Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 28 - 28
1 Sep 2012
Alta T Miller D Coghlan J Troupis J Bell S
Full Access

The purpose of this study was to determine the motion pattern of the Acromio-Clavicular (AC) joint in a normal shoulder with the use of the new 4 Dimensional CT scan.

From April 2010 till January 2011 fourteen healthy volunteers (4 female, 10 male)(mean age 42±11 years) with no previous history of shoulder complaints participated in this study. The 4D CT machine scans motion, allowing a 3D reconstruction of the shoulder joint and its movements. Patients were positioned supine with their arm elevated 90° in the sagittal plane. During the 7 seconds duration of the scan they adducted their arm at that level and then elevated their arm upwards resisted by the gantry for 4 seconds, in this way simulating the clinical Bell-van Riet test for AC pathology.

In the transverse plane the mean AC joint space measured in the neutral position is 1.8±0.5 mm. While adducting the arm the AC joint narrows 0.0±0.4 mm (with a positive value being narrowing and a negative value widening). On resisted elevation the joint space is narrowed 0.2±0.6 mm. The mean antero-posterior (AP) translation in this same plane is 0.2±2.2 mm on adduction (with a positive value being posterior translation of the clavicle and a negative value anterior translation) and 0.4±2.9 mm on resisted elevation.

The new 4D CT scan demonstrates that the AC joint in a normal shoulder mainly translates in an AP direction, rather than being narrowed or widened, when the arm is adducted (with or without resisted active elevation).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 54 - 54
1 Aug 2013
Breton D Leboucher J Burdin V Rémy-Néris O
Full Access

Introduction

The anterior cruciate ligament (ACL) is one of the most common ligament injuries. Several ACL reconstructions exist and are consequently performed. An accurate and comprehensive description of knee motion is essential for an adequate assessment of these surgeries, in terms of restoring knee motion.

Methods

We propose to compare these reconstructions thanks to an index of articular coherence. This index measures the instantaneous state surface configurations during a motion. More specifically, this refers to the position between two articular surfaces facing each other. First of all, the index has to refer to a position known to be physiological. This initial position of the bones, named reference, directly results from the segmentation of CT scans. First we compute all distances between the two surfaces and then we compute the Cumulative Distribution Function (CDF). We process this way for each iteration of the motion. Then we obtain a batch of CDF curves which provide us qualitative information relative to the motion such as potential collisions or dislocations. The graph of all CDF curves is called Figure of Articular Coherence (FoAC). A good articular coherence is characterised by CDF which are close to the reference. This qualitative method is coupled to a quantitative one named Index of Articular Coherence (IoAC) which computes the Haussdorff distance between the temporal distributions and the reference. This distance has to be as low as possible. The tools were tested on cadaveric experiments of ACL reconstruction provided by Hagemeister et al, (1999). They recorded the knee flexion/extension motion in following situations: the intact knee, after ACL resection, after three methods of ACL reconstruction on the same knee (‘over-the-top’ method (OTT), two different two tunnel reconstructions (2 tunnel). Our method was used, for the time being, for one specimen. We compare different post-surgery kinematics thanks to the FoAC and IoAC.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 17 - 17
23 Apr 2024
Mackarel C Tunbridge R
Full Access

Introduction. Sheffield Children's Hospital specialises in limb lengthening for children. Soft tissue contracture and loss of range of motion at the knee and ankle are common complications. This review aims to look at therapeutic techniques used by the therapy team to manage these issues. Materials & Methods. A retrospective case review of therapy notes was performed of femoral and tibial lengthening's over the last 3 years. Included were children having long bone lengthening with an iIntramedullary nail, circular frame or mono-lateral rail. Patients excluded were any external fixators crossing the knee/ankle joints. Results. 20 tibial and 25 femoral lengthening's met the inclusion criteria. Pathologies included, complex fractures, limb deficiency, post septic necrosis and other congenital conditions leading to growth disturbance. All patients had issues with loss of motion at some point during the lengthening process. The knee and foot/ankle were equally affected. Numerous risk factors were identified across the cohort. Treatment provided included splinting, serial casting, bolt on shoes, exercise therapy, electrical muscle stimulation and passive stretching. Conclusions. Loss of motion in lower limb joints was common. Patients at higher risk were those with abnormal anatomy, larger target lengthening's, poor compliance or lack of access to local services. Therapy played a significant role in managing joint motion during treatment. However, limitations were noted. No one treatment option gave preferential outcomes, selection of treatment needed to be patient specific. Future research should look at guidelines to aid timely input and avoid secondary complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 122 - 122
1 Feb 2020
Flood P Jensen A Banks S
Full Access

Disorders of human joints manifest during dynamic movement, yet no objective tools are widely available for clinicians to assess or diagnose abnormal joint motion during functional activity. Machine learning tools have supported advances in many applications for image interpretation and understanding and have the potential to enable clinically and economically practical methods for objective assessment of human joint mechanics. We performed a study using convolutional neural networks to autonomously segment radiographic images of knee replacements and to determine the potential for autonomous measurement of knee kinematics. The autonomously segmented images provided superior kinematic measurements for both femur and tibia implant components. We believe this is an encouraging first step towards realization of a completely autonomous capability to accurately quantify dynamic joint motion using a clinically and economically practical methodology


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 75 - 75
1 Dec 2022
Hunter J Lalone E
Full Access

Analyzing shoulder kinematics is challenging as the shoulder is comprised of a complex group of multiple highly mobile joints. Unlike at the elbow or knee which has a primary flexion/extension axis, both primary shoulder joints (glenohumeral and scapulothoracic) have a large range of motion (ROM) in all three directions. As such, there are six degrees of freedom (DoF) in the shoulder joints (three translations and three rotations), and all these parameters need to be defined to fully describe shoulder motion. Despite the importance of glenohumeral and scapulothoracic coordination, it's the glenohumeral joint that is most studied in the shoulder. Additionally, the limited research on the scapulothoracic primarily focuses on planar motion such as abduction or flexion. However, more complex motions, such as internally rotating to the back, are rarely studied despite the importance for activities of daily living. A technique for analyzing shoulder kinematics which uses 4DCT has been developed and validated and will be used to conduct analysis. The objective of this study is to characterize glenohumeral and scapulothoracic motion during active internal rotation to the back, in a healthy young population, using a novel 4DCT approach. Eight male participants over 18 with a healthy shoulder ROM were recruited. For the dynamic scan, participants performed internal rotation to the back. For this motion, the hand starts on the abdomen and is moved around the torso up the back as far as possible, unconstrained to examine variability in motion pathway. Bone models were made from the dynamic scans and registered to neutral models, from a static scan, to calculate six DoF kinematics. The resultant kinematic pathways measured over the entire motion were used to calculate the ROM for each DoF. Results indicate that anterior tilting is the most important DoF of the scapula, the participants all followed similar paths with low variation. Conversely, it appears that protraction/retraction of the scapula is not as important for internally rotating to the back; not only was the ROM the lowest, but the pathways had the highest variation between participants. Regarding glenohumeral motion, internal rotation was by far the DoF with the highest ROM, but there was also high variation in the pathways. Summation of ROM values revealed an average glenohumeral to scapulothoracic ratio of 1.8:1, closely matching the common 2:1 ratio other studies have measured during abduction. Due to the unconstrained nature of the motion, the complex relationship between the glenohumeral and scapulothoracic joints leads to high variation in kinematic pathways. The shoulder has redundant degrees of freedom, the same end position can result from different joint angles and positions. Therefore, some individuals might rely more on scapular motion while others might utilize primarily humeral motion to achieve a specific movement. More analysis needs to be done to identify if any direct correlations can be drawn between scapulothoracic and glenohumeral DoF. Analyzing the kinematics of the glenohumeral and scapulothoracic joint throughout motion will further improve understanding of shoulder mechanics and future work plans to examine differences with age


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 30 - 30
1 May 2021
Shah I Brennan C Nayagam S
Full Access

Introduction. To determine the advantages and risks of plating after lengthening (PAL) of tibia in children and adolescents. Materials and Methods. 35 consecutive tibial lengthenings were done for limb length discrepancy (LLD) in 26 patients. Gradual lengthening by an external fixator from a tibial (usually diaphyseal) osteotomy was followed by internal fixation with a lateral tibial submuscular plate. The mean age at the time of the lengthening was 10.3 years (4.8 – 16.8 years). The aetiology for LLD was congenital in 21, acquired in 3, and developmental in 2 patients. The mean follow-up was 4.3 years (8 months – 9.9 years). Results. The mean lengthening was 5cm (3–8.6cm) or 19.1% (10.8 – 35.2%) of the initial length of tibia. It took 78.8 days to reach the target length at a lengthening rate of 0.75mm/day. The mean time to plate substitution after cessation of lengthening was 24.7days/109 days after osteotomy. This led to an average external fixation index (EFI) of 23.1days/cm. Optimisation of this technique by judicious estimation of timing of plate substitution would reduce the EFI. Consolidation was recorded at 192 days after osteotomy. Bone healing index (BHI) was 39.8days/cm and was age dependent: <12 year olds = 37.5 days/cm; 12 years = 44.7 days/cm. Using the estimated consolidation time if treatment was solely by external fixator, calculated by tripling the time taken to reach target length after osteotomy, the BHI in this series would have been 52.9 days/cm (p < 0.001). Knee flexion recovery to > 90 degrees was noted at 153.5 days after plating. One greenstick fracture occurred 116 days after plate insertion, 1 tibial shaft fracture occurred 315 days post removal of plate - both following injury and were treated conservatively. Six episodes of sepsis, 5 superficial and 1 deep were treated with antibiotic suppression. The plates were removed from 28 tibiae, 437.4 days after insertion. Conclusions. Plating after lengthening not only reduces the fixator time but appears to achieve consolidation faster than if treatment was by external fixation alone. This facilitates early recovery of joint motion and limb function


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 106 - 106
1 Jul 2020
Dion C Lanting B Howard J Teeter M Willing R
Full Access

During revision total knee arthroplasty (rTKA), proximal tibial bone loss is frequently encountered and can result in a less-stable bone-implant fixation. A 3D printed titanium alloy (Ti6Al4V) revision augment that conforms to the irregular shape of the proximal tibia was recently developed. The purpose of this study was to evaluate the fixation stability of rTKA with this augment in comparison to conventional cemented rTKA. Eleven pairs of thawed fresh-frozen cadaveric tibias (22 tibias) were potted in custom fixtures. Primary total knee arthroplasty (pTKA) surgery was performed on all tibias. Fixation stability testing was conducted using a three-stage eccentric loading protocol. Static eccentric (70% medial/ 30% lateral) loading of 2100 N was applied to the implants before and after subjecting them to 5×103 loading cycles of 700 N at 2 Hz using a joint motion simulator. Bone-implant micromotion was measured using a high-resolution optical system. The pTKA were removed. The proximal tibial bone defect was measured. One tibia from each pair was randomly allocated to the experimental group, and rTKA was performed with a titanium augment printed using selective laser melting. The contralateral side was assigned to the control group (revision with fully cemented stems). The three-stage eccentric loading protocol was used to test the revision TKAs. Independent t-tests were used to compare the micromotion between the two groups. After revision TKA, the mean micromotion was 23.1μm ± 26.2μm in the control group and 12.9μm ± 22.2μm in the experimental group. There was significantly less micromotion in the experimental group (p= 0.04). Prior to revision surgery, the control and experimental group had no significant difference in primary TKA micromotion (p= 0.19) and tibial bone loss (p= 0.37). This study suggests that early fixation stability of revision TKA with the novel 3D printed titanium augment is significantly better then the conventional fully cemented rTKA. The early press-fit fixation of the augment is likely sufficient for promoting bony ingrowth of the augment in vivo. Further studies are needed to investigate the long-term in-vivo fixation of the novel 3D printed augment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 1 - 1
1 Aug 2020
Culliton K Speirs A Beaulé P
Full Access

The avascular nature of articular cartilage relies on diffusion pathways to obtain essential nutrients and molecules for cellular activity. Understanding these transport pathways is essential to maintaining and improving the health of articular cartilage and ultimately synovial joints. Several studies have shown that joint articulation is associated with fluid and solute uptake although it remains unclear what role sliding motion independently plays. This study investigates the role of sliding with a non-stationary contact area on the uptake of small molecular weight tracers into articular cartilage. Ten-millimeter diameter cartilage-bone plugs were obtained from porcine knee joints and sealed into purpose made diffusion chambers. The chambers were designed to eliminate diffusion from the radial edge and only allow diffusion through the articular surface. The bone side of the chamber was filled with PBS to maintain tissue hydration while the cartilage side was filled with 0.01mg/ml fluorescein sodium salt (FNa) prepared using PBS. Sliding loads with a non-stationary contact area were applied across the articular surface by a custom apparatus using a 4.5 mm diameter spherical indenter. A moving contact area was chosen to represent physiological joint motions. Reciprocal sliding was maintained at a rate of 5 mm/s for 2 and 4 hours. Control samples were subject to passive diffusion for 0, 4, and 88 hours. After diffusion tests, samples were snap frozen and 20 µm cross-sectional cuts were taken perpendicular to the sliding direction. Samples were imaged using a Zeiss AxioImager M2 epifluorescent microscope under 5× magnification with a filter for FNa. Intensity profiles were mapped from the articular surface to the subchondral bone. Unloaded control samples demonstrated minimal solute uptake at 4 hours penetrating less than 5% of the total cartilage depth. By 88 hours solute penetration had reached the subchondral bone although there was minimal accumulation within the cartilage matrix indicated by the relatively low intensity profile values. Samples that had been subjected to reciprocal sliding demonstrated accelerated penetration and solute accumulation compared to unloaded samples. After 1 hour of reciprocal sliding, the solute had reached 40% of the cartilage depth, this increased to approximately 80% at 4 hours, with much higher intensities compared to unloaded controls. Sliding motion plays an important role in the uptake of solutes into the cartilage matrix. Maintaining joint motion both post injury and in the arthritic process is a critical component of cartilage nutrition. Samples that had been subject to reciprocal sliding demonstrated accelerated solute penetration and accumulation in the cartilage matrix, exceeding steady state concentrations achieved by passive diffusion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 48 - 48
1 Dec 2016
Padmore C Stoesser H Nishiwaki M Gammon B Langohr D Lalone E Johnson J King G
Full Access

Distal radius fractures are the most common fracture of the upper extremity. Malunion of the distal radius is a common clinical problem after these injuries and frequently leads to pain, stiffness loss of strength and functional impairments. Currently, there is no consensus as to whether not the mal-aligned distal radius has an effect on carpal kinematics of the wrist. The purpose of this study was to examine the effect of dorsal angulation (DA) of the distal radius on midcarpal and radiocarpal joint kinematics, and their contributions to total wrist motion. A passive wrist motion simulator was used to test six fresh-frozen cadaveric upper extremities (age: 67 ± 17yrs). The specimens were amputated at mid humerus, leaving all wrist flexor and extensor tendons and ligamentous structures intact. Tone loads were applied to the wrist flexor and extensor tendons by pneumatic actuators via stainless steel cables. A previously developed distal radius implant was used to simulate native alignment and three DA deformity scenarios (DA 10 deg, 20 deg, and 30 deg). Specimens were rigidly mounted into the simulator with the elbow at 90 degrees of flexion, and guided through a full range of flexion and extension passive motion trials (∼5deg/sec). Carpal motion was captured using optical tracking; radiolunate and capitolunate joint motion was measured and evaluated. For the normally aligned radius, radiolunate joint motion predominated in flexion, contributing on average 65.4% (±3.4). While the capitolunate joint motion predominated in extension, contributing on 63.8% (±14.0). Increasing DA resulted in significant alterations in radiolunate and capitolunate joint kinematics (p<0.001). There was a reduction of contribution from the capitolunate joint to total wrist motion throughout flexion-extension, significant from 5 degrees of wrist extension to full extension (p = 0.024). Conversely, the radiolunate joint increased its contribution to motion with increasing DA; significant from 5 degrees of wrist extension to full extension as the radiolunate and capitolunate joint kinematics mirrored each other. A DA of 30 degrees resulted in an average radiolunate contribution of 72.6% ± 7.7, across the range of motion of 40 degrees of flexion to 25 degrees of extension. The results of our study for the radius in a normal anatomic alignment are consistent with prior investigators, showing the radiocarpal joint dominated flexion, and the midcarpal joint dominated extension; with an average 60/40 division in contributions for the radiocarpal in flexion and the midcarpal in extension, respectfully. As DA increased, the radiocarpal joint provided a larger contribution of motion throughout flexion and extension. This alteration in carpal kinematics with increased distal radius dorsal angulation may increase localised stresses and perhaps lead to accelerated joint wear and wrist pain in patients with malunited distal radial fractures


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 119 - 119
1 Feb 2020
Moslemian A Getgood A Willing R
Full Access

Introduction. Ligament reconstruction following knee soft tissue injuries, such as posterior cruciate ligament (PCL) tears, aim to restore normal joint function and motion; however, persistant pathomechanical joint behavior indicates that there is room for improvement in current reconstruction techniques. Increased attention is being directed towards the roles of secondary knee stabilizers, in an attempt to better understand their contributions to kinematics of knees. The objective of this study is to characterize the relative biomechanical contributions of the posterior oblique ligament (POL) and the deep medial collateral ligament (dMCL) in PCL-deficient knees. We hypothesized that, compared with the POL, the dMCL would have a more substantial role in stabilizing the medial side of the knee, especially in flexion (slack POL). Methods. Seven fresh-frozen cadaveric knees were used in this study (age 40–62, 4 female, 3). Specimens were potted and mounted onto a VIVO joint motion simulator (AMTI). Once installed, specimens were flexed from 0 to 90 degrees with a 10 N axial load and all remaining degrees of freedom unconstrained. This was repeated with (a) a 67 N posterior load, (b) a 2.5 Nm internal or external rotational moment and (c) a 50 N posterior load and 2.5 Nm internal rotational moment applied to the tibia. During each resulting knee motion, the relative AP kinematics of the dMCL tibial insertion (approximated as the most medial point of the proximal tibia) with respect to the flexion axis of the femur (the geometric center axis, based on the posterior femoral condyles) were calculated at 0, 30, 60 and 90 degrees of flexion. These motions were repeated following dissection of the PCL and then further dissection of either medial ligament (4 POL, 3 dMCL). The changes in AP kinematics due to ligament dissection were analyzed using three-way repeated-measures ANOVA with a significance value of 0.05. Results. Dissection of the dMCL or POL did not result in a statistically significant increase in the posterior displacement of the medial tibial point under posterior directed force, internal rotation moments, or the combined posterior force plus internal rotation moment. Interestingly, under external moment loading, there was a statistically significant increase in anterior displacement of the medial tibia at all flexion angles after POL dissection, by up to 3.0+/−2.6 mm at 0 degrees. Dissection of the dMCL, however, did not have a significant affect. Conclusion. Our results showed that neither the POL nor dMCL play a significant role in resisting posterior tibial displacements on the medial side of a PCL deficient knee. Of the two, the POL appears to have a greater contribution towards preventing anterior translations, particularly when in extension. This finding is rational based on the anatomical path of this ligament wrapping around the femoral medial condyle under external rotational moments. In contrast with our hypothesis, it was observed that the dMCL had less of an effect on medial knee stability. Contributions of these ligaments could be further investigated using more complicated loading, such as those more representative of activities of daily living


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 99 - 99
1 Mar 2017
Willing R Walker P
Full Access

Introduction. The intrinsic constraint of a total knee replacement (TKR) implant system is considered an important characteristic which plays a large role in determining stability following surgery. Established techniques for evaluating the constraint of TKR implants, as described in ASTM F 1223-14, do not necessarily map directly to physiologically relevant loading scenarios where instability can occur, and thus give an incomplete picture of the constraint characteristics of a candidate implant design. Sophisticated joint motion simulators now allow for more physiologically representative joint loading (eg. gait), including the contributions of virtual soft tissues. In this study, we employ a function-based constraint measurement technique for evaluating the kinematics of two TKR designs during gait. Furthermore, we employ simulated soft tissues in order to create three “virtual” knees on which the TKR are tested. Methods. The constraint characteristics of TKR implants were evaluated using a function-based measurement technique on a VIVO joint motion simulator (AMTI, Waltham, MA). The AVG75 standardized load and motion profiles for gait (Bergmann et al. 2014), were applied to an ultra-congruent cruciate-sacrificing TKR (Zimmer-Biomet, Warsaw, IN). Ligaments were simulated as point-to-point spring elements between the femur and tibia (3 bundles for MCL, 3 bundles for LCL). Ligament bundle origin, insertion, stiffness, and resting length properties were adapted from the publically available MB Knee project (. simtk.org/home/mb_knee. ) to create three knees. AP and IE kinematics were recorded during simulated gait after approximately 500 “learning” cycles at 0.75 Hz. Trials were then repeated with superimposed AP forces or IE torques. The amount of superimposed load varied with the amount of compressive load, such that the superimposed load was ±25 N AP force or ±1 Nm IE torque, per 1000 N of compressive force. AP and IE laxities were calculated based on changes in AP and IE motions, respectively (Fig 1). Experiments were repeated with a second TKR design; using the same femoral component but replacing the ultra-congruent UHMWPE bearing with a 3D printed ABS plastic bearing featuring a less congruent sagittal profile. In total, there were 2 implants × 3 virtual knees × 5 simulated loading profiles = 30 different simulated gait trials. Results. The baseline (normal gait) AP and IE motions for both TKR designs, averaged across three knees, are shown in Fig. 2. The average AP and IE laxities for each knee are shown in Table 1, with results averaged for each TKR design. Discussion. Differences in AP motion between the two TKR designs are large compared to the differences in IE motion. Predictably, the overall AP and IE motions and average laxities for the less congruent TKR are greater. While this trend was generally consistent across all knees, the actual differences in laxities between the two TKR designs varied between knees. This suggests that the importance of the intrinsic constraint of TKR varies on subject-to-subject basis, and thus variable soft tissue stabilization models should be considered during pre-clinical testing. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 134 - 134
1 Apr 2019
Dabirrahmani D Cadman J Bromwich L Hettige BP Brackenbury R Sullivan J Appleyard R
Full Access

Introduction. Joint kinematics following total knee replacement (TKR) is important as it affects joint loading, joint functionality, implant wear and ultimately patient comfort and satisfaction. It is believed that restoring the natural motion of the joint (such as the screw-home mechanism) with a medial pivot knee implant will improve clinical outcomes. Daily activities such as stair climbing and stair descent are among the most difficult tasks for these patients. This study analysed dynamic knee joint motion after implantation of a medial pivot knee implant using fluoroscopy during stair ascent and descent activity. Methods. Ethics approval was granted by Macquarie University to undertake fluoroscopic testing. Four patients who had undergone a TKR were asked to participate in the study. All patients were operated by a single surgeon (JS) and were implanted with a medial pivot knee prosthesis (Sphere, Medacta International). Participants were tested at the 12 month post-operative time- point. Participants were asked to step up or down a short stair-case at a comfortable self-selected speed. Fluroscopic images were taken using a flat panel Artis Zeego (Siemens Healthcare GmbH, Erlangen) angiography system during the dynamic activity. Images were processed using Joint Track Auto (Banks, University of Florida), whereby the specific femoral and tibial component CAD files were superimposed onto the fluoroscopic images, ensuring an optimised match to the outlined components. Joint kinematics were calculated using custom written code in Matlab 2017a. Results. The average maximum flexion angle during stair ascent was 64° at the time when the foot had touched the step. The average minimum flexion angle during this activity was 7.9°. On average, the tibia externally rotated relative to the femur by 3.6° as the knee extended. During stair descent the average flexion angle changed from a minimum of 4.3° of flexion to a maximum of 29.3° of flexion. The average change in internal rotation between 10° flexion and 25° flexion was 1.05°. Conclusion. The stair ascent activity showed the joint to undergo the natural screw-home mechanism motion; experiencing 4° of internal rotation over a 57° flexion angle range. The stair descent activity exhibited a lower level of internal- external rotation. This may be due to a smaller flexion angle range during this activity as well other mechanisms such as motion adaptation of the patient when descending stairs, not related to implant design


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 22 - 22
1 Jan 2016
Hafez M
Full Access

Aim. To create a more “normal” anatomy for the repaired joint structure, which can be provided that by the following factors: (1) the available implant component require a normalized anatomical support structure, (2) the available repair components are designed and/or tested to only recreate and/or replicate more normalized anatomical structures and/or joint motion, (3) the surgeon is familiar and comfortable with more normalized joint motion and thus attempts to create such “normal” motion within the repaired anatomical structures. Methods. We could discover a method of making an implant component for a knee joint of a patient which includes deriving information regarding a first joint line of the joint based on patient-specific information. This method also includes determining a planned level of resection for a first portion of a bone of the joint based on the patient-specific information. Further, the dimension of the implant component is determined based on the derived information regarding the first joint line and the planned level of resection for the first portion of the bone. Also, we discovered an implant component for treating a patient's joint that includes a medial bone-facing surface. The medial bone-facing surface is positioned to engage a cut bone surface of a medial portion of a proximal tibia at a first level. The implant component also includes a lateral bone-facing surface. The lateral bone-facing surface is positioned to engage a cut bone surface of a lateral portion of the proximal tibia at a second level. The first level is offset from the second level. The implant component additionally includes one or more joint-facing surfaces having a curvature based on patient-specific information. Furthermore, we discovered a system for treating a joint of a patient that includes one or more patient-specific instruments. The system further includes a medial tibial implant component. The medial tibial implant component has a bone-facing surface and a joint-facing surface. The joint-facing surface has a curvature based on patient-specific information. The system also includes a lateral tibial implant component, which has a bone-facing surface and a joint-facing surface. The joint-facing surface of the lateral tibial implant has a curvature based on patient-specific information. The bone-facing surface of the medial tibial implant component is configured to engage a cut bone surface that is at a level offset from the level of a cut bone surface to which the bone-facing surface of the lateral tibial implant component is configured to engage. The system further includes a femoral implant component, which has a joint-facing surface with a curvature based on patient-specific information. Results. Patient-specific instruments that can be used for double joint line knee joint replacement surgical procedures are disclosed. Severe varus deformity has been corrected through bilateral joint replacement


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 113 - 113
1 Apr 2019
Gray H Guan S Young T Dowsey M Choong P Pandy M
Full Access

INTRODUCTION. The medial-stabilised (MS) knee implant, characterised by a spherical medial condyle on the femoral component and a medially congruent tibial bearing, was developed to improve knee kinematics and stability relative to performance obtained in posterior-stabilised (PS) and cruciate-retaining (CR) designs. We aimed to compare in vivo six-degree-of-freedom (6-DOF) kinematics during overground walking for these three knee designs. METHODS. Seventy-five patients (42 males, 33 females, age 68.4±6.6 years) listed for total knee arthroplasty (TKA) surgery were recruited to this study, which was approved by the relevant Human Research Ethics committees. Each patient was randomly- assigned a PS, CR or MS knee (Medacta International AB, Switzerland) resulting in three groups of 23, 26 and 26 patients, respectively. Patients visited the Biomotion Laboratory at the University of Melbourne 6±1.1 months after surgery, where they walked overground at their self-selected speed. A custom Mobile Biplane X-ray (MoBiX) imaging system tracked and imaged the implanted knee at 200 Hz. The MoBiX system measures 6-DOF tibiofemoral kinematics of TKA knees during overground gait with maximum RMS errors of 0.65° and 0.33 mm for rotations and translations, respectively. RESULTS AND DISCUSSION. Mean walking speeds for the three groups were not significantly different (PS, 0.86±0.14 m/s CR, 0.82±0.17 m/s and MS, 0.87±0.14 m/s, p>0.25). While most kinematic parameters were similar for the PS and CR groups, mean peak-to-peak anterior drawer was greater for PS (9.89 mm) than CR (7.75 mm, p=0.004), which in turn was greater than that for MS (4.43 mm, p<0.001). Mean tibial external rotation was greater for MS than PS (by 3.12°, p=0.033) and CR (by 3.34°, p=0.029). Anterior drawer and lateral shift were highly coupled to external rotation for MS but not so for PS and CR. The contact centres on the tibial bearing translated predominantly in the anterior-posterior direction for all three designs. Peak-to-peak anterior-posterior translation of the contact centres in the medial compartment was largest for PS (7.09 mm) followed by CR (5.45 mm, p=0.003) and MS (2.89 mm, p<0.001). The contact centre in the lateral compartment was located 2.5 mm more laterally for MS than PS and CR (p<0.001). The centre of rotation of the knee in the transverse plane was located in the medial compartment for MS and in the lateral compartment for both PS and CR. CONCLUSIONS. We quantitatively compared in vivo 6-DOF joint motion for PS, CR, and MS knees during locomotion. A higher degree of coupling between external rotation and anterior-posterior translation, greater constraint in the anterior-posterior direction, and a more medialised joint centre of rotation observed for the MS knees are explained by the highly congruent medial articulation characterising this design


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 11 - 11
1 Apr 2019
D'Isidoro F Brockmann C Ferguson SJ
Full Access

Introduction. Soft tissue artefact (STA) affects the kinematics retrieved with skin marker-based motion capture, and thus influences the outcomes of biomechanical models that rely on such kinematics. To date, compensation for STA remains an unsolved challenge due to its complexity. Factors include its dependency on subject, on motion activity and on skin-marker configuration, its non-linearity over the movement cycle, and the scarcity of reference in-vivo estimations. The objective of this study was extending the existing knowledge of the effects of STA on the kinematics of the hip joint and on the hip joint center location, by quantifying them for a sample total hip arthroplasty (THA) population, for a broader range of activities of daily living (ADLs). Methods. Four activities of daily living (overground gait, stairs descent, chair rise and putting on socks) were measured simultaneously with optical motion capture (MC) at 100 Hz and with a movable single-plane video-fluoroscopy system (VF) at 25 Hz, for fifteen patients with successful total hip arthroplasty (THA). The joint segment positions were computed by least-square fitting for MC and by semi-automatic 2D/3D registration for VF. Anatomical coordinate systems were defined for each joint segment based on skin markers location at a reference standing position. Errors induced by STA on the retrieved joint motion were computed as the difference between MC-based kinematics and the reference VF-based kinematics. Statistical analysis was carried out to determine the whether the differences between the kinematics obtained with the two methods were significant. Results. MC underestimated the ROM of the hip joint for all activities. The ROM for the flexion-extension was underestimated by on average 4.1°, 6.5°, 8.0° and 6.9° for gait, stair decent, chair rise and putting on socks respectively. Overall, during dynamic activities the hip joint was less flexed, more adducted and more internally rotated as retrieved using MC, compared to VF. The flexion angle was underestimated by MC during late stance phase and early swing phase for both gait and stairs descent. The internal rotation of the hip was overestimated by MC throughout the whole cycle of each activity. MC error for the thigh was larger than the MC error for the pelvis. MC errors above 1 cm were observed for the location of the hip joint center, with higher values for the cranial-caudal direction. Discussion. Reduced ROM supports the notion that skin-sliding is a major contributor to STA. The underestimation of hip flexion appeared to be positively correlated to the degree of flexion. Larger skin deformation and sliding occurring for the thigh at higher hip flexion angles may produce the observed patterns of MC error for FE. The CC error was possibly due to inertial effects, and was more pronounced for the stair descent due to larger vertical movement and acceleration. This study led further bases for the activity-dependent correction of STA. This has the potential of improving the accuracy of motion capture and boosting its use for motion analysis as opposite to video-fluoroscopy techniques, which deliver radiation dose to the subjects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 279 - 279
1 Mar 2013
Nam KW Choi S Nam U Kim S Kim HJ
Full Access

Melorheostosis is a very rare mesenchymal dysplasia of bone, characterized by sclerosing hyper-pigmentation appearances on the bone, may involve the adjacent soft tissues and lead to joint pain, limitation of joint motion and stiffness as a result of abnormal ossifications and soft tissue contractures, due to periarticular fibrosis. It is well known to tend to affect only one limb, but multifocal involvement, such as multiple limbs, spine and rib, has been extremely rarely reported. A variety of treatment options have been tried so far, none being specific surgical treatments. Here we present a case of a 43-year-old man who sustained melorheostosis with multifocal involvement including the axial skeleton and a whole entire lower limb. He had painful swelling of his left lower limb and mainly complained of difficulty walking due to severe hip pain and knee stiffness, which persisted for 20 years and was aggravated during the last 5 years. Total hip arthropasty [Fig. 1] was done first, and then total knee arthroplasty [Fig. 2, 3] was performed. During operation, there were difficulties in bone cutting and implant insertion due to mixed pattern of hard sclerotic portion and osteoporotic portion despite complete synovectomy and sufficient soft tissue release. He was eventually free of pain during walking and able to walk without a crutch and joint motion of hip and knee was substantially improved after surgery. We found that hip pain and contracture due to osteoarthritis and knee contracture secondary to multifocal melorheostosis could be successfully treated by total hip and knee arthroplasty. To the best of our knowledge, this is the first reporting the total joint arthroplasty performed in the patients with multifocal melorheostosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 83 - 83
1 Oct 2012
Belvedere C Ensini A Notarangelo D Tamarri S Feliciangeli A Leardini A
Full Access

During total knee replacement (TKR), knee surgical navigation systems (KSNS) report in real time relative motion data between the tibia and the femur from the patient under anaesthesia, in order to identify best possible locations for the corresponding prosthesis components. These systems are meant to support the surgeon for achieving the best possible replication of natural knee motion, compatible with the prosthesis design and the joint status, in the hope that this kinematics under passive condition will be then the same during the daily living activities of the patient. Particularly, by means of KSNS, knee kinematics is tracked in the original arthritic joint at the beginning of the operation, intra-operatively after adjustments of bone cuts and trial components implantation, and after final components implantation and cementation. Rarely the extent to which the kinematics in the latter condition is then replicated during activity is analysed. As for the assessment of the active motion performance, the most accurate technique for the in-vivo measurements of replaced joint kinematics is three-dimensional video-fluoroscopy. This allows joint motion tracking under typical movements and loads of daily living. The general aim of this study is assessing the capability of the current KSNS to predict replaced joint motion after TKR. Particularly, the specific objective is to compare, for a number of patients implanted with two different TKR prosthesis component designs, knee kinematics obtained intra-operatively after final component implantation measured by means of KSNS with that assessed post-operatively at the follow-up by means of three-dimensional video-fluoroscopy. Thirty-one patients affected by primary gonarthrosis were implanted with a fixed bearing posterior-stabilized TKR design, either the Journey® (JOU; Smith&Nephew, London, UK) or the NRG® (Stryker®-Orthopaedics, Mahwah, NJ-USA). All implantations were performed by means of a KSNS (Stryker®-Leibinger, Freiburg, Germany), utilised to track and store joint kinematics intra-operatively immediately after final component implantation (INTRA-OP). Six months after TKR, the patients were followed for clinical assessment and three-dimensional video fluoroscopy (POST-OP). Fifteen of these patients, 8 with the JOU and 7 with the NRG, gave informed consent and these were analyzed. At surgery (INTRA-OP), a spatial tracker of the navigation system was attached through two bi-cortical 3 mm thick Kirschner wires to the distal femur and another to the proximal tibia. The conventional navigation procedure recommended in the system manual was performed to calculate the preoperative deformity including the preoperative lower limb alignment, to perform the femoral and tibial bone cuts, and to measure the final lower limb alignment. All these assessment were calculated with respect to the initial anatomical survey, the latter being based on calibrations of anatomical landmarks by an instrumented pointer. Patients were then analysed (POST-OP) by three-dimensional video-fluoroscopy (digital remote-controlled diagnostic Alpha90SX16; CAT Medical System, Rome-Italy) at 10 frames per second during chair rising-sitting, stair climbing, and step up-down. A technique based on CAD-model shape matching was utilised for obtaining three-dimensional pose of the prosthesis components. Between the two techniques, the kinematics variables analysed for the comparison were the three components of the joint rotation (being the relative motion between the tibial and femoral components represented using a standard joint convention, the translation of the line through the medial and lateral contact points (being these points assumed to be where the minimum distance between the femoral condyles and the tibial baseplate is observed) on the tibial baseplate and the corresponding pivot point, and the location of the instantaneous helical axes with the corresponding mean helical axis and pivot point. In all patients and in both conditions, physiological ranges of flexion (from −5° to 120°), and ab-adduction (±5°) were observed. Internal-external rotation patterns are different between the two prostheses, with a more central pivoting in NRG and medial pivoting in JOU, as expected by the design. Restoration of knee joint normal kinematics was demonstrated also by the coupling of the internal rotation with flexion, as well as by the roll-back and screw-home mechanisms, observed somehow both in INTRA- and POST-OP measurements. Location of the mean helical axis and pivot point, both from the contact lines and helical axes, were very consistent over time, i.e. after six months from intervention and in fully different conditions. Only one JOU and one NRG patient had the pivot point location POST-OP different from that INTRA-OP, despite cases of paradoxical translation. In all TKR knees analysed, a good restoration of normal joint motion was observed, both during operation and at the follow-up. This supports the general efficacy of the surgery and of both prosthesis designs. Particularly, the results here reported show a good consistency of the measurements over time, no matter these were taken in very different joint conditions and by means of very different techniques. Intra-operative kinematics therefore does matter, and must be taken into careful consideration for the implantation of the prosthesis components. Joint kinematics should be tracked accurately during TKR surgery, and for this purpose KSNS seem to offer a very good support. These systems not only supports in real time the best possible alignment of the prosthesis components, but also make a reliable prediction of the motion performance of the replaced joint. Additional analyses will be necessary to support this with a statistical power, and to identify the most predicting parameters among the many kinematics variables here analysed preliminarily


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 71 - 71
1 Mar 2013
Hirokawa S Fukunaga M Kiguchi K
Full Access

We have developed a novel knee simulator that reproduces the active knee motion to evaluate kinematics and joint reaction forces of TKA. There have been developed many kinds of knee simulators; Most of them are to predict TKA component wear and the others are to evaluate the kinematics and/or kinetics of TKA. The most simulators have been operated using the data of the loading and kinematics profile of the knee obtained from normal gait. Here a problem is that such variables as joint force and kinematics are the outcome caused by the application of muscles' and external forces. If so, a simulator should be operated by the muscles' and external forces so as to duplicate the in vivo condition. Other disadvantages for the current knee simulators are; a knee joint motion is made passively, the effects of the hip joint motion are not taken into account, and the maximum flexion angle is usually limited at about 100°. Considering the above, we have developed a knee simulator with the following advantages and innovative features. First, the simulator is driven by the muscles' forces and an active knee motion is made with bearing the upper body weight. As a result, the knee shows a 3D kinematics and generates the tibio-femoral contact forces. Under this condition, the TKA performance is to be assessed. Secondly, a hip joint mechanism is also incorporated into the simulator. The lower limb motion is achieved by the synergistic function between the hip and knee joints. Under this condition, a natural knee motion is to be reproduced. Thirdly, the simulator can make complete deep knee flexion up to 180°. Thus not only the conventional TKA but also a new TKA for high flexion can be attached to it for the evaluation. Figure 1 shows the structure of the simulator, in which both the hip and knee joints are moved in a synergistic fashion by the pull forces of four wires. The four wires are pulled by the four servomotors respectively and reproduce the functions of the mono-articular muscles ((1), (3)) and the bi-articular muscles ((2), (4)) through the multiple pulley system. It should be noted that weight A and B are not heavy enough for the inverted double pendulum to stand up straight. They are applied as counter weights so that each segment duplicate the each segmental weight of the human lower limb. Figure 2 shows a sequential representation of stand to sit features: (a) at standing, (b) at high flexion, and (c) at deep flexion. At a state of 130° knee flexion between (b) and (c), hamstrings wire (4) becomes shortest and then exhibits an eccentric contraction, thereby attaining deep flexion. Our knee simulator can be a useful tool for the evaluation of TKA performance and may potentially substitute the in vivo experiments


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 115 - 115
1 Feb 2017
Chun Y Cho Y Lee C Bae C Rhyu K
Full Access

Purpose. This study was performed to evaluate clinical and radiographic outcomes of Hip Resurfacing Arthroplasty for treatment of haemophilic hip arthropathy. Material & Method. Between 2002 and 2013, 17 cases of hip resurfacing arthroplasties were performed in 16 haemophilic patients (13 cases of haemophilia A, 2 cases of haemophilia B, 2 cases of von Willebrand disease). The average age of the patients was 32.5(range: 18∼52) years. The average follow up period from the operation was 6.3 (range: 2∼13) years. In this study, the subjects that completed follow-up were composed of 5 cases composed of patients who were treated with Conserve plus. ®. hip resurfacing system, 5 cases composed of patients who were treated with Durom. ®. hip resurfacing system, 4 cases who were treated with ASR. ®. hip resurfacing system, and 3 cases who were treated with Birmingham. ®. hip resurfacing system. The Modified Harris hip score, the range of motion of the hip joint, perioperative coagulation factor requirements and complications associated with bleeding were evaluated as part of the clinical assessment. For the radiographic assessment, fixation of component, presence of femoral neck fracture, osteolysis, loosening and other complications were evaluated. Results. The modified Harris hip score improved from 65.4(47–80) points before surgery to 97.8(90–100) points at the last follow-up. The average further flexion improved from 103° (70–135) to 110°(80–130) after surgery. The average abduction improved from 22.4° (0–45) to 41.3° (20–50) after surgery. All the patients showed a significant reduction in pain. The mean requirement of factor VIII reduced from 2470 units per month before surgery to 1125 units per month at the time of the last follow-up. However, in the case of high-titer inhibitor to factor VIII, haemophilia B, von Willebrand disease, the average monthly factor requirement was not changed due to bleeding episode of other joints. There was two cases of re-bleeding. There were no femoral neck fracture, no osteolysis, and no implant loosening in last follow up. Conclusion. Hip resurfacing arthroplasty for haemophilic hip arthropathy in patients with mild deformity or relatively preserved range of the hip joint motion can bring reliable pain relief, functional improvement, and reduction of factor requirement for over two years follow-up study. However, bleeding-associated complications are a cause for concern, especially for patients with antibodies against coagulation factors


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 146 - 146
1 Mar 2017
Kia DS Willing R
Full Access

As a treatment for end-stage elbow joint arthritis, total elbow replacement (TER) results in joint motions similar to the intact joint; however, bearing wear, excessive deformations and/or early fracture may necessitate early revision of failed implant components. Compared to hips, knees and shoulders, very little research has been focused on the evaluation of the outcomes of TER, possible failure mechanisms and the development of optimal designs. The current study aims to develop computational models of TER implants in order to analyze implant behaviour; considering contact stresses, plastic deformations and damage progression. A geometrical model of a TER assembly was developed based on measurements from a Coonrad-Morrey TER implant (Zimmer, Inc., Warsaw, IN). Ultra high molecular weight polyethylene (UHMWPE) nonlinear elasto-plastic material properties were assigned to the humeral and ulnar bushings. A frictional penalty contact formulation with a coefficient of friction of 0.04 was defined between all of the surfaces of the model to take into account every possible interaction between different implant components in vivo. The loading scenario applied to the model includes a flexion-extension motion, a joint force reaction with variable magnitude and direction and a time varying varus-valgus (VV) moment with a maximum magnitude of 13 N.m, simulating a chair-rise scenario as an extreme loading condition. An explicit dynamic finite element solver was used (ABAQUS Explicit, Dassault Systèmes, Vélizy-Villacoublay, France), due to improved capabilities when performing large deformation analyses. Model results were compared directly with corresponding experimental data. Experimental wear tests were performed on the abovementioned implants using a VIVO (AMTI, Watertown, MA) six degree-of-freedom (6-DOF) joint motion simulator apparatus. The worn TER bushings were scanned after the test using micro computed tomography (µCT) imaging techniques, and reconstructed as 3D models. Comparisons were made based on the sites of damage and deformed geometries between the numerical results and experimental test data. In addition to that, parametric geometrical models were developed using worn geometry of the retrievals in order to account for primary wear and deformations while simulating long-term contact stress and secondary damage progression on the bushings (Fig. 1). Contact pressure distributions on the humeral and ulnar bushings correlate with the sites of damage as represented by the µCT data and gross observation of clinical retrievals. Furthermore, deformation patterns and kinematics of the components are in good agreement with the experimental results (Fig.2). Excessive plastic deformations are evident in both the numerical and the experimental results close to the regions with high contact pressures. Simulating parametric initially-worn geometries results in the formation of secondary damage zones, as well as redistribution of contact stresses and contact locations (Fig. 3). The results demonstrate UHMWPE bushing damage due to different loading protocols. Numerical results demonstrate strong agreement with experimental data based on the location of deformation and creep on bushings and exhibit promising capabilities for predicting the damage and failure mechanisms of TER implants. For figures/tables, please contact authors directly.