Objective. In this study, we aim to compare total bone amount extracted in total knee arthroplasty in implant design and the bone amount extracted through
Patellofemoral complaints are the common and nagging problem after total knee arthroplasty. Crepitus occurs in 5% to over 20% of knee arthroplasty procedures depending on the type of implant chosen. It is caused by periarticular scar formation with microscopic and gross findings indicating inflammatory fibrous hyperplasia. Crepitus if often asymptomatic and not painful, but in some cases can cause pain. Patella “Clunk Syndrome” is less common and represents when the peripatella scarring is abundant and forms a nodule which impinges and “catches” on the implant's
Patellofemoral complaints are the common and nagging problem after Total Knee Arthroplasty. Crepitus occurs in 5% to over 20% of knee arthroplasty procedure depending on the type of implant chosen. It is caused by periarticular scar formation with microscopic and gross findings indicating inflammatory fibrous hyperplasia. Crepitus if often asymptomatic and not painful, but in some cases can cause pain. Patella “Clunk Syndrome” is less common and represents a when the peripatella scarring is abundant and forms a nodule which impinges and “catches” on the implants
Patellofemoral arthroplasty (PFA) has higher revision rates than total knee arthroplasty (TKA) [Van der List, 2015; Dy, 2011]. Some indications for revision include mechanical failure, patellar mal-tracking, implant malalignment, disease progression and persistent pain or stiffness [Dy, 2011; Turktas, 2015]. Implant mal-positioning can lead to decreased patient satisfaction and increased revision rates [Turktas, 2015]. Morphological variability may increase the likelihood of implant mal-positioning. This study quantifies the morphological variability of the anterior-posterior (AP) and medial-lateral (ML) aspects of the patellofemoral compartment using a database of computed tomography (CT) scans. The analysis presented here used the custom CT based program SOMA (SOMA V.4.3.3, Stryker, Mahwah, NJ). SOMA contains a large database of 3D models created from CT scans. Anatomic analysis and implant fitting tools are also integrated into SOMA to perform morphometric analyses. A coordinate system is established from the femoral head center, the
Introduction. The aim of this radiographic study was to define the anatomical axis joint centre distance (aJCD) and anatomical axis joint centre ratio (aJCR) of the distal femur in the coronal plane for skeletally mature individuals. Materials and Methods. A cross-sectional radiographic study was conducted to calculate the horizontal distances between the anatomical axis and the centre of the knee at the level of the
Introduction. Alignment and positioning of implants is important in total knee arthroplasty (TKA). Identifying the femoral hip center (FHC) without fluoroscopy or computer navigation is considered difficult. The Complete Compass system (CoCo) is a femoral extramedullary guidance system designed to identify the FHC. This apparatus provides an accurate representation of the femoral functional axis in the coronal plane without a computer navigation system. We compared postoperative implant alignment of patients undergoing total knee arthroplasty between CoCo and intraoperative computer navigation. Materials and Methods. Twenty-five consecutive TKAs using CoCo were analyzed. CoCo has a pivotal arm with a pivotal shaft arranged to extend perpendicular to the coronal plane. A marker is attached to the pivotal arm to depict a circular arc on the marking plate with rotation of the pivotal arm. The pivotal shaft is placed at the
Introduction. Intramedullary femoral alignment guide is mostly used in total knee arthroplasty (TKA). Accurate preoperative plan is critical to get good alignments when we use intramedullary femoral guide, because the center of femoral head cannot be looked directly during operation. Commonly, the planning is carried out using preoperative anteroposterior radiographs of the femur. The angles formed between mechanical axes of the femur and distal femoral anatomic axes (AMA) are measured as reference angles of resection of distal femur, and the entry points of intramedullary femoral guide are also planned. The purpose of this study is to investigate the influence of femoral position on radiographic planning in TKA. Materials and Methods. We examined 20 knees of 20 female patients who received TKA. Fourteen patients suffered from primary osteoarthritis of the knees, and 6 suffered from rheumatoid arthritis. Fifteen patients have varus knee deformities and 5 patients have valgus knee deformities. Long leg computed topography scans were performed in all cases before operations, and all images were stored in DICOM file format. The analyses were performed with computer software (3D template, JMM, Osaka, Japan) using DICOM formatted data. The planes containing the center of femoral head and transepicondylar axes were defined as reference planes, and the reference planes were fixed all through analyses. At first, to assess the influence of femoral rotation, the femur was rotated from 30 degrees external rotation to 30 degrees internal rotation in 5 degrees increments in full extension. After that, to examine the influence of knee flexion, the knee was bended from full extension to 30 degrees flexion in 5 degrees increments in neutral rotation. Reconstructed coronal planes parallel to the reference planes were made, the angles between mechanical axes of the femur and distal femoral anatomic axes (AMA) and the distance from entry points to the center of femoral
Purpose. Leg length discrepancy after total hip arthroplasty (THA) sometimes causes significant patient dissatisfaction. In consideration of the leg length after THA, leg length discrepancy is often measured using anteroposterior (AP) pelvic radiography. However, some cases have discrepancies in femoral and tibial lengths, and we believe that in some cases, true leg length differences should be taken into consideration in total leg length measurement. We report the lengths of the lower limb, femur, and tibia measured using the preoperative standing AP full-leg radiographs of the patients who underwent THA. Materials and methods. From August 2013 to February 2017, 282 patients underwent standing AP full-leg radiography before THA. Of the patients, 33 were male and 249 were female. The mean age of the patients was 65.7±9.4 years. We measured the distances between the center of the tibial plafond and lesser trochanter apex (A-L), between the femoral
In performing posterior cruciate ligament- retaining total knee arthroplasty (CR-TKA), the original surgical instrument was devised to obtain the range of motion and stability of the knee joint adequate for daily life of Japanese people. We have presumed the tentative joint line as
Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of severe wear and catastrophic failure of the tibial post have been published. In addition to posterior cam-post engagement during flexion, anterior engagement with femoral
Introduction. Current techniques in total knee arthroplasty aim to restore the coronal mechanical axis to neutral. Preoperative planning has historically been based on long-leg standing films (LLSF) which allow surgeons to plan bony resection and soft tissue releases. However, LSSF can be prone to error if malrotated. Recently, patient-specific guides (PSG) utilizing supine magnetic resonance imaging (sMRI) have become an accepted technique for preoperative planning. In this study we sought to compare the degree of coronal deformity using LLSF and sMRI. Methods. Two hundred thirty knees underwent planning for total knee arthroplasty with sMRI and LLSF. Coronal plane deformity was determined based on the femoral-tibial angle (FTA) as defined by the angle formed between a line from the center of the femoral head to the
Introduction. The convincible wisdom is that the release of MCL in severe varus knee should be progressive. This release is usually carried on after resecting the osteophyte and gradually carried on until the MCL is well balanced. However, sometimes, extensive release and releasing the superficial MCL can lead to instability in flexion. On a personal communication with many Asian surgeons they have been doing a careful release of the posteromedial corner in the varus knee and in majority of cases such release is adequate. And even in severe cases of varus knee superficial MCL doesn't need to be released. 20 total knee replacements were performed by the same surgeon using ZimmerPS implant. In the varus deformity ranges from 15–35 degrees. The first bony section was made carefully. All osteophytes were removed and resected. The posterior bone osteophytes were also resected and the
Objective. To explore whether good postoperative alignment could be obtained through simple individual valgus resection angle using common instruments in total knee arthroplasty with lateral bowing femur. Methods. Data of 46 TKAs with lateral bowing femur were collected prospectively, the center of the femoral
The condylopatellar notch (CPN) represents the border between the patellofemoral articulation and the tibiofemoral articulation [Pao, 2001]. This could be a valuable landmark for establishing the boundaries of unicompartmental knee replacements. Its location on the distal femur has been described radiographically, but it has not, to our knowledge, been quantified with respect to anatomic landmarks [Hoffelner, 2015]. This study seeks to leverage a large database of computed tomography (CT) scans to quantify the location of the CPN with respect to well established anatomic landmarks of the knee. The analysis presented here used the custom CT based program SOMA (SOMA V.4.3.3, Stryker, Mahwah, NJ). SOMA contains a large database of 3D models created from CT scans. Anatomic analysis and implant fitting tools were also integrated into SOMA to perform morphometric analyses. 986 healthy distal femurs were analyzed. A coordinate system was established from the femoral head center, the
Introduction. Pelvic posterior tilt change (PPTC) after THA is caused by release of joint contracture and degenerative lumbar kyphosis. PPTC increases cup anteversion and inclination and results in a risk of prosthesis impingement (PI) and edge loading (EL). There was reportedly no component orientation of fixed bearing which can avoid PI and EL against 20°PPTC. However, dual mobility bearing (DM) has been reported to have a large oscillation angle and potential to withstand EL without increasing polyethylene (PE) wear against high cup inclination such as 60∼65°. Objective. The purpose of this study was to investigate the optimal orientation of DM-THA for avoiding PI and EL against postoperative 20°PPTC. Methods. Our study was performed with computer tomography -based three-dimensional simulation software (ZedHip. LEXI co. Japan). The CT data of hip was derived from asian typical woman with normal hips. Used prosthesises were 50mm cup and 42mm outer head of modular dual mobility system and Accolade II 127°(stryker). Femoral coordinate system was retrocondylar plane with z-axis from trochanteric fossa to
Introduction. Patellar crepitus and clunk are tendofemoral-related complications predominantly associated with posterior-stabilizing (PS) total knee arthroplasty (TKA) designs [1]. Contact between the quadriceps tendon and the femoral component can cause irritation, pain, and catching of soft-tissue within the
OBJECTIVE. The purpose of this study was to investigate the postoperative change of hematological values between post cam type posterior stabilized (PS) and deep dish cruciate substituting (CS) type total knee arthroplasty (TKA). MATERIALS AND METHODS. From June 1999 to December 2013, 322 patients with TKA due to osteoarthritis or rheumatoid arthritis were enrolled. In all knees, posterior cruciate ligament (PCL) were resected, and either Scorpio NRG PS knee (Stryker Orthopaedics) or Triathlon CS knee (Stryker Orthopaedics) were implanted. The PS group included 183 patients (183 knees) consisting of 4 men (4 knees) and 179 women (179 knees) with a mean age of 68.5 years (range 31 – 86 years). And the CS group included 139 patients (139 knees) consisting of 27 men (27 knees) and 112 women (112 knees) with a mean age of 75 years (range 42 – 98 years). Simultaneous bilateral TKA were excluded in this study. No case had blood transfusion in perioperative period. The changes of hemoglobin (Hb), d-dimer (DD) and c-reactive protein (CRP) were compared at pre-operative value, 1, 4, 7 and 14 days after surgery in two groups. RESULT. In both groups, Hb was lowest at 4 days after surgery. CRP was highest at 4 days after surgery, and DD bimodal change high in one day and 14 days after surgery. In comparison with PS group and CS group. The values of Hb were significantly lower in PS group at 1, 4, and 7 days after surgery. The values of CRP changes were significantly higher in PS group than CS group at 1, 4, 7 days after surgery. And the values of DD were not significantly different in two groups. CONCLUSION. In this study, PCL were resecte in all knee. The difference of surgical procedure in PS knee and CS knee was bone resection of femoral
Purpose:. Anterior positioning of a cephomedullary nail (CMN) in the distal femur occurs in up to 88% of cases. Conventionally, this is considered to occur because of a mismatch between the radius of curvature (ROC) of the femur and that of available implants. The hypothesis for this study was that the relative thicknesses of the cortices of the femur, particularly the posterior cortex are important in determining the final position of an intramedullary implant and that the posterior cortical thickness corresponds to the linea aspera anatomically. The aim was to determine if these measurements changed with age. Method:. This study used the data from CT scans undertaken as part of routine clinical practice in 919 patients with intact left femora (median age 66 years, range 20–93 years; 484 male and 435 female). The linea aspera was defined manually on the template bone by consensus between two orthopaedic surgeons and two anatomists. The length of the femur was measured from the tip of the greater trochanter proximally to the
Performance and durability of total knee arthroplasty is optimised when bone surfaces are prepared with the knee in neutral varus-valgus alignment in the anteroposterior (AP) plane. For the femur, this means resecting the surface perpendicular to the mechanical axis of the femur, which passes through the center of the femoral head and center of the knee. Because the center of the femoral head is not a reliable landmark during the operation, the distal femoral surface can be resected at 5 degrees valgus to the long axis of the femur using an intramedullary (IM) alignment rod to establish the position of the femur's long axis. The IM rod also provides the landmark for alignment of the femoral component in the flexion-extension position. Tibial alignment is established by cutting the upper surface of the tibia perpendicular to the long axis. An extramedullary (EM) rod easily can span the distance between the centers of the tibial surface at the knee and ankle to establish a reference for upper tibial surface resection via the long axis of the tibia. In cases with femoral deformity or bone disease that prevents use of an IM rod as a landmark for the long axis of the femur, plain film radiographs can be used along with intraoperative measurements and hand-held tools that are readily available in the standard total knee instrument set. Using an AP radiograph taken to include the femoral head and knee: 1.) Mark the centers of the femoral head and knee. 2.) Draw a line to connect the centerpoints. 3.) Mark the high points of the medial and lateral femoral condylar joint surfaces. 4.) Draw a line perpendicular to the mechanical axis that crosses the mark on the high point of the most prominent femoral condyle. This marks the position and alignment of the femoral implant surface. 5.) To measure the distal thickness of the femoral component and adding 10% to account for magnification of the radiograph, mark two points proximal to the two high points of the condyles and draw a line perpendicular through these two points to mark the resection line for the distal femoral surfaces. Less than the thickness of the implant will be resected from the least prominent condyle. 6.) Measure the thickness of bone to be resected and the distance between the bone surface and distal surface line. This distance represents the space between the distal femoral cutting guide and the joint surface of the deficient condyle. 7.) Insert a threaded pin into the bone surface with the measured distance protruding from the surface to set this position. 8.) Seat the distal femoral cutting guide against the protruding pin on the low side and against the surface of the femur on the high side. This aligns the distal femoral cutting guide perpendicular to the mechanical axis of the femur. 9.) Draw the AP axis from the center of the
The cornerstone to correct ligament balancing is correct varus and valgus alignment in flexion and extension. For alignment in the extended position, fixed anatomic landmarks such as the intramedullary canal of the femur and long axis of the tibia are accepted. When the joint surface is resected at an angle of 5° to 7° valgus to the medullary canal of the femur and perpendicular to the long axis of the tibia, the joint surfaces are perpendicular to the mechanical axis of the lower extremity, and roughly parallel to the epicondylar axis. In the flexed position, anatomic landmarks are equally important for varus-valgus alignment. Incorrect varus-valgus alignment in flexion not only malaligns the long axes of the femur and tibia, but also incorrectly positions the patellar groove both in flexion and extension. Finding suitable landmarks for varus-valgus alignment has led to efforts to use the posterior femoral condyles, epicondylar axis, and anteroposterior (AP) axis of the femur. The posterior femoral condyles often are not reliable rotational alignment landmarks because the femoral joint surface has been worn or otherwise distorted by developmental abnormalities or the arthritic process. As with the distal surfaces, the posterior femoral condylar surfaces sometimes are damaged or hypoplastic (more commonly in the valgus than in the varus knee) and cannot serve as reliable anatomic guides for alignment. The epicondylar axis is anatomically inconsistent and in all cases other than revision total knee arthroplasty with severe bone loss, is unreliable for varus-valgus alignment in flexion just as it is in extension. The AP axis, defined by the centre of the