Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 114 - 114
1 May 2016
Park Y Moon Y Lim S Kim S Jeong M Park S
Full Access

Introduction. As the proximal femoral bone is generally compromised in failed total hip arthroplasty, achievement of solid fixation with a new component can be technically demanding. Clinical studies have demonstrated good medium-term results after revision total hip arthroplasty using modular fluted and tapered distal fixation stems, but, to our knowledge, long-term outcomes have been rarely reported in the literature. The purpose of this study was to report the minimum ten-year results of revision total hip arthroplasty using a modular fluted and tapered distal fixation stem. Materials & Methods. We analyzed 40 revision THAs performed in using a modular fluted and tapered distal fixation stem (Fig. 1) between December 1998 and February 2004. There were 11 men (12 hips) and 28 women (28 hips) with a mean age of 59 years (range, 38 to 79 years) at the time of revision THA. According to the Paprosky classification of femoral defects, 5 were Type II, 24 were Type IIIA, and 11 were Type IIIB. An extended trochanteric osteotomy was carried out in 21 (52%) of the 40 hips. Patients were followed for a mean of 11.7 years (range, 10 to 15 years). Results. The mean Harris hip score improved from 41 points preoperatively to 85 points at the time of the latest follow-up. A total of 4 hips required additional surgery. One hip had two-stage reconstruction due to deep infection, one had liner and head exchange for ceramic head fracture, one had isolated cup re-revision for aseptic loosening, and one had constrained component revision for recurrent dislocation. No repeat revision was performed due to aseptic loosening of femoral stem. There was no stem fracture at the modular junction. Kaplan-Meier survivorship with an end point of stem re-revision for any reason was 98.1% at 11.7 years (Fig. 2), and, for aseptic stem loosening, the best-case scenario was 100% and the worst-case scenario was 91.9% at 11.7 years (Fig. 3). Conclusions. A modular fluted and tapered distal fixation stem continued to provide a reliable fixation at a minimum ten years after revision THA and can therefore be recommended as a promising option for challenging revision situations with femoral bone defects


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 57 - 57
1 Feb 2017
Kawate K Munemoto M Kawahara I Tamai K Uchihara Y Takemura K Ono S Tanaka Y
Full Access

Introduction

To evaluate the effect of hydroxyapatite coating, two same shape cementless stems were compared in this randomized control trial study.

Methods

Between May 2003 and February 2010, 88 patients had a primary cementless total hip arthroplasty with two different types of cementless stems. Forty-three patients had Proarc stems (P group) (Kyocera Medical, Osaka, Japan), and Forty-five patients had Proarc HA stems (HA group) (Kyocera Medical, Osaka, Japan) which was coated with thin (20 micrometer) hydroxyapatite on Proarc rough porous coating. Gender distribution, average age at surgery, average weight and average follow-up period were same in the two groups. The average follow-up period was 8.5 years (range, 5 to 13 years). The average age at the time of surgery was 63 years. Porous acetabular shells and highly crosslinked polyethylene liners made by Kyocera Medical corporation were implanted into all hips. Stems were implanted with a modified Hardinge surgical approach without trochanteric osteotomy. Harris Hip Score was used for clinical evaluation. Post-op radiographs of these patients were evaluated. Fisher's exact probability test was used for statistical analysis. P values of less than 0.05 were considered to be significant.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 46 - 46
1 Dec 2022
Sheridan G Garbuz D Masri B
Full Access

The demand for revision total knee arthroplasty (TKA) has grown significantly in recent years. The two major fixation methods for stems in revision TKA include cemented and ‘hybrid’ fixation. We explore the optimal fixation method using data from recent, well-designed comparative studies. We performed a systematic review of comparative studies published within the last 10 years with a minimum follow-up of 24 months. To allow for missing data, a random-effects meta-analysis of all available cases was performed. The odds ratio (OR) for the relevant outcome was calculated with 95% confidence intervals. The effects of small studies were analyzed using a funnel plot, and asymmetry was assessed using Egger's test. The primary outcome measure was all-cause failure. Secondary outcome measures included all-cause revision, aseptic revision and radiographic failure. There was a significantly lower failure rate for hybrid stems when compared to cemented stems (p = 0.006) (OR 0.61, 95% CI 0.42-0.87). Heterogeneity was 4.3% and insignificant (p = 0.39). There was a trend toward superior hybrid performance for all other outcome measures including all-cause re-revision, aseptic re-revision and radiographic failure. Recent evidence suggests a significantly lower failure rate for hybrid stems in revision TKA. There is also a trend favoring the use of hybrid stems for all outcome variables assessed in this study. This is the first time a significant difference in outcome has been demonstrated through systematic review of these two modes of stem fixation. We therefore recommend the use, where possible, of hybrid stems in revision TKA


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 15 - 15
1 May 2019
Seitz W
Full Access

Periprosthetic fractures occurring in total shoulder arthroplasty (TSA) represent challenges both in decision-making as well as surgical management. These fractures more frequently involve the humerus but can also occur in the scapula. In a few cases with minimal displacement conservative care may be employed. In most, however, surgical intervention is needed. Depending on the quality of the surrounding bone, the health of the patient, the stability of the existing implant, and the integrity of the surrounding soft tissues, options for management include open reduction and internal fixation, long stem implants, bone grafting, strut and cable fixation, or a combination of these techniques. In some cases revision arthroplasty is indicated. An approach to surgical decision-making, operative techniques and avoidance of complications will be presented


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 84 - 84
1 Feb 2020
Dennis D Pierrepont J Madurawe C Friedmann J Bare J McMahon S Shimmin A
Full Access

Introduction. Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT. Methods. Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the bone density at the stem/bone interface using the Hounsfield Units (HU) of each pixel of the CT [Fig. 1]. Blue represents low density bone transitioning through to green and then red (most dense). Results. Mean stem subsidence was 2.1mm (0.2mm to 11.1mm). Two patients had clinically relevant subsidence. The first stem in a 68M subsided 11.1mm. The second in a 58M subsided 5.0mm. Both density colour plots had significant areas of blue (low density bone) around the proximal portion of the stem, with minimal medium/high density fixation when compared to the stems with minimal subsidence. Discussion. Using the Hounsfield units of the CT scan as an indicator for bone density, we were able to predict poor implant fixation and subsequent subsidence in a taper wedge stem. This new technology might have pre-operative value in providing a more quantitative measure of fixation and resultant stem choice. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 16 - 16
1 Apr 2017
Hozack W
Full Access

Despite the best of technique, when faced with a sub-capital or per-trochanteric fracture, inevitably there are failures of proximal fixation. These situations provide unique challenges for the reconstructive surgeon. While there are specific issues related to either sub-capital or per-trochanteric fractures, there also are many commonalities. The causes of failure are nonunion, malunion, failure of fixation or avascular necrosis. In all cases, it is imperative to rule out infection. Since the surgery is now elective, the patient's medical status must be optimised prior to the intervention. Basic surgical principles apply to both fracture types. Use the old incision (if possible) and choose an approach that can be extensile. Of course, the old hardware needs to be removed – this task can be quite frustrating, so good preparation and patience is imperative. Retrieve old operative notes to identify the type of hardware so that any special tools needed are available. Hardware can be intra-osseous in location and excavation of the hardware may require bone osteotomy. These patients are at higher risk of post-operative dislocation, so absolute hip stability must be achieved and confirmed in the OR. Bigger heads and dual mobility options improve stability provided that the components are properly positioned and offset and leg length are restored. Subcapital fractures provide certain specific issues related to stem choice. While, my bias is towards THA because of better chance of complete pain relief, especially in community ambulators, certainly bipolar arthroplasties can be a satisfactory solution. Stem fixation can be either cemented or cementless. For per-trochanteric fractures in younger patients, repeat osteosynthesis should be considered if the femoral head is viable. Bone deformity – trochanteric overhang, shaft offset – may necessitate an osteotomy as part of the reconstruction. While proximal fixation primary type stems are often possible, distal fixation revision stems may be required. Any bone defects related to screw holes should be bypassed by the femoral component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 16 - 16
1 Dec 2016
Hozack W
Full Access

Despite the best of technique when faced with a sub-capital or per-trochanteric fracture, inevitably there are failures of proximal fixation. These situations provide unique challenges for the reconstructive surgeon. While there are specific issues related to either sub-capital or per-trochanteric fractures, there also are many commonalities. The causes of failure are nonunion, malunion, failure of fixation or avascular necrosis. In all cases, it is imperative to rule out infection. Since the surgery is now elective, the patient's medical status must be optimised prior to the intervention. Basic surgical principles apply to both fracture types. Use the old incision (if possible) and choose an approach that can be extensile. Of course, the old hardware needs to be removed – this task can be quite frustrating, so good preparation and patience is imperative. Retrieve old OP notes to identify the type of hardware so that any special tools needed are available. Hardware can be intra-osseous in location and excavation of the hardware may require bone osteotomy. These patients are at higher risk of postoperative dislocation, so absolute hip stability must be achieved and confirmed in the OR. Bigger heads and dual mobility options improve stability provided that the components are properly positioned and offset and leg length are restored. Subcapital fractures provide certain specific issues related to stem choice. While, my bias is towards total hip arthroplasty because of better chance of complete pain relief, especially in community ambulators, certainly bipolar arthroplasties can be a satisfactory solution. Stem fixation can be either cemented or cementless. For per-trochanteric fractures in younger patients, repeat osteosynthesis should be considered if the femoral head is viable. Bone deformity – trochanteric overhang, shaft offset – may necessitate an osteotomy as part of the reconstruction. While proximal fixation primary type stems are often possible, distal fixation revision stems may be required. Any bone defects related to screw holes should be bypassed by the femoral component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 90 - 90
1 Dec 2016
Vince K
Full Access

Some DEFINITIONS are necessary: “STEMS” refers to “intramedullary stem extensions”, which may be of a variety of lengths and diameters, fixed with cement, porous coating or press fit alone and which may be modular or an inherent part of the prosthesis. The standard extension keel on the tibia does not qualify as a “stem (extension)”. COMPLEX implies multiple variables acting on the end result of the arthroplasty with the capability of inducing failure, as well as necessary variations to the standard surgical technique. A lesser degree of predictability is implied. More specifically, the elements usually found in an arthritic knee and used for the arthroplasty are missing, so that cases of COMPLEX primary TKA include: Soft tissue coverage-(not relevant here), Extensor mechanism deficiency-patellectomy, Severe deformity, Extra-articular deformity, Instability: Varus valgus, Instability: Plane of motion, Instability: Old PCL rupture, Dislocated patella, Stiffness, Medical conditions: Neuromuscular disorder, Ipsilateral arthroplasty, Prior incisions, Fixation hardware, Osteopenia, Ipsilateral hip arthrodesis, Ipsilateral below knee amputation, etc. Complexity includes MORE than large deformity, i.e., success with large deformity does NOT mean success with constrained implants regardless of indication. In addition, the degree of constraint must be specified to be meaningful. NECESSARY presumably this means: “necessary to ensure durable fixation in the face of poor bone quality or more mechanically constrained” and SUFFICIENT suggests that stems, by themselves or in some shape of form, by themselves “will ensure success (specifically here) of fixation”. If we can start with the second proposal, that STEMS are SUFFICIENT for success the answer is: “NO”, many more aspects of surgical technique and implant design are required. Even if all other aspects of the technique are exemplary, some types of stems or techniques are inadequate, e.g., completely uncemented, short stem extensions. The answer to the first proposal is: “YES, in many cases”. The problem will be to determine which cases. There are philosophical analogies to this question that we already know the answer to. ANALOGY: Is a life-raft necessary on a boat? Yes, you may not use it, but it is considered necessary. Is a life-raft “sufficient” on a boat? No, other problems may occur. Are seat belts necessary? Are child seats necessary? The AAOS already has a position on child restraints, an analogous situation, where a party who cannot control their situation (anesthetised patient/ child) functions in the care of a responsible party. The objection may be argued in terms of cost saving by NOT using increased fixation. A useful analogy, (that would of course require specific analysis), is that of patellar resurfacing: universal resurfacing is cost-effective when considering the expense of even a small number of secondary resurfacings. Of course a complex arthroplasty that requires a revision procedure is far more expensive than secondary patellar resurfacing and so universal use of the enhanced fixation in the face of increased constraint makes sense. The human cost of revision surgery tips the balance irrefutably. DANGER-We must avoid the glib conclusion, often based on poor quality data, that constrained implants do not need additional intramedullary fixation (with stem extensions). When “complexity” is involved, complex analysis is appropriate to select the best course


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 20 - 20
1 Jun 2018
Springer B
Full Access

Periprosthetic fractures around the femur during and after total hip arthroplasty (THA) remain a common mode of failure. It is important therefore to recognise those factors that place patients at increased risk for development of this complication. Prevention of this complication, always trumps treatment. Risk factors can be stratified into: 1. Patient related factors; 2. Host bone and anatomical considerations; 3. Procedural related factors; and 4. Implant related factors. Patient Factors. There are several patient related factors that place patients at risk for development of a periprosthetic fracture during and after total hip arthroplasty. Metabolic bone disease, particularly osteoporosis increases the risk of periprosthetic fracture. In addition, patients that smoke, have long term steroid use or disuse, osteopenia due to inactivity should be identified. A metabolic bone work up and evaluation of bone mineralization with a bone densitometry test can be helpful in identifying and implementing treatment prior to THA. Pre-operative Host Bone and Anatomic Considerations. In addition to metabolic bone disease the “shape of the bone” should be taken into consideration as well. Dorr has described three different types of bone morphology (Dorr A, B, C), each with unique characteristics of size and shape. It is important to recognise that not one single cementless implant may fit all bone types. The importance of templating a THA prior to surgery cannot be overstated. Stem morphology must be appropriately matched to patient anatomy. Today, several types of cementless stem designs exist with differing shape and areas of fixation. It is important to understand via pre-operative templating which stem works best in what situation. Procedural Related Factors. There has been a resurgence in interest in the varying surgical approaches to THA. While the validity and benefits of each surgical approach remains a point of debate, each approach carries with it its own set of risks. Several studies have demonstrated increased risk of periprosthetic fractures during THA with the use of the direct anterior approach. Risk factors for increased risk of periprosthetic fracture may include obesity, bone quality and stem design. Implant Related Factors. As mentioned there are several varying cementless implant shapes and sizes that can be utilised. There is no question that cementless fixation remains the most common mode of fixation in THA. However, one must not forget the role of cemented fixation in THA. Published results on long term fixation with cemented stems are comparable if not exceeding those of press fit fixation. In addition, the literature is clear that cemented fixation in the elderly hip fracture patient population is associated with a lower risk of periprosthetic fracture and lower risk of revision. The indication and principles of cemented stem fixation in THA should not be forgotten


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 63 - 63
1 Jun 2018
Paprosky W
Full Access

The unacceptable failure rate of cemented femoral revisions led to many different cementless femoral designs employing fixation in the damaged proximal femur with biological coatings limited to this area. The results of these devices were uniformly poor and were abandoned for the most part by the mid-1990's. Fully porous coated devices employing distal fixation in the diaphysis emerged as the gold standard for revisions with several authors reporting greater than 90% success rate 8–10 years of follow-up. Surgical techniques and ease of insertion improved with the introduction of the extended trochanteric osteotomy as well as curved, long, fully porous coated stems with diameters up to 23mm. The limits of these stems were stretched to include any stem diameter in which even 1–2cm of diaphyseal contact could be achieved. When diaphyseal fixation was not possible (Type IV), the alternatives were either impaction grafting or allograft prosthetic composite (APC). As the results of fully porous coated stems were very carefully scrutinised, it became apparent that certain types of bone loss did not yield the most satisfactory results both clinically and radiographically. When less than 4cm of diaphyseal press fit (Type IIIB) was achieved, the mechanical failure rate (MFR) was over 25%. It also became apparent that even when there was 4–6cm diaphyseal contact (Type IIIA), and the stem diameter was 18mm or greater, post-operative pain and function scores were significantly less than those with smaller diameter stems. This was probably due to poorer quality bone. Many of these Type IIIA and Type IIIB femurs had severe proximal torsional remodeling leading to marked distortion of anteversion. This made judging the amount of anteversion to apply to the stem at the time of insertion very difficult, leading to higher rates of dislocation. These distortions were not present in Type I and Type II femurs. This chain of events which was a combination of minimal diaphyseal fixation, excessively stiff stems and higher dislocation rates led to the conversion to modular type stems when these conditions existed. For the past 13 years, low modulus taper stems of the Wagner design have been used for almost all Type IIIA and Type IIIB bone defects. The taper design with fluted splines allows for fixation when there is less than 2cm of diaphysis. The results in these femurs even with diameters of up to 26mm have led to very low MFRs and significantly less thigh pain. Independent anteversion adjustment is also a huge advantage in these modular stems. Similar success rates, albeit with less follow-up, have been noted in Type IV femurs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 29 - 29
1 Apr 2018
Kim S Han S Rhyu K Yoo J Oh K Lim S Suh D Yoo J Lee K
Full Access

Introduction. In recent years, there has been an increase in hip joint replacement surgery using short bone-preserving femoral stem. However, there are very limited data on postoperative periprosthetic fractures after cementless fixation of these stem although the periprosthetic fracture is becoming a major concern following hip replacement surgery. The purpose of this study is to determine incidence of postoperative periprosthetic femoral fractures following hip arthroplasty using bone preserving short stem in a large multi-center series. Materials & Methods. We retrospectively reviewed 897 patients (1089 hips) who underwent primary total hip arthroplasty (THA) or bipolar hemiarthroplasty (BHA) during the same interval (2011–2016) in which any other cementless, short bone-preserving femoral stem was used at 7 institutions. During the study, 1008 THAs were performed and 81 BHAs were performed using 4 different short femoral prostheses. Average age was 57.4 years (range, 18 – 97 years) with male ratio of 49.7% (541/1089). Postoperative mean follow-up period was 1.9 years (range, 0.2 – 7.9 years). Results. Overall incidence of postoperative periprosthetic femoral fractures was 1.1% (12/1089). The mean age of these 12 patients were 71.2 year (range, 43 – 86 years). Seven patients were female and other 5 were male. Time interval between primary arthroplasty and fracture were mean 1.1 years (range, 0.1 – 4.8 years). Injury mechanism is a slip in 10 fractures and fall from 1m or less in 2. Three fractures occurred after BHA while 9 occurred after THA. Four fractures were in type AG and other 8 were in type B1 according to Vancouver classification. Of the 4 with AG type, 2 underwent open reduction and internal fixation and 2 took conservative management. Of the 8 with B1 type, 6 underwent open reduction and internal fixation and 2 took conservative management. Conclusion. The prevalence of postoperative periprosthetic femoral fractures was 1.1% in a multicenter retrospective analysis of 1089 hips. Our findings suggest that postoperative periprosthetic fracture can occur after hip replacement surgery using short bone-preserving stem although the incidence is relatively low


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 89 - 89
1 Feb 2017
Levy J Kurowicki J
Full Access

Background. Peri-prosthetic humerus fractures are relatively uncommon occurrences that can be difficult to manage non-operatively. Locking plate technology has enhanced the surgical management of these fractures. We describe an osteosynthesis technique utilizing a locking plate with eccentrically placed screw holes to place “skive screws” in the proximal end of the plate to achieve fixation around the stem of the implant. Methods. A retrospective review of prospectively collected data was performed for a consecutive series of patients treated with this skive screw technique from May 2011 to September 2014. Seven patients presented with postoperative type B peri-prosthetic humerus fractures. Average follow-up was 24 months. Radiographic analysis was performed on most recent postoperative imaging. Clinical outcomes were assessed using VAS pain, ASES total score, ASES functional score, SST, SANE, range of motion and strength. Results. At an average of follow-up of 24 months, all patients demonstrated fracture healing. Functional outcomes were limited with only two patients achieving forward elevation above 90 degrees and average ASES Function score was 27.5. Pain relief was nearly uniform with an average VAS Pain score of 0.5 (Figure 1). Conclusions. Peri-prosthetic humeral shaft fractures can be successfully treated with hybrid fixation technique using a locking plate with eccentric holes that facilitate placement of proximal “skive screws”. Using this technique, a 100% union rate was observed with excellent pain relief


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 4 - 4
1 Nov 2016
Seitz W
Full Access

Cement fixation of the glenoid implants in total shoulder arthroplasty has been the norm since the procedure has existed. Yet, an unacceptably high rate of lucent lines, representing prosthetic loosening, and a high rate of resultant failure of fixation of these implants continues to be the single most common cause for revision surgery in total shoulder arthroplasty. Dissatisfaction with a higher than acceptable rate of lucent lines, cement fixation of the glenoid component has led us to evaluate and employ an implant anchored into the glenoid vault with a woven tantalum (trabecular metal) fixation stem. We have employed this implant in patients with healthy bone stock with a minimum 2-year follow-up in well over 100 cases with only one revision performed in a first generation implant due to fatigue fracture. No cases have demonstrated lucency or loosening. The procedure does require meticulous attention to detail to ensure precise surface and glenoid vault preparation providing complete intraosseous seating of the trabecular metal anchor and flush apposition and support of the polyethylene surface upon the face of the glenoid. This process has reduced surgical preparation time as well as time required for cement setting by an average of 20 minutes per case


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 91 - 91
1 May 2016
Kawate K Masuda Y Munemoto M Uchihara Y Ohneda Y Tanaka Y
Full Access

Introduction. Deformity after femoral osteotomy varies between patients. Some researchers reported good results when using cemented stems for the hips after femoral osteotomy, but there are many disadvantages that obstruct ideal fixation using cemented stems. Therefore, we developed cementless custom-made stems and inserted those using a computed tomography (CT) –based navigation system. Methods. Eighteen dysplastic hips of 15 patients after intertrochanteric osteotomy were investigated in the present study. Individual computed tomography data were used to manufacture cementless custom-made femoral stems out of Ti-6Al-4V. The proximal 1/3 of each stem was coated using porous coating covered with hydroxyapatite coating. The stems were inserted using a CT-based fluoro navigation system for accuracy of insertion. The average patient age at time of surgery was 66 years, and the average follow-up period was 3.5 years. Results. No fracture was observed during any surgery or follow-up period. The average preoperative Harris Hip Score was 44 points, and the average postoperative score was 85 points. No patient complained of postoperative thigh pain. The average difference between preoperatively planned anteversion and postoperative anteversion was 2° (range 0–5°). According to Engh's radiological classification system, there was bone ingrowth fixation in all hips. Conclusions. The technique of inserting the custom-made stems using a computed tomography-based navigation system was useful; however, there was an associated increase in manufacture time and cost


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 115 - 115
1 Jan 2016
Yoon S Park M Lee J Heo I
Full Access

Purpose. The purpose of this study was to evaluate the results of modular revision stems, uncemented fluted, tapered to treat periprosthetic femoral (PFF) fracture; we specifically evaluated fracture union, implant stability, patient outcomes, and complications to compare the differences between cemented and cementless primary stem. Materials and Methods. We retrospectively reviewed 56 cases of unstable periporsthetic femoral fracture (forty B2 and sixteen B3) treated with the uncemented fluted and tapered modular distal fixation stem with or with or without autogenous bone graft. Clinical outcomes were assessed with Harris Hip Score and WOMAC score. Radiologic evaluations were conducted using Beals and Tower's criteria. Any complication during the follow-up period was recorded. Results. The average follow-up period was 52.1±32.7 months. The average Harris Hip Score was 72.4±19.1. All fractures were united, and a good consolidation was achieved in 47 cases. There was femoral stem subsidence in 3 cases less than 10 mm without an evidence of loosening both radiologically and clinically. The radiologic results using Beals and Towers’ criteria were excellent in 36 hips, good in 10 hips and poor in 10 hips. Radiologic bone union took longer time and statistically significant stem subsidence was observed in cemented primary stem compared to cementless primary stem (Fig1,2). At each follow-up examination the clinical score was significantly higher in patients with cementless primary stem. Conclusion. Our results support the view that cement primary stem has less favorable result in terms of revision arthroplasty for periprosthetic femoral fractures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 7 - 7
1 Jan 2016
Goto K Kitamura N Koichi S Yokota M Wada S Yasuda K
Full Access

Introduction. Modular stems are commonly used to improve fixation in revision total knee arthroplasty (TKA). Hybrid fixation, in which cement is placed around the metaphysical portion of the component combined with an uncemented diaphyseal modular stem, has potential advantages including ease of insertion, improved component alignment, and ease of removal if needed. The aim of this study was to evaluate clinical results of revision total knee arthroplasty with uncemented modular stems using a hybrid fixation technique with a minimum 5-year follow-up. Methods. 23 revision TKAs were performed in 21 patients with hybrid fixation using uncemented modular stems. 3 patients (3 knees) had died of causes unrelated to the index arthroplasty at the time of the study, and 1 patient (1 knee) was lost to the follow-up. The remaining 19 knees were clinically and radiographically evaluated for the present study. The average follow-up time was 9.5 years. The average age of the patients was 70.5 years at the time of the revision surgery. The average time between the primary and revision surgeries was 10.6 years. Results. The reasons for the revision of the 19 knees were aseptic loosening in 14 knees and breakage of polyethylene or implant in 5 knees. The mean postoperative range of motion was 110.2 degrees at the time of the most recent follow-up. The mean postoperative knee and function scores were 80.6 and 50.8, respectively. Periprosthetic radiolucencies were found adjacent to 2 tibial components and an asymptomatic cortical thickening around the end-of-stem was found in 1 tibial component. There were no intra- or postoperative complications resulting from the prosthesis implantation with this technique. Discussion. Revision TKA with hybrid fixation demonstrated excellent clinical results in terms of survival rate at a minimum 5-year follow-up. Although the ideal fixation of modular stems in revision TKA remains unclear, this study demonstrated that hybrid fïxation can be a viable option to provide durable fixation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 119 - 119
1 Jan 2016
Park Y Moon Y Lim S Kim D Ko Y
Full Access

Introduction. Cementless grit-blasted tapered-wedge titanium femoral stems are being used with increasing frequency in hip arthroplasty because of excellent long-term outcomes. However, periprosthetic femur fracture is a potentially worrisome phenomenon in these types of femoral stems. The aim of this study is to report the incidence of stem loosening in association with periprosthetic femur fractures following hip arthroplasty using cementless grit-blasted tapered-wedge stems. Materials & Methods. A total of 36 Vancouver Type B1 and B2 periprosthetic femur fractures following either hemiarthroplasty or total hip arthroplasty using cementless grit-blasted tapered-wedge titanium femoral stems (GB group) were identified from a retrospective review of the medical records at three participating academic institutions. The control group consisted of 21 Vancouver Type B1 and B2 periprosthetic femur fractures following either hemiarthroplasty or total hip arthroplasty using cementless proximal porous-coated femoral stems (PC group) at the same institutions during the same period of the study. All femoral stems included in this study had been a well-fixed state before the occurrence of periprosthetic femur fractures. All patients in both groups were treated surgically with either open reduction and internal fixation or femoral stem revision. Femoral stem stability was assessed by preoperative radiographs and was confirmed by intraoperative scrutinization. The incidence of stem loosening was compared between the groups. Results. There was no significant difference between the groups with respect to demographic data including age, gender, body mass index, primary diagnosis, Dorr types of proximal femur, and time to fracture. All fractures occurred from low-energy mechanisms. Mean age at the time of hip arthroplasty was 54.5 years in the GB group and 57.0 years in the PC group. Mean time interval between hip arthroplasty and periprosthetic fracture was 49.6 months in the GB group and 44.4 months in the PC group. At the time of the last follow-up, 29 (80.6%) of 36 fractures was Vancouver B2 in the GB group, whereas only 3 (14.3%) of 21 fractures was Vancouver B2 in the PC group (P <0.001). Conclusions. High incidence of stem loosening was developed in association with periprosthetic femur fractures in previously well-fixed cementless grit-blasted tapered-wedge femoral stems in our population. We believe that this is an underreported phenomenon of these types of stem design


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 128 - 128
1 Jan 2016
Fetto J
Full Access

Recent introduction of short femoral implants has produced inconsistent outcomes. There have been reports of early aseptic failure as high as 30% within 2 years of implantation. This is in spite of the fact that these short components are shortened versions of existing successful non-cemented designs. The mode of initial fixation in non-cemented implants has been investigated. It has been demonstrated that long term survivability is dependent upon osseous integration; and that osseous integration requires secure initial implant fixation. Traditional non-cemented implants achieve initial fixation analogous to that of a nail in a piece of wood: friction and displacement (with resultant hoop stress). Initial fixation, of a traditional non-cemented femoral component, is directly proportional to surface area contact between the implant and endosteal bone and/or three point fixation. By reducing stem length, contact area may be significantly reduced, thereby increasing stresses over a smaller area of contact. The result of this is to potentially compromise fixation/implant stability against micromotion occurring in the early post-operative period. These stresses are most poorly resisted in flexion/extension and rotational planes about the long axis of the femur. In addition, force applied in an attempt to achieve initial fixation with a short stem may lead to an increased risk of periprosthetic fracture at the time of implantation. We propose that there is an alternative mode of initial fixation, a “rest fit”, that may avoid both the risk of femoral fracture as well as provide better initial implant stability. To assure a maximal initial fixation and resistance to post-operative stresses which may compromise initial implant stability and osseous integration, a short implant should have three distinct geometric features: a medial and lateral flare, a flat posterior surface and a proximal trapezoidal cross section. The first will provide stability against subsidence and varus migration, by resting upon the proximal femur. A flat posterior surface will maximize load transmission to the femur in flexon/extension activities; and an asymmetrical proximal cross-section will provide resistance against rotational stresses about the long axis of the femur during activities such as stairclimbing. Together these features have been throproughly evaluated by FEA and in vitro testing. We are reporting on the shoprt term follow up (2.5 years avg.) first 300 short stems which have employed a “rest fit”. There have been no aseptic failures or revisions for mechanical failure of these implants


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 73 - 73
1 Nov 2015
Gehrke T
Full Access

Generally cemented total hip arthroplasty (THA) has become an extremely successful operation with excellent long-term results. Although it always remained a popular choice for the elderly patients in many countries, recent trends show an increased use of noncemented stems in all age populations in many national registries. So far, there has been no clear age associated recommendation, when a cemented stem should be used. Described major complications including periprosthetic fractures are usually associated with age >75 years, in many registries. Uncemented stems perform better than cemented stems in recent registries; however, unrecognised intra-operative femoral fractures may be an important reason for early failure of uncemented stems. Experimental studies have indicated that intra-operative fractures do affect implant survival, it has been shown that intra-operative and direct post-operative fractures increase the relative risk of revision during the first 6 post-operative months significantly. In addition it has been clearly shown, that uncemented stems were more frequently revised due to periprosthetic fracture during the first 2 post-operative years than cemented stems. Based on the overall femoral bone quality, especially in female patients >70 years, cemented fixation has a lower fracture risk. Based on the implant fixation type: metaphyseal vs. diaphyseal of various uncemented stems, major attention should be drawn to the intra-operative bone quality during the broaching process, especially for metaphyseal fixation stem types. Although cementless distal fixation can be achieved in thick cortices still in many patients, the incidence of associated thigh pain needs to be considered for some implant types. Furthermore small femoral canals might generate certain implant-bone size mismatch in relation to the proximal femur. In any cemented THA, a proper cementing technique is of major importance to assure longevity of implant fixation. This also includes proper implant sizing/templating, ensuring an adequate cement mantle thickness, which might be restricted in a small diameter femur. The desired outcome is a cement interdigitation into cancellous bone for 2–3 mm and an additional mantle of 2 mm pure cement. Consequently proper planning in small diameter patients, prevents sizing problems, while in few cases special/individualised stem sizes might be considered


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 25 - 25
1 Feb 2015
Gehrke T
Full Access

Cemented total hip arthroplasty (THA) has become an extremely successful operation with excellent long-term results. Although it always remained a popular choice for the elderly patients in many countries, recent trends show an increased use of non-cemented stems in all age populations in many national registries. So far, there has been no clear age associated recommendation, when a cemented stem should be used. Described major complications such as periprosthetic fractures are usually associated at age >75 years, in many registries. Uncemented stems perform better than cemented stems in recent registries; however, unrecognised intraoperative femoral fractures may be an important reason for early failure of uncemented stems. Experimental studies have indicated that intraoperative fractures do affect implant survival, in addition it has been shown that intraoperative and direct postoperative fractures increase the relative risk of revision during the first 6 postoperative months significantly. Furthermore it has been clearly shown, that uncemented stems were more frequently revised due to periprosthetic fracture during the first 2 postoperative years than cemented stems. Although often associated reduction of femoral bone quality in especially female patients >60 years, uncemented fixation has become the standard in most scenarios worldwide. Based on the implant fixation type: metaphyseal vs. diaphyseal of various uncemented stems, major attention should be, however, drawn to the intraoperative bone quality during the broaching process, especially for metaphyseal fixation stem types. Although cementless distal fixation can be achieved in thick cortices still in many patients, the incidence of associated thigh pain needs to be considered for some implant types. Furthermore small femoral canals might generate certain implant-bone size mismatch in relation to the proximal femur, thus nonoptimal fixation could be achieved. Consequently proper implant planning is mandatory preoperatively. In any cemented THA, a proper cementing technique is of major importance to assure longevity of implant fixation. This also includes proper implant sizing/ templating, ensuring an adequate cement mantle thickness, which might be restricted in a small diameter femur. The desired outcome is a cement interdigitation into cancellous bone for 2–3mm and an additional mantle of 2mm pure cement. Consequently proper planning in small diameter patients, prevents sizing problems, while in few cases special/individualised stem sizes might be considered. In summary attention needs to be drawn on small diameter stems, to prevent fractures and achieve proper implant fixation, in both uncemented and cemented fixation types. Proper implant planning preoperatively might be more important than in usual cases, while sometimes individual /small implant types might become necessary