Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ALIGNMENT OF THE DEFORMED FEMUR IN TKA: USING YOUR ONBOARD COMPUTER

Current Concepts in Joint Replacement (CCJR) – Winter 2015 meeting (9–12 December).



Abstract

Performance and durability of total knee arthroplasty is optimised when bone surfaces are prepared with the knee in neutral varus-valgus alignment in the anteroposterior (AP) plane. For the femur, this means resecting the surface perpendicular to the mechanical axis of the femur, which passes through the center of the femoral head and center of the knee. Because the center of the femoral head is not a reliable landmark during the operation, the distal femoral surface can be resected at 5 degrees valgus to the long axis of the femur using an intramedullary (IM) alignment rod to establish the position of the femur's long axis. The IM rod also provides the landmark for alignment of the femoral component in the flexion-extension position. Tibial alignment is established by cutting the upper surface of the tibia perpendicular to the long axis. An extramedullary (EM) rod easily can span the distance between the centers of the tibial surface at the knee and ankle to establish a reference for upper tibial surface resection via the long axis of the tibia. In cases with femoral deformity or bone disease that prevents use of an IM rod as a landmark for the long axis of the femur, plain film radiographs can be used along with intraoperative measurements and hand-held tools that are readily available in the standard total knee instrument set.

Using an AP radiograph taken to include the femoral head and knee: 1.) Mark the centers of the femoral head and knee. 2.) Draw a line to connect the centerpoints. 3.) Mark the high points of the medial and lateral femoral condylar joint surfaces. 4.) Draw a line perpendicular to the mechanical axis that crosses the mark on the high point of the most prominent femoral condyle. This marks the position and alignment of the femoral implant surface. 5.) To measure the distal thickness of the femoral component and adding 10% to account for magnification of the radiograph, mark two points proximal to the two high points of the condyles and draw a line perpendicular through these two points to mark the resection line for the distal femoral surfaces. Less than the thickness of the implant will be resected from the least prominent condyle. 6.) Measure the thickness of bone to be resected and the distance between the bone surface and distal surface line. This distance represents the space between the distal femoral cutting guide and the joint surface of the deficient condyle. 7.) Insert a threaded pin into the bone surface with the measured distance protruding from the surface to set this position. 8.) Seat the distal femoral cutting guide against the protruding pin on the low side and against the surface of the femur on the high side. This aligns the distal femoral cutting guide perpendicular to the mechanical axis of the femur. 9.) Draw the AP axis from the center of the intercondylar notch posteriorly to the deepest point of the patellar groove, and use the combined cutting guide to finish the femur. 10.) Make the anterior, posterior, and bevel cuts perpendicular to the AP axis. 11.) Finally, align the tibial surface, with an IM or EM rod, to resect perpendicular to the long axis of the tibia in the AP plane and sloped 4 degrees posteriorly in the lateral plane. 12.) Once the bone surfaces are resected at the proper angle, insert the trials or spacer blocks and finish the arthroplasty with release of tight ligaments.