Advertisement for orthosearch.org.uk
Results 1 - 20 of 101
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1394 - 1399
1 Oct 2009
Oh C Song H Kim J Choi J Min W Park B

Ten patients, who were unsuitable for limb lengthening over an intramedullary nail, underwent lengthening with a submuscular locking plate. Their mean age at operation was 18.5 years (11 to 40). After fixing a locking plate submuscularly on the proximal segment, an external fixator was applied to lengthen the bone after corticotomy. Lengthening was at 1 mm/day and on reaching the target length, three or four screws were placed in the plate in the distal segment and the external fixator was removed. All patients achieved the pre-operative target length at a mean of 4.0 cm (3.2 to 5.5). The mean duration of external fixation was 61.6 days (45 to 113) and the mean external fixation index was 15.1 days/cm (13.2 to 20.5), which was less than one-third of the mean healing index (48 days/cm (41.3 to 55). There were only minor complications. Lengthening with a submuscular locking plate can successfully permit early removal of the fixator with fewer complications and is a useful alternative in children or when nailing is difficult


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 161 - 161
1 Jan 2013
Purushothaman B Rankin K Bansal P Murty A
Full Access

Aim

To review the results of patients who underwent fixation of complex proximal femur fractures using the Proximal Femur Locking Plates (PFP) and analyse causes of failure of PFP.

Methods

Retrospective review of radiographs and case notes of PFP fixations in two hospitals between February 2008 and June 2011. Primary outcome was union at six months. Secondary outcome included post-operative complications, and need for further surgical intervention.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 136 - 136
1 Sep 2012
Munro C Baliga S Johnstone A Carnegie C
Full Access

Volar Locking Plates (VLP) have revolutionised the treatment of distal radius fractures allowing the anatomic reduction and stable fixation of the more comminuted and unstable of fractures. The benefits of this in terms of range of movement (ROM), pain and earlier return to work and daily activities is documented. However we were interested in was what improvements in wrist function patients made from 6 to 12 months after injury?

Methods

We retrospectively looked at a series of 34 consecutive patients that had undergone VLP fixation through a standard anterior approach followed by early physiotherapy. We documented standard demographics and assessed function in terms of Range of Movement, Grip strength (GS), Modified Gartland and Werley score (MGWS), Patient Rated Wrist Evaluation (PRWE) and the quick DASH questionnaire at six and twelve months

Results

Two patients were excluded from analysis as they failed to make both assessments. Of the 32 remaining (26 female:6 male) the mean age was 53.2yrs; range (26–78). On average GS, PGS, VAS function and pain did not improve. There was a modest improvement in Movement; Wrist Flexon-13 deg, Wrist Extension-14deg, Radial Deviation-7deg, Ulnar Deviation-9deg. There was no improvement in pronation and supination.

There was little improvement in qDASH, PRWE and mGW Scores with only a mean 1.8, 5.6 and 3.6 point improvement respectively.


Bone & Joint 360
Vol. 12, Issue 3 | Pages 43 - 43
1 Jun 2023
Das A

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering interventions for treating distal femur fractures in adults; ultrasound and shockwave therapy for acute fractures in adults; and local corticosteroid injection versus placebo for carpal tunnel syndrome.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 39 - 39
23 Feb 2023
Jo O Almond M Rupasinghe H Jo O Ackland D Ernstbrunner L Ek E
Full Access

Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs. 24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate load to failure, defined by a marked decrease in the load displacement curve. After 500 cycles, there was no statistically significant difference between the three groups in gap-formation (p = 0.179). Ultimate load to failure was significantly higher in Group 3 compared to Group 1 (286N vs. 167N; p = 0.022), but not to Group 2 (286N vs. 246N; p = 0.604). There were no statistically significant differences in stiffness (Group 1: 504N/mm; Group 2: 564N/mm; Group 3: 512N/mm; p = 0.712). Peri-implant fracture was the primary mode of failure for all three groups, with Group 3 demonstrating the lowest rate of peri-implant fractures (Group 1: 6/8; Group 2: 7/8, Group 3: 4/8; p = 0.243). The lateral locking plate with orthogonal AP locking screw fixation in the lateral fragment demonstrated the greatest ultimate failure load, followed by the lateral locking plate with CC stabilization. The use of orthogonal screw fixation in the distal fragment may negate against the need for CC stabilization in these types of fractures, thus minimizing surgical dissection around the coracoid and potential complications


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 80 - 80
1 Dec 2022
Nauth A Dehghan N Schemitsch C Schemitsch EH Jenkinson R Vicente M McKee MD
Full Access

There has been a substantial increase in the surgical treatment of unstable chest wall injuries recently. While a variety of fixation methods exist, most surgeons have used plate and screw fixation. Rib-specific locking plate systems are available, however evidence supporting their use over less-expensive, conventional plate systems (such as pelvic reconstruction plates) is lacking. We sought to address this by comparing outcomes between locking plates and non-locking plates in a cohort of patients from a prior randomized trial who received surgical stabilization of their unstable chest wall injury. We used data from the surgical group of a previous multi-centred, prospective, randomized controlled trial comparing surgical fixation of acute, unstable chest wall injuries to non-operative management. In this substudy, our primary outcome was hardware-related complications and re-operation. Secondary outcomes included ventilator free days (VFDs) in the first 28 days following injury, length of ICU and hospital stay, and general health outcomes (SF-36 Physical Component Summary (PCS) and Mental Component Summary (MCS) scores). Categorical variables are reported as frequency counts and percentages and the two groups were compared using Fisher's Exact test. Continuous data are reported as median and interquartile range and the two groups were compared using the Wilcoxon rank-sum test. From the original cohort of 207 patients, 108 had been treated surgically and had data available on the type of plate construct used. Fifty-nine patients (55%) had received fixation with non-locking plates (primarily 3.5 or 2.7 mm pelvic reconstruction plates) and 49 (45%) had received fixation with locking plates (primarily rib-specific locking plates). The two groups were similar in regard to baseline and injury characteristics. In the non-locking group, 15% of patients (9/59) had evidence of hardware loosening versus 4% (2/49 patients) in the locking group (p = 0.1). The rate of re-operation for hardware complications was 3% in the non-locking group versus 0% in the locking group (p = 0.5). No patients in either group required revision fixation for loss of reduction or nonunion. There were no differences between the groups with regard to VFDs (26.3 [19.6 – 28] vs. 27.3 [18.3 – 28], p = 0.83), length of ICU stay (6.5 [2.0 – 13.1] vs 4.1 [0 – 11], p = 0.12), length of hospital stay (17 [10 – 32] vs. 17 [10 – 24], p = 0.94) or SF-36 PCS (40.9 [33.6 – 51.0] vs 43.4 [34.1 – 49.6], p = 0.93) or MCS scores (47.8 [36.9 – 57.9] vs 46.9 [40.5 – 57.4], p = 0.95). We found no statistically significant differences in outcomes between patients who received surgical stabilization of their unstable chest wall injury when comparing non-locking plates versus locking plates. However, the rate of hardware loosening was nearly 4 times higher in the non-locking plate group and trended towards statistical significance, although re-operation related to this was less frequent. This finding is not surprising, given the inherent challenges of rib fixation including thin bones, comminution, potential osteopenia and a post-operative environment of constant motion. We believe that the increased cost of locking plate fixation in this setting is likely justifiable given these findings


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 79 - 79
1 Dec 2019
Arens D Zeiter S Paulin T Ranjan N Alt V
Full Access

Aim. Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. Methods. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain. Results. X-rays showed normal undisturbed healing of the osteotomy in all animals without any differences between the two groups over the entire X-ray analysis over 10 weeks (Figure 1). Callus formation was observed up to week 4 to 5 followed by callus remodeling after 6 weeks indicating physiological fracture healing pattern in both the silver and in the silver free group. Micro CT analysis revealed overall tissue (callus and cortical bone) volume as well as tissue density to be comparable between the two groups. Mechanical testing showed comparable stiffness with an average stiffness relative to contralateral bones of 75.7 ± 16.1% in the silver free control group compared to 69.7 ± 18.5% (p-value: 0.46). Histology showed no remarkable difference in the analysis of the healed osteotomy gap or in the surrounding soft tissue area. Silver content was found to be close to baseline values without differences between the two groups. Conclusions. This study shows that the presented antimicrobial silver surface modification for locking plates has a good biocompatibility without any negative influence on the fracture healing processes compared to the silver free control group. This allows for further clinical investigation of this silver technology for locking plates in fracture patients with an elevated infection risk, e.g. in patients with open fractures. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 32 - 32
1 Apr 2022
French J Filer J Hogan K Fletcher J Mitchell S
Full Access

Introduction. Computer hexapod assisted orthopaedic surgery (CHAOS) has previously been shown to provide a predictable and safe method for correcting multiplanar femoral deformity. We report the outcomes of tibial deformity correction using CHAOS, as well as a new cohort of femoral CHAOS procedures. Materials and Methods. Retrospective review of medical records and radiographs for patients who underwent CHAOS for lower limb deformity at our tertiary centre between 2012–2020. Results. There were 70 consecutive cases from 56 patients with no loss to follow-up. Mean age was 40 years (17 to 77); 59% male. There were 48 femoral and 22 tibial procedures. Method of fixation was intramedullary nailing in 47 cases and locking plates in 23. Multiplanar correction was required in 43 cases. The largest correction of rotation was 40 degrees, and angulation was 28 degrees. Mean mechanical axis deviation reduction per procedure was 17.2 mm, maximum 89 mm. Deformity correction was mechanically satisfactory in all patients bar one who was under-corrected, requiring revision. Complications from femoral surgery included one under-correction, two cases of non-union, and one pulmonary embolism. Complications from tibial surgery were one locking plate fatigue failure, one compartment syndrome, one pseudoaneurysm of the anterior tibial artery requiring stenting, and one transient neurapraxia of the common peroneal nerve. There were no deaths. Conclusions. CHAOS can be used for reliable correction of complex deformities of both the femur and tibia. The risk profile appears to differ between femoral and tibial surgeries


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 93 - 93
1 Jul 2020
Gueorguiev B Hadzhinikolova M Zderic I Ciric D Enchev D Baltov A Rusimov L Richards G Rashkov M
Full Access

Distal radius fractures have an incidence rate of 17.5% among all fractures. Their treatment in case of comminution, commonly managed by volar locking plates, is still challenging. Variable-angle screw technology could counteract these challenges. Additionally, combined volar and dorsal plate fixation is valuable for treatment of complex fractures at the distal radius. Currently, biomechanical investigation of the competency of supplemental dorsal plating is scant. The aim of this study was to investigate the biomechanical competency of double-plated distal radius fractures in comparison to volar locking plate fixation. Complex intra-articular distal radius fractures AO/OTA 23-C 2.1 and C 3.1 were created by means of osteotomies, simulating dorsal defect with comminution of the lunate facet in 30 artificial radii, assigned to 3 study groups with 10 specimens in each. The styloid process of each radius was separated from the shaft and the other articular fragments. In group 1, the lunate facet was divided to 3 equally-sized fragments. In contrast, the lunate in group 2 was split in a smaller dorsal and a larger volar fragment, whereas in group 3 was divided in 2 equal fragments. Following fracture reduction, each specimen was first instrumented with a volar locking plate and non-destructive quasi-static biomechanical testing under axial loading was performed in specimen's inclination of 40° flexion, 40° extension and 0° neutral position. Mediolateral radiographs were taken under 100 N loads in flexion and extension, as well as under 150 N loads in neutral position. Subsequently, all biomechanical tests were repeated after supplemental dorsal locking plate fixation of all specimens. Based on machine and radiographic data, stiffness and angular displacement between the shaft and lunate facet were determined. Stiffness in neutral position (N/mm) without/with dorsal plating was on average 164.3/166, 158.5/222.5 and 181.5/207.6 in groups 1–3. It increased significantly after supplementary dorsal plating in groups 2 and 3. Predominantly, from biomechanical perspective supplemental dorsal locked plating increases fixation stability of unstable distal radius fractures after volar locked plating. However, its effect depends on the fracture pattern at the distal radius


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 43 - 43
1 Jul 2020
Rollick N Bear J Diamond O Helfet D Wellman D
Full Access

Dual plating of the medial and lateral distal femur has been proposed to reduce angular malunion and hardware failure secondary to delayed union or nonunion. This strategy improves the strength and alignment of the construct, but it may compromise the vascularity of the distal femur paradoxically impairing healing. This study investigates the effect of dual plating versus single plating on the perfusion of the distal femur. Ten matched pairs of fresh-frozen cadaveric lower extremities were assigned to either isolated lateral plating or dual plating of a single limb. The contralateral lower extremity was used as a matched control. A distal femoral locking plate was applied to the lateral side of ten legs using a standard sub-vastus approach. Five femurs had an additional 3.5mm reconstruction plate applied to the medial aspect of the distal femur using a medial sub-vastus approach. The superficial femoral artery and the profunda femoris were cannulated at the level of the femoral head. Gadolinium MRI contrast solution (3:1 gadolinium to saline ration) was injected through the arterial cannula. High resolution fat-suppressed 3D gradient echo sequences were completed both with and without gadolinium contrast. Intra-osseous contributions were quantified within a standardized region of interest (ROI) using customized IDL 6.4 software (Exelis, Boulder, CO). Perfusion of the distal femur was assessed in six different zones. The signal intensity on MRI was then quantified in the distal femur and comparison was made between the experimental plated limb and the contralateral, control limb. Following completion of the MRI protocol, the specimens were injected with latex medium and the extra-osseous vasculature was dissected. Quantitative MRI revealed that application of the lateral distal femoral locking plate reduced the perfusion of the distal femur by 21.7%. Within the dual plating group there was a reduction in perfusion by 24%. There was no significant difference in the perfusion between the isolated lateral plate and the dual plating groups. There were no regional differences in perfusion between the epiphyseal, metaphyseal or meta-diaphyseal regions. Specimen dissection in both plating groups revealed complete destruction of any periosteal vessels that ran underneath either the medial or lateral plates. Multiple small vessels enter the posterior condyles off both superior medial and lateral geniculate arteries and were preserved in all specimens. Furthermore, there was retrograde flow to the distal most aspect of the condyles medially and laterally via the inferior geniculate arteries. The medial vascular pedicle was proximal to the medial plate in all the dual plated specimens and was not disrupted by the medial sub-vastus approach in any specimens. Fixation of the distal femur via a lateral sub-vastus approach and application of a lateral locking plate results in a 21% reduction in perfusion to the distal femur. The addition of a medial 3.5mm reconstruction plate does not significantly compromise the vascularity of the distal femur. The majority of the vascular insult secondary to open reduction, internal fixation of the distal femur occurs with application of the lateral locking plate


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 73 - 73
1 Sep 2012
Littlechild J Keating J Kahn K
Full Access

The outcome of 77 high energy tibial plateau fractures treated by locking or conventional plating was reviewed. The aim of the study was to determine if there was any advantage of locking plates in reducing the complication rates associated with fixation of these injuries. All patients had a high energy injury pattern (medial or bicondylar plateau fractures). There were 32 locked plates and 45 non-locking plates used. Compartment syndrome complicated 5 patients (16%) in the locked plate group and 3 (7%) in the non-locked group (p = 0.198). Superficial infection occurred in 4 (13%) patients with locked plates and 7 (16%) patients with non-locked plates. Thromboembolic complications occurred in 3 (7%) patients treated with non-locked plates. There were no thrombembolic complications in the locked plate group (p = 0.135). Overall, malunion of the plateau occurred in 10 (22%) patients treated with non-locked plates compared to 7 (22%) patients who received locked plates. This was due to residual malreduction in 4 (13%) patients in the locked plate group and 6 (13%) patients in the non-locked plate group at the time of surgery. In the remaining cases loss of reduction after fixation occurred in 4 (9%) patients who received non-locked plates and in 3 (9%) patients who were treated with locked plates. No statistically significant difference was noted in the treatment outcomes of patients managed with locked plates or non-locked plates, regardless of fracture severity. We concluded that there is no definite advantage associated with the use of locked plating for high energy tibial plateau fractures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 49 - 49
1 Jan 2016
Hsiao C Tsai Y Yu S Tu Y
Full Access

Introduction. Locking plates can provide greater stability than conventional plates; however, reports revealed that fractures had a high incidence of failure without medial column support; the mechanical support of medial column could play a significant role in humeral fractures. Recent studies have demonstrated the importance of intramedullary strut in proximal humeral fracture fixation, the relationship to mechanical stability and supporting position of the strut remain unclear. The purpose of this study was to evaluate the influence of position of the intramedullary strut on the stability of proximal humeral fractures using a locking plate. Materials and methods. Ten humeral sawbone (Synbone) and locked plates (Synthes, cloverleaf plate), with and without augmented intramedullary strut (five in each group) for proximal humerus fractures, were tested using material testing machine to validate the finite element model. A 10 mm osteotomy was performed at surgical neck and a strut graft (10 cm in length) was inserted into the fracture region to lift the head superiorly. Each specimen was statically tested at a rate of 5 mm/min until failure. To build the finite element (FE) model, 64-slices CT images were converted to create a 3D solid model. The material properties of screws and plates were modeled as isotropic and linear elastic, with an elastic modulus of 110 GPa, (Poisson's ratio, n=0.3). The Young's moduli of cortical and cancellous bones were 17 GPa and 500 MPa (n=0.4), respectively. Three alter shifting toward far cortex by 1, 2, and 3 mm in humeral canal were installed in the simulating model. Results and discussion. The test result showed stiffness for only locked plate was 149.2±21.3 N/mm; and the plating combined with an intramedullary strut was 336.5±50.4 N/mm. On average, the stiffness was increased by 2.2 times in the augmented fixation relative to the only locking plate fixation. The finite element analytical results showed stiffness of 162 N/mm for fixation without strut, and 372 N/mm for those with strut augmentation. The stiffness between experiment and FE analysis agreed in 8.6% for the only locking plate case; and agreed in 10.5% for the case fixed with intramedullary strut. FE analysis showed the stability of construct increased 7%, 11% and 20% as the strut shift by 1, 2, and 3 mm, respectively. Gardner (2007) reported the importance of mechanical support at the medial region for maintenance of reduction when proximal humerus fracture treated with locking plates. Conclusion. The intramedullary strut may provide superior stability than the only locking plate fixation. The FE model provides a useful implement to find the optimal configuration of plate fixation. Acknowledgements. All authors thank the funding support from National Science Council (NSC 102-2628-B-650-001) and E-Da Hospital (EDPJ1020027)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 40 - 40
10 May 2024
Zhang J Miller R Chuang T
Full Access

Introduction. Distal femur fractures have traditionally been stabilized with either lateral locking plate or retrograde intramedullary nail. Dual-plates and nail-plate combination fixation have the theoretical biomechanical advantage, faster union and allows patients to weight bear immediately. The aim of this study is to compare single vs combination fixation, and evaluate outcomes and complications. Method. We retrospectively reviewed all patients over 60, admitted to Christchurch Hospital, between 1st Jan 2016 and 31st Dec 2022, with an AO 33A/33B/33C distal femur fracture. Patient demographics, fracture characteristics, operation details, and follow up data were recorded. Primary outcomes are union rate, ambulatory status at discharge, and surgical complications. Secondary outcomes include quality of reduction, operation time and rate of blood transfusions. Results. 114 patients were included. (92 single fixation, 22 combination fixation). Baseline demographic data and fracture characteristics did not differ between the cohorts. There was no difference in the rate of union or time to union between the two cohorts. Combination fixation patients were allowed to weight-bear as tolerated significantly more than single fixation patients (50% vs 18.9%, p=0.003). There was no difference in length of hospital stay, transfusion, complication and mortality rates. Medial translation of the distal articular block was significantly lower in the combination fixation cohort (1.2% vs 3.4%, p=0.021). Operation time was significantly longer in the combination fixation cohort (183mins vs 134mins, p<0.001). Discussion. The results show no difference in achieving union or time to union, despite better quality of fracture reduction with dual fixation. This differs to previously published literature. The clear benefit of combination fixation is immediate weight-bearing. As expected, operation times were longer with combination fixation, however this did not translate to more complications. Conclusion. Combination fixation allows earlier weight bearing, at the cost of longer operation times


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 38 - 38
1 Jul 2020
Lalone E Suh N Perrin M Badre A
Full Access

Distal radius fractures are the most common upper extremity injury, and are increasingly being treated surgically with pre-contoured volar-locking plates. These plates are favored for their low-profile template while allowing for rigid anatomic fixation of distal radius fractures. The geometry of the distal radius is extremely complex, and little evidence within the medical literature suggests that current implant designs are anatomically accurate. The main objective of this study is to determine if anatomic alignment of the distal radii corresponds accurately with modern volar-locking plate designs. Additionally, this study will examine sex-linked differences in morphology of the distal radius. Segmented CT models of ten female cadaver (mean age, 88.7 ± 4.57 years, range, 82 – 97) arms, and ten male cadaver (mean age, 86 ± 3.59 years, range, 81 – 91) arms were created. Micro CT models were obtained for the DePuy Synthes 2.4mm Extra-articular (EA) Volar Distal Radius Plate (4-hole and 5-hole head), and 2.4mm LCP Volar Column (VC) Distal Radius Plate (8-hole and 9-hole head). Plates were placed onto the distal radii models in a 3D visualization software by a fellowship-trained orthopaedic hand surgeon. The percent contact, volar cortical angle (VCA), border and overlap of the watershed line (WSL) were measured. Both sexes showed an increase in the average VCA measure from medial to lateral columns which was statistically significant. Female VCA ranged from 28 – 36 degrees, and 38 – 45 degrees for males. WSL overlap ranged from 0 – 34.7629% for all specimens without any statistical significance. The average border distance for females was 2.58571 mm, compared to 3.52411 mm for males, with EA plates having a larger border than VC plates. The border distances had statistically significant differences between the plate types, and was approaching significance between sexes. Lastly, a maximum percent contact of 21.966 % was observed in specimen F4 at a 0.3 mm threshold. No statistical significance between plate or sex populations was observed. This study investigated the incoherency between the volar cortical angle of the distal radius, and the pre-contoured angle of volar locking plates. It was hypothesized that if the VCA measures between plate and bone were unequal then there would be an increase in watershed line overlap, and decrease in percent contact between the surfaces. Our results agreed with literature, indicating that the VCA of bone was larger than that of the EA and VC pre-contoured plates examined in this study. With distal radius fracture incidences and prevalence on the rise for elderly female patients, it is a necessity that volar locking plates be re-designed to factor in anatomical features of individual patients with a particular focus on sex differences. New designs should focus on providing smaller head sizes that are more accurately tailored to the natural contours of the volar distal radius. It is recommended that future studies incorporate expertise from multiple surgeons to diversify and further understand plate placement strategies


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 44 - 44
1 Apr 2018
Shin J Song M Yoon C Chang M Chang C Kang S
Full Access

Background. As the number of primary or revision TKA with stem extension cases are growing simultaneously, the number of periprosthetic fracture in these cases has also increased accordingly. However, there have been few reports on the classification and treatment of periprosthetic fracture following stemmed TKA and lack of information about the treatment outcome. The purposes of this study were 1) to demonstrate classification and management of periprosthetic fractures after stemmed TKA and 2) to report treatment outcome after the periprosthetic fractures. Materials and Methods. This retrospective study included 17 knees (15 patients) with an average age of 69.7 years. All cases were revision TKA cases, and there were 13 female and 2 male patients. The patients were treated nonoperatively or underwent operation by orthopedic principle. The period of union was evaluated by confirming the formation of callus crossing fragments in radiographs. We reviewed the complications and functional outcomes after treatment of periprosthetic fracture following revision TKA by assessing FF, FC and scoring WOMAC and KSS. Results. The classification of periprosthetic fractures of stemmed TKA was based on location of fracture and stability of implant. They were classified as follows: type I, metaphyseal fracture without loosening of implant [Fig. 1]; type II, diaphyseal fracture adjacent to stem without loosening of implant [Fig. 2]; type III, diaphyseal fracture away from stem without loosening of implant [Fig. 3]; and type IV, metaphyseal or diaphyseal fracture with loosening of implant [Fig. 4]. There were 1 case of type I, 9 cases of type II, 4 cases of type III and 3 cases of type IV fractures. The mean time for gaining radiographic union of type I was 3.3 month; type II was 4.4 month; type III was 4.6 month; and type IV was 3.9 month. Most of the metaphyseal fractures were comminuted and all cases of loosening of the femoral implant were found in the metaphyseal fractures. Nine periprosthetic fractures were fixed using locking plate (single locking plate : 4 cases, dual locking plate : 5 cases). The bone union period is much shorter in patients with dual plate fixation than single plate only. Range of motion, WOMAC and KSS were not significantly different between before fracture and after management of fracture. Complications included 1 metal failure, 2 loosening of implant and 1 postoperative infection. Conclusions. Metaphyseal fractures probably cause the collateral ligament insufficiency, and loosen the implant. Therefore, rotating hinge prosthesis should be used to stabilize the ligament of knee joint. Also, Revision TKA with longer stem should be considered if the stability of implant is not sure. When we underwent operation using plate fixation, dual plating provided better stability of fracture and shortened the union period than single plating. However, we need to approach individually depending on the patient, such as using cerclage wire, bone graft and so on. This study will help to establish appropriate treatment options according to each classification. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 40 - 40
1 Jun 2023
Al-Omar H Patel K Lahoti O
Full Access

Introduction. Angular deformities of the distal femur can be corrected by opening, closing and neutral wedge techniques. Opening wedge (OW) and closing wedge (CW) are popular and well described in the literature. CW and OW techniques lead to leg length difference whereas the advantage of neutral wedge (NW) technique has several unique advantages. NW technique maintains limb length, wedge taken from the closing side is utilised on the opening side and since the angular correction is only half of the measured wedge on either side, translation of distal fragment is minimum. Leg lengths are not altered with this technique hence a useful technique in large deformities. We found no reports of clinical outcomes using NW technique. We present a technique of performing external fixator assisted NW correction of large valgus and varus deformities of distal femur and dual plating and discuss the results. Materials & Methods. We have treated 20 (22 limbs – 2 patients requiring staged bilateral corrections) patients for distal femoral varus and valgus deformities with CWDFO between 2019 and 2022. Out of these 4 patients (5 limbs) requiring large corrections of distal femoral angular deformities were treated with Neutral Wedge (NW) technique. 3 patients (four limbs) had distal femoral valgus deformity and one distal femoral varus deformity. Indication for NW technique is an angular deformity (varus or valgus of distal femur) requiring > 12 mm opening/closing wedge correction. We approached the closing side first and marked out the half of the calculated wedge with K – wires in a uniplanar fashion. Then an external fixator with two Schanz screws is applied on the opposite side, inserting the distal screw parallel to the articular surface and the proximal screw 6–7 cm proximal to the first pin and at right angles to the femoral shaft mechanical axis. Then the measured wedge is removed and carefully saved. External fixator is now used to close the wedge and over correct, creating an appropriate opening wedge on the opposite side. A Tomofix (Depuoy Synthes) plate is applied on the closing side with two screws proximal to osteotomy and two distally (to be completed later). Next the osteotomy on the opposite side is exposed, the graft is inserted. mLDFA is measured under image intensifier to confirm satisfactory correction. Closing wedge side fixation is then completed followed by fixation of opposite side with a Tomofix or a locking plate. Results. 3 patients (4 limbs) had genu valgum due to constitutional causes and one was a case of distal femoral varus from a fracture. Preoperative mLDFA ranged from 70–75° and in one case of varus deformity it was 103°. We achieved satisfactory correction of mLDFA in (85–90°) in 4 limbs and one measured 91°. Femoral length was not altered. JLCA was not affected post correction. Patients were allowed to weight bear for transfers for the first six weeks and full weight bearing was allowed at six weeks with crutches until healing of osteotomy. All osteotomies healed at 16–18 weeks (average 16.8 weeks). Patients regained full range of movement. We routinely recommend removal of metal work to facilitate future knee replacement if one is needed. Follow up ranged from 4 months to 2 yrs. Irritation from metal work was noted in 2 patients and resolved after removing the plates at 9 months post-surgery. Conclusions. NWDFO is a good option for large corrections. We describe a technique that facilitates accurate correction of deformity in these complex cases. Osteotomy heals predictably with uniplanar osteotomy and dual plate fixation. Metal work might cause irritation like other osteotomy and plating techniques in this location


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 193 - 193
1 Sep 2012
Chow RM Begum F Beaupre L Carey JP Adeeb S Bouliane M
Full Access

Purpose. Locking plate constructs for proximal humerus fractures can fail due to varus collapse, especially in the presence of osteoporosis and comminution of the medial cortex. Augmentation using a fibular allograft as an intramedullary bone peg may strengthen fixation preventing varus collapse. This study compared the ability of the augmented locking plate construct to withstand repetitive varus stresses relative to the non-augmented construct in cadaveric specimens. Method. Proximal humerus fractures with medial comminution were simulated by performing wedge-shaped osteotomies at the surgical neck in cadaveric specimens. For each cadaver (n=8), one humeral fracture was fixated with the locking plate construct alone and the other with the locking plate construct plus ipsilateral fibular autograft augmentation. The humeral head was immobilized and a repetitive, medially-directed load was applied to the humeral shaft until failure (significant construct loosening or humeral head screw pull-out). Results. No augmented construct failed, withstanding either 20 000 cycles or five times the cycles of the contralateral non-augmented construct [average (standard deviation) = 27958 (4633) cycles], while six of the eight non-augmented constructs failed (p=0.007). Failure in the six non-augmented constructs occurred after an average of 5928 (2543) cycles. Conclusion. Fibular allograft augmentation increased the ability of the locking plate construct to withstand repetitive varus loading. Clinically, this may assist proximal humerus fracture fixation in osteoporotic bone with medial cortex comminution


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIX | Pages 8 - 8
1 May 2012
Gardner R Yousri T Holmes F Clark D Pollintine P Miles A Jackson M
Full Access

Treatment of syndesmotic injuries is a subject of ongoing controversy. Locking plates have been shown to provide both angular and axial stability and therefore could potentially control both shear forces and resist widening of the syndesmosis. The aim of this study is to determine whether a two-hole locking plate has biomechanical advantages over conventional screw stabilisation of the syndesmosis in this pattern of injury. Six pairs of fresh-frozen human cadaver lower legs were prepared to simulate an unstable Maisonneuve fracture. The limbs were then mounted on a servo-hydraulic testing rig and axially loaded to a peak load of 800N for 12000 cycles. Each limb was compared with its pair; one receiving stabilisation of the syndesmosis with two 4.5mm quadricortical cortical screws, the other a two-hole locking plate with 3.2mm locking screws (Smith and Nephew). Each limb was then externally rotated until failure occurred. Failure was defined as fracture of bone or metalwork, syndesmotic widening or axial migration >2mm. Both constructs effectively stabilised the syndesmosis during the cyclical loading within 1mm of movement. However the locking plate group demonstrated superior resistance to torque compared to quadricortical screw fixation (40.6Nm vs 21.2Nm respectively, p value <0.03). Conclusion. A 2 hole locking plate (3.2mm screws) provides significantly greater stability of the syndesmosis to torque when compared with 4.5mm quadricortical fixation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 9 - 9
1 Aug 2013
Koller I Maqungo S
Full Access

Purpose of study:. Up to 30% of distal femur fractures treated with a locked plate have problems with union. Distal femur locked plates have become a very popular means of internal fixation because of their ability to provide stable distal peri-articular fixation. In spite of this enthusiasm however several studies have reported significant problems with healing. In the distal femur it is recognized that locked plate fixation may be too rigid if used in certain configurations preventing the essential micro movement required for biological healing. Implant failure may arise from rigid configurations that cause excessive hardware stress concentrations. In an attempt to address these problems longer plates and an increased working length have been proposed to reduce construct rigidity. The purpose of our study is to investigate whether an increased working length translates into improved healing. Description of method:. We undertook a retrospective review of 92 consecutive cases performed at our institution from 2007–2010. Case notes and X-rays were reviewed. Working length, plate to fracture zone ratios and working length to fracture zone ratios were calculated. Union was assessed radiographically and clinically. Covariates of smoking, age, sex and fracture severity were included. Outcomes considered were union or established non-union. Delayed union was defined as union after 20 weeks. Summary of results:. Median time to union was 16.9 weeks. 11 delayed unions (23.4%, 95%CI(10.8–36.0%)), 3 non-unions (6.4% 95%CI(0.0–13.6%)) and no implant failures were recorded. Our data are consistent with the previously reported proportion of distal femur fractures treated with a locked plate that have problems with union. Although trends were present, no significant associations between impaired healing and exposure variables were found. Conclusion:. While biomechanical studies have demonstrated increased flexibility of longer plates with an increased working length, clinically this did not translate into significantly improved fracture healing in our study


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 136 - 136
1 Feb 2012
McCullough L Carnegie C Christie C Johnstone A
Full Access

Despite the variety of implants or techniques that exist to treat displaced distal radial fractures, the majority fail to provide sufficient stability to permit early functional recovery. However, locking plates have the advantage over other implants in that locking screws add considerably to the overall stability. The aim of this study was to assess the functional outcome of patients with displaced distal radial fractures treated with a volar distal radial locking plate (Synthes). During a two year period, details of 98 patients admitted to our unit with inherently unstable dorsally displaced distal radial fractures treated with volar locking plates were collected prospectively. For the purpose of this analysis, only those patients (55) with unilateral fracture, able to attend the study clinic at 6 months post-injury were considered. Patients were immobilised in wool and crepe for a 2 week period. The group consisted of 15 males and 40 females with an average age of 54 (28 to 83). At 6 months, patients' perceived functional recovery averaged 80%. Objective assessment was considered in relation to the uninjured side: grip strength 73%; pinch strength 83%; palmarflexion 77%, dorsiflexion 80%; radial deviation 74%; ulnar deviation 74%; pronation 93%, and supination 92%. Seven patients complained of symptoms relating to prominent metalwork. Good/excellent early subjective and objective functional recovery was made following open reduction and internal fixation using volar locking plates of dorsally displaced distal radial fractures. We suggest that objective assessment of grip strength and dorsiflexion can be used as a measure of patient perception of function