological learning curve and 5 surgeries were found to bring operating times to appropriate levels. Implant positioning was as planned from the outset. Introduction. Compared to total knee replacement, unicondylar knee replacement (UKR) has been found to reduce recovery time as well as increase patient satisfaction and improve range of motion. However, contradictory evidence together with revision rates concern may have limited the adoption of UKR surgery. Semi-active robotically-assisted orthopaedic tools have been developed to increase the accuracy of implant position and subsequent mechanical femorotibial angle to reduce revision rates. However, the perceived learning curve associated with such systems may cause apprehension among orthopaedic surgeons and reduce the uptake of such technology. To inform this debate, we aimed to quantify the learning curve associated with the technological aspects of the NavioPFS™ (Blue Belt Technologies Inc., Pittsburgh, USA) with regards to both operation time and implant accuracy. Methods. Five junior orthopaedic trainees volunteered for the study following ethical permission. All trainees attended the same initial training session and subsequently each trainee performed 5 UKR surgeries on left-sided synthetic femurs and tibiae (model 1146–2, Sawbones-Pacific Research Laboratories Inc, Vashon, WA, USA). A few days lapsed between surgeries, which were all completed in a two week window. Replica Tornier HLS Uni Evolution femoral and tibial implants (Tornier, France) were implanted without cementation. Each surgery was videoed and timings taken for key operation phases, as well as the overall operative time. A ball point probe with four reflective spherical markers attached was used to record the position of manufactured divots on the implant, which allowed the 3D position of the implant to be compared to the planned position. Absolute translational and rotational deviations from the planned position were analysed. Results. Total surgical time decreased significantly with surgery number (p < 0.001) from an initial average of 85 minutes to 48 minutes after 5 surgeries. All stages, except the cutting tool set up, demonstrated a significant difference in operative time with increasing number of surgeries performed (all p < 0.05) with the cutting phase decreasing from 41 to 23 minutes (p < 0.001). The translational and rotational accuracy of the implants did not significantly vary with surgery number. Discussion and Conclusion. The accuracy in implant position obtained by trainee surgeons on synthetic bones were similar to published data for experienced orthopaedic surgeons on other systems on cadavers. Whilst cadaver operations increase the complexity of operation, this should not theoretically affect the