Advertisement for orthosearch.org.uk
Results 1 - 20 of 73
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2021
Elmasry S Chalmers B Sculco P Kahlenberg C Mayman D Wright T Westrich G Cross M Imhauser C
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on passive extension and mid-flexion laxity. Methods. Six computational knee models with capsular and collateral ligament properties specific to TKA were developed and implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled by imposing capsular contracture as determined by simulating a common clinical exam of knee extension and accounting for the length and weight of each limb segment from which the models were derived (Figure 1). Distal femoral resections of 2 mm and 4 mm were simulated for each model. The knees were then extended by applying the measured knee moments to quantify the amount of knee extension. The output data were compared with a previous cadaveric study using a two-sample two-tailed t-test (p<0.05) [1]. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, and after distal resections of 2 mm, and 4 mm. Coronal laxity, defined as the sum of varus and valgus angulation in response to the applied varus and valgus torques, was measured at 30° and 45°of flexion, and the flexion angle was identified where the increase in laxity was the greatest with respect to baseline. Results. With 2 mm and 4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively (Figure 2). No significant difference was found between the extension angle predicted by the six models and the results of the cadaveric study after 2 mm (p= 0.71) and 4 mm (p= 0.47). At 2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At 4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively (Figures 3a and 3b). The flexion angle corresponding to the greatest increase in coronal laxity for 2 mm of distal resection occurred at 22±7° of flexion with a mean increase in laxity of 4.0° from baseline. For 4 mm distal resection, the greatest increase in coronal laxity occurred at 16±6° of flexion with a mean increase in laxity of 7.8° from baseline. Conclusion. A TKA computational model representing a knee with preoperative flexion contracture was developed and corroborated measures from a previous cadaveric study [1]. While additional distal femoral resection in primary TKA increases passive knee extension, the consequent joint line elevation induced up to 8° of additional coronal laxity in mid-flexion. This additional midflexion laxity could contribute to midflexion instability; a condition that may require TKA revision surgery. Further studies are warranted to understand the relationship between joint line elevation, midflexion laxity, and instability. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 115 - 115
1 Mar 2013
Liu D
Full Access

Fixed flexion contracture is often present in association with osteoarthritis of the knee and correction is one of the key surgical goals in total knee replacement. Surgical strategies to correct flexion contracture include removal of posterior osteophytes, posterior capsular release and additional distal femoral bone resection. Traditional teaching indicates 2 mm of additional distal femoral bone resection will correct 10 degrees of flexion deformity. However some studies have questioned this figure and removing excessive distal femoral bone results in elevation of the joint line, potentially causing patella baja, alteration in collateral ligament tension through the flexion arc and mid-flexion instability. The aim of our study is to determine the relationship between distal bone resection of the femur and passive knee extension in total knee arthroplasty. A cohort of 50 patients, undergoing total knee arthroplasty, was recruited. Following complete femoral and tibial bone preparation, to simulate the effect of distal femoral bone resection, augments of 2 mm increments (2 mm, 4 mm, 6 mm, 8 mm) were placed onto the trial femoral component. The degree of flexion contracture with each augment was measured using computer navigation. The results showed a 2 mm augment produced an average of 3.37 degrees of flexion deformity. A 4 mm augment led to an average of 6.68 degrees fixed flexion, whilst a 6 mm augment produced 11.38 degrees. To correct 10 degrees flexion deformity, an additional 6 mm distal femoral bone resection is required. In conclusion, additional distal femoral bone resection may not be as an effective strategy as previously believed to correct fixed flexion deformity in total knee arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 59 - 59
1 Jan 2016
Ikawa T Hiratsuka M Takemura S Kim M Kadoya Y
Full Access

INTRODUCTION. Although the most commonly used method of femoral component alignment in total knee arthroplasty (TKA) is an intramedullary (IM) guides, this method demonstrated a limited degree of accuracy. The purpose of this study was to assess whether a portable, accelerometer-based surgical navigation system (Knee Align 2 system; Orth Align, Inc, Aliso Viejo, Calif) improve accuracy of the post-operative radiographic femoral component alignment compared to conventional IM alignment guide. MATERIALS & METHODS. Since February 2014, 44 consecutive patients (39 female, 5 male) with primary arthritis of the knee were enrolled in this prospective, randomized controlled study. 24 patients underwent TKA (Vanguard RP or PS, Biomet Japan) using the navigation device for the distal femoral resection (Navigated Group), and 20 patients with conventional femoral IM alignment guide. The proximal tibial resection was performed using an extramedullary guide. All the operation was performed by a single senior surgeon (YK) with the same gap balancing technique except for the use of the navigation system for the femur. Accuracy of femoral implant positioning was evaluated on 2 weeks postoperative standing anteroposterior (AP) hip to ankle radiographs. RESUTS. In the navigated group, 100% of patients had an alignment within 90 ± 3° to the femoral mechanical axis in the coronal plane, versus 90.0% in the IM guides cohort (Fig). The mean absolute difference between the intraoperative goal and the postoperative alignment was 0.79 ± 1.0° in the Knee Align 2 cohort, and 1.72 ± 1.6° in the IM guides cohort (P < 0.05). There was a difference in the standard deviations observed for the navigated cases and the conventional cases when femoral component position was considered. There were no technique specific complications associated with the navigation system. DISCUSSION & CONCLUSION. The distal femoral resection has been the main source of error as for the neutral mechanical axis because of the difficulty in visualization and detection of the center of the femoral head. The results in the current study have shown that a portable, accelerometer-based navigation device (Knee Align 2 system) significantly decreases outliers in femoral component alignment compared to conventional IM alignment guides in TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 123 - 123
1 Mar 2017
Zhou K Zhou Z Chen Z Wang D Zeng W Pei F
Full Access

Purpose. The aim of this study was to compare the accuracy of limb alignment and component positioning after total knee arthroplasty(TKA) performed using fixed or individual distal femoral valgus correction angle(VCA)in valgus knees. Materials and Methods. One hundred and twenty-four patients were randomised to undergo TKA with either of the clinical baseline, radiological outcomes and subsequent outcome such as knee HSS scores, knee range of motion (ROM) and visual analogue scale (VAS) scores were assessed. Knees in the individual group (n=62) were performed with a tailored VCA. Knees in the fixed group (n=62) were performed utilizing a 4°VCA. Results. The distribution of distal femoral valgus cut angle used in the individual group range from 3° to 8°. There were statistically significant differences between groups in post-operative hip-knee-ankle angle (individual: 180.0°±3.8°; fixed: 178.5°±2.9°; P=0.00). 86.9% of patients in the individual group had a post-operative mechanical axis deviation within ± 3°compared to 70.7% in the fixed group (P = 0.03). Patients in the fixed group had a higher percentage of postoperative residual deformity than in the individual group, and this difference was statistically significant (p=0.03). No significant differences were observed between the groups in terms of femoral and component alignment except coronal femoral component angle (α), although the size of the difference was very small(individual: 90.12°±1.61°; fixed: 88.97°±2.50°), the difference was statistically significant (P=0.00). There were no differences in HSS scores, knee ROM, or VAS pain scores in the early phase after surgery between groups. Conclusions. This study demonstrated that the VCA in patients with knee valgus deformities are smaller than normal or varus knee. Individual VCA for distal femoral resection could enhance the accuracy of postoperative neutral limb alignment in the coronal plane. Both individual and fixed VCA place the components with the similar accuracy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 87 - 87
23 Feb 2023
Orsi A Wakelin E Plaskos C McMahon S Coffey S
Full Access

Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 112 - 112
1 Mar 2017
Ricciardi B Mount L McLawhorn A Nocon A Su E
Full Access

Background. Coronal malalignment has been proposed as a risk factor for mechanical failure after total knee arthroplasty (TKA). In response to these concerns, technologies that provide intraoperative feedback to the surgeon about component positioning have been developed with the goal of reducing rates of coronal plane malalignment and improving TKA longevity. Imageless hand-held portable accelerometer technology has been developed to address some the limitations associated with other computer assisted navigation devices including line-of-sight problems, preoperative imaging requirements, extra pin sites, up-font capital expenditures, and learning curve. The purpose of this study was to compare the accuracy and precision of a hand-held portable navigation system versus conventional instrumentation for tibial and femoral resections in TKA. Methods. This study was a single-surgeon, retrospective cohort study. Consecutive patients undergoing TKA were divided into three groups: 1) tibial and femoral resections performed with conventional intra- and extramedullary resection guides (CON group; N=84), 2) a hand-held portable navigation system (KneeAlign, OrthoAlign Inc, Aliso Viejo, CA) for tibial resection only (TIBIA group; N=78), and 3) navigation for both tibial and distal femoral resections (BOTH group; N=80). Postoperative coronal alignment of the distal femoral and proximal tibial resection were measured based on the anatomic axis from standing AP radiographs and compared between the three groups for both precision and accuracy. Malalignment was considered to be greater than 3° varus/valgus from expected resection angle. Results. Preoperative age, sex, and knee axis alignment were similar between the three groups. Mean postoperative alignment of the distal femoral resection, proximal tibial resection, and knee axis did not differ between groups (Figure 1). Increased frequencies of malalignment (±3° varus/valgus) of the femoral resection (24% CON versus 5% TIBIA and 8% BOTH; p<0.001) and knee axis (31% CON versus 8% TIBIA and 6% BOTH; p<0.001) were observed with conventional resection guides compared to both navigation groups. Conclusion. Use of a hand-held portable navigation system improved precision of the distal femoral resection and overall anatomical knee alignment after TKA


Bone & Joint Open
Vol. 1, Issue 9 | Pages 585 - 593
24 Sep 2020
Caterson J Williams MA McCarthy C Athanasou N Temple HT Cosker T Gibbons M

Aims. The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG. Methods. In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)). Results. AG was best visualized with T1-weighted axial images providing sufficient cover in 25 cases confirmed by pathological findings.These results demonstrate AG as a discrete and substantial muscle of the anterior compartment of the thigh, deep to VI and useful in providing anterior soft tissue margin in distal femoral resection in bone tumours. Conclusion. Preoperative assessment of cover by AG may be useful in predicting cases where AG can be dissected, sparing the remaining quadriceps muscle, and therefore function. Cite this article: Bone Joint Open 2020;1-9:585–593


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 1 - 1
1 Feb 2020
Plaskos C Wakelin E Shalhoub S Lawrence J Keggi J Koenig J Ponder C Randall A DeClaire J
Full Access

Introduction. Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability. Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely, gap-balancing techniques allow for pre-emptive adjustment of bone resections to achieve knee balance thereby potentially reducing the amount of ligament releases required. No study to our knowledge has compared the rates of soft tissue release in these two techniques, however. The objective of this study was, therefore, to compare the rates of soft tissue releases required to achieve a balanced knee in tibial-first gap-balancing versus femur-first measured-resection techniques in robotic assisted TKA, and to compare with release rates reported in the literature for conventional, measured resection TKA [1]. Methods. The number and type of soft tissue releases were documented and reviewed in 615 robotic-assisted gap-balancing and 76 robotic-assisted measured-resection TKAs as part of a multicenter study. In the robotic-assisted gap balancing group, a robotic tensioner was inserted into the knee after the tibial resection and the soft tissue envelope was characterized throughout flexion under computer-controlled tension (fig-1). Femoral bone resections were then planned using predictive ligament balance gap profiles throughout the range of motion (fig-2), and executed with a miniature robotic cutting-guide. Soft tissue releases were stratified as a function of the coronal deformity relative to the mechanical axis (varus knees: >1° varus; valgus knees: >1°). Rates of releases were compared between the two groups and to the literature data using the Fischer's exact test. Results. The overall rate of soft tissue release was significantly lower in the robotic gap-balancing group, with 31% of knees requiring one or more releases versus 50% (p=0.001) in the robotic measured resection group and 66% (p<0.001) for conventional measured resection (table-1) [1]. When comparing as a function of coronal deformity, the difference in release rates for robotic gap-balancing was significant when compared to the conventional TKA literature data (p<0.0001) for all deformity categories, but only for varus and valgus deformities for robotic measured resection with the numbers available (varus: 33% vs 50%, p=0.010; neutral 11% vs 50%, p=0.088, valgus 27% vs 53%, p=0.048). Discussion. Robotic-assisted tibial-first gap-balancing techniques allow surgeons to plan and adjust femoral resections to achieve a desired gap balance throughout motion, prior to making any femoral resections. Thus, gap balance can be achieved through adjustment of bone resections, which is accurate to 1mm/degree with robotics, rather than through manual releasing soft tissues which is subjective and less precise. These results demonstrated that the overall rate of soft tissue release is reduced when performing TKA with predictive gap-balancing and a robotic tensioning system. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 43 - 43
1 Aug 2017
Whiteside L
Full Access

Alignment of total joint replacement in the valgus knee can be done readily with intramedullary alignment and hand-held instruments. Intramedullary alignment instruments usually are used for the femoral resection. The distal femoral surfaces are resected at a valgus angle of 5 degrees. A medialised entry point is advised because the distal femur curves toward valgus in the valgus knee, and the distal surface of the medial femoral condyle is used as reference for distal femoral resection. In the valgus knee, the anteroposterior axis is especially important as a reliable landmark for rotational alignment of the femoral surface cuts because the posterior femoral condyles are in valgus malalignment, and are unreliable for alignment. Rotational alignment of the distal femoral cutting guide is adjusted to resect the anterior and posterior surfaces perpendicular to the anteroposterior axis of the femur. In the valgus knee this almost always results in much greater resection from the medial than from the lateral condyle. Intramedullary alignment instruments are used to resect the proximal tibial surface perpendicular to its long axis. Like the femoral resection, resection of the proximal tibial surface is based on the height of the intact medial bone surface. After correction of the deformity, ligament adjustment is almost always necessary in the valgus knee. Stability is assessed first in flexion by holding the knee at 90 degrees and maximally internally rotating the extremity to stress the medial side of the knee, then maximally externally rotating the extremity to evaluate the lateral side of the knee. Medial opening greater than 4mm, and lateral opening greater than 5mm, is considered abnormally lax, and a very tight lateral side that does not open at all with varus stress is considered to be abnormally tight. Stability is assessed in full extension by applying varus and valgus stress to the knees. Medial opening greater than 2mm is considered to be abnormally lax, and a very tight lateral side that does not open at all with varus stress is considered to be too tight. Release of tight structures should be done in a conservative manner. In some cases, direct release from bone attachment is best (popliteus tendon); in others, release with pie-crusting technique is safe and effective. In knees that are too tight laterally in flexion, but not in extension, the LCL is released in continuity with the periosteum and synovial attachments to the bone. When this lateral tightness is associated with internal rotational contracture, the popliteus tendon attachment to the femur is also released. The iliotibial band and lateral posterior capsule should not be released in this situation because they provide lateral stability only in extension. The only structures that provide passive stability in flexion are the LCL and the popliteus tendon complex, so knees that are tight laterally in flexion and extension have popliteus tendon or LCL release (or both). Stability is tested after adjusting tibial thickness to restore ligament tightness on the lateral side of the knee. Additional releases are done only as necessary to achieve ligament balance. Any remaining lateral ligament tightness usually occurs in the extended position only, and is addressed by releasing the iliotibial band first, then the lateral posterior capsule, if needed. The iliotibial band is approached subcutaneously and released extrasynovially, leaving its proximal and distal ends attached to the synovial membrane. In knees initially too tight laterally in extension, but not in flexion, the LCL and popliteus tendon are left intact, and the iliotibial band is released. If this does not loosen the knee enough laterally, the lateral posterior capsule is released. The LCL and popliteus tendon rarely, if ever, are released in this type of knee. Finally, the tibial component thickness is adjusted to achieve proper balance between the medial and lateral sides of the knee. Anteroposterior stability and femoral rollback are assessed, and posterior cruciate substitution is done, if necessary, to achieve acceptable posterior stability


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2021
Glenday J Gonzalez FQ Wright T Lipman J Sculco P Vigdorchik J
Full Access

Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure. [2,3]. Methods. Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;. [1]. these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial alignment strategies: mechanical alignment (i.e., perpendicular to the tibial mechanical axis) and 2° tibial varus alignment (the femoral resection accounts for additional 2° varus). The baseplate was modeled as solid titanium (E=114.3 GPa; v=0.33). The pegs and a 1.2 mm layer on the bone-contact surface were modeled as 3D-printed porous titanium (E=1.1 GPa; v=0.3). Bone material properties were non-homogeneous, determined from the CT scans using relationships specific to the proximal tibia. [2,4]. The bone-implant interface was modelled as frictional with friction coefficients for solid and porous titanium of 0.6 and 1.1, respectively. The tibia was fixed 77 mm distal to the resection. For mechanical alignment, instrumented TKR loads previously measured in vivo. [5]. were applied to the top of the baseplate throughout level gait in 2% intervals (Fig.1a). For varus alignment, the varus/valgus moment was modified to match the ratio of medial-lateral force distribution from Smith et al. [1]. (Fig.1b). Results. For both alignments and all bones, the largest micromotion and amount of bone at risk of failure occurred during mid stance, at 16% of gait (Figs.2,3). Peak micromotion, located at the antero-lateral edge of the baseplate, was 153±32 µm and 273±48 µm for mechanical and varus alignment, respectively. The area of the baseplate with micromotion above 40 µm (the threshold for bone ingrowth. [3]. ) was 28±5% and 41±4% for mechanical and varus alignment, respectively. The amount of bone at risk of failure at the bone-implant interface was 0.5±0.3% and 0.8±0.3% for the mechanical and varus alignment, respectively. Discussion. The peak micromotion and the baseplate area with micromotion above 40 µm increased with varus alignment compared to mechanical alignment. Furthermore, the amount of bone at risk of failure, although small for both alignments, was greater for varus alignment. These results suggest that varus alignment, consisting of a combination of femoral and tibial alignment, may negatively impact bone ingrowth and increase the risk of bone failure for cementless tibial baseplates of this TKR design


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 108 - 108
1 Mar 2017
Yo H Ohashi H Ikawa T
Full Access

Introduction. The KneeAlign2 (OrthAlign, Inc., Aliso Viejo, CA) is a portable accelerometer-based navigation device for use in performing the distal femoral resection in total knee arthroplasty (TKA). This device works as a computer-assisted surgical system. It does not require the use of a large console for registration and alignment feedback.(image1,2). Purpose. The aim of this study was to investigate the accuracy in positioning the femoral component and the presense of a learning curve in conducting TKA using this device. Materials and methods. From May 2015 to March 2016, 60 knees underwent a primary TKA using a portable accelerometer-based navigation device for performing the distal femoral resection. These TKAs were devided in two groups. Group1: operated by surgeon of experience using the KneeAlign2 more than 30 cases. Group2: operated by surgeons of experience using the KneeAlign2 less than 30 cases. Standing AP hip-to-ankle radiographs were obtained postoperatively. Positioning of the femoral component was measured by the radiographs. Outlier in coronal alignment were defined as >3°. The radiographic results and operation time were compared between the groups. Students t-test was performed to assess the statistical analysis (p<0.05). Result. There was no outlier and all patients had an alignment within 90±3°to the femoral mechanical axis in the coronal plane in both groups. The mean deviation(absolute values) from the neutral alignment of the femoral component were 1.5±0.5 in group1 and1.2±0.7 in group2. There was no statistical significance between the groups. Average operation time was 106.2 minutes in group1 and 108.5 minutes in group2. There was no statistical significance between the groups. There were no complications during the surgery associated with the navigation device. Conclusion. This portable navigation device is highly accurate in positioning the femoral component in TKA. And as the learning curve for using this device does not be observed, this portable navigation is easy to handle even for beginner users. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 61 - 61
1 Aug 2013
Ponder C Plaskos C Cheal E
Full Access

Introduction. Intimate bone-implant contact is a requirement for achieving stable component fixation and osseo-integration of porous-coated implants in TKA. However, consistently attaining a press-fit and a tight-fitting femoral component can be problematic when using conventional instrumentation. We present a new robotic cutting-guide system that permits intra-operative adjustment of the femoral resections such that a specified amount of press-fit can be consistently attained. System Description: A.R.T. (Apex Robotic Technology) employs a miniature bone-mounted robotic cutting-guide and flexible software that permits the surgeon to adjust the anterior and posterior femoral resections in increments of 0.25 mm per resection, allowing a maximum of 1.5mm of total added press in the AP dimension. Methods. The accuracy of guide-positioning and bone-cutting with A.R.T. was assessed in bench testing on synthetic bones (SAWBONES®) using an optical comparator. The individual guide locations for 16 femoral cut positioning sequences (80 guide positions in total) were measured. Femoral resections were performed with A.R.T. on eight sawbones (two per fit-adjustment setting) and the anterior-posterior dimensions of the final cut surfaces were also measured. Eight sawbones were prepared using conventional instrumentation (jigs) as controls: four with a 0 mm press-fit block and four with a +0.5 mm specially manufactured press-fit block. Results. The robotic guide-positioning error in the AP dimension was −0.04 ± 0.14mm (mean ± standard deviation, SD). The standard deviation in guide positioning for the distal, anterior chamfer and posterior chamfer resections was 0.03° and 0.17mm. The average error in the AP dimension between the targeted and measured cuts was −0.14±0.13mm with A.R.T. and 0.7±0.52mm with conventional blocks (p=0.021). Conclusions. A.R.T. guide positioning precision was found to be sub-degree and sub-millimetric, allowing for significantly more accurate and repeatable bone resections than conventional instrumentation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 5 - 5
1 Aug 2013
Goldberg T Curry W Bush J
Full Access

The present IRB approved study evaluates the early results of 100 TKAs using CT-based Patient-Specific Instrumentation (PSI) (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). For this technique, a CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made. Outcomes measured for the present study include surgical factors such as Tourniquet Time (TT) as a measure of surgical efficiency, the actual intraoperative bony resection thicknesses to be compared to the planned resections from the CT scan, and complication data. Furthermore, pre- and post-operative long standing alignment and Knee Society Scores (KSS) were obtained. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. No osteophytes are removed as the blocks use the positive topography of the osteophytes for registration. The distal femoral resection is performed directly through the block. An appropriate sized 4-in-1 block is placed and the remaining resections are performed. The tibial resection block is registered and resection performed. Final bone preparation, patella resurfacing, and trialing is performed as is standard to all surgical techniques. There were 50 Left and 50 Right TKA's performed in 61 females and 39 males. All patients had diagnosis of osteoarthritis. The average BMI was 31.1 and average age was 64.5 (range 41–90). 79 patients had pre-operative varus deformities with Hip Knee Angle (HKA) average of 174.7° (range 167°–179.5°). 19 patients had pre-operative valgus deformities averaging 184.4° (range 180.5°–190°). Three patients were neutral. Average TT was 31.2 minutes (range 21–51 minutes). With regard to the bony resections, the actual vs. planned resections for the distal medial femoral resection was 8.7 mm vs. 8.9 mm respectively. Further actual vs. planned femoral resections include distal lateral 7.2 vs. 6.7 mm; posterior medial 8.3 vs. 8.9 mm; and posterior lateral 6.2 vs. 6.8 mm. The actual vs. planned tibial resections recorded include medial 6.4 vs. 6.3 mm and lateral 8.3 vs. 8.2. The planned vs. actual bony cuts are strongly correlated, and highly predictive for all 6 measured cuts (p=<.001). No intraoperative complications occurred. Average KSS improved from 45.9 to 81.4, and KSS Function Score improved from 57.7 to 73.5 at 6 weeks postoperative visit. There were no thromboembolic complications. Two patients had a post-operative infection requiring surgical intervention. Post-operative alignment was 179.36° (range 175°–186°) for all patients. Alignment was neutral, within 3° in 95.9% of patients. There were only 4 outliers with maximal post-operative angulation of 6°. In conclusion, these early results demonstrate efficacy of CT-based PSI for TKA. The surgery can be performed efficiently, accurately, and safely. Furthermore, excellent short term clinical and radiographic results can be achieved


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 325 - 325
1 Dec 2013
Goldberg T Curry WT Bush JW
Full Access

The present IRB approved study evaluates the early results of 100 TKAs using CT-based Patient-Specific Instrumentation (PSI) (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). For this technique, a CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made [Fig. 1]. Outcomes measured for the present study include surgical factors such as Tourniquet Time (TT) as a measure of surgical efficiency, the actual intraoperative bony resection thicknesses to be compared to the planned resections from the CT scan, and complication data. Furthermore, pre- and post-operative long standing alignment and Knee Society Scores (KSS) were obtained. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. No osteophytes are removed as the blocks use the positive topography of the osteophytes for registration. The distal femoral resection is performed directly through the block. An appropriate sized 4-in-1 block is placed and the remaining resections are performed. The tibial resection block is registered and resection performed. Final bone preparation, patella resurfacing, and trialing is performed as is standard to all surgical techniques. There were 50 Left and 50 Right TKA's performed in 61 females and 39 males. All patients had diagnosis of osteoarthritis. The average BMI was 31.1 and average age was 64.5 (range 41–90). 79 patients had pre-operative varus deformities with Hip Knee Angle (HKA) average of 174.7° (range 167°–179.5°). 19 patients had pre-operative valgus deformities averaging 184.4° (range 180.5°–190°). Three patients were neutral. Average TT was 31.2 minutes (range 21–51 minutes). With regard to the bony resections, the actual vs. planned resections for the distal medial femoral resection was 8.7 mm vs. 8.9 mm respectively. Further actual vs. planned femoral resections include distal lateral 7.2 vs. 6.7 mm; posterior medial 8.3 vs. 8.9 mm; and posterior lateral 6.2 vs. 6.8 mm. The actual vs. planned tibial resections recorded include medial 6.4 vs. 6.3 mm and lateral 8.3 vs. 8.2. The planned vs. actual bony cuts are strongly correlated, and highly predictive for all 6 measured cuts (p=<.001) [Fig. 3]. No intraoperative complications occurred. Average KSS improved from 45.9 to 81.4, and KSS Function Score improved from 57.7 to 73.5 at 6 weeks postoperative visit. There were no thromboembolic complications. Two patients had a post-operative infection requiring surgical intervention. Post-operative alignment was 179.36° (range 175°–186°) for all patients. Alignment was neutral, within 3° in 95.9% of patients. There were only 4 outliers with maximal post-operative angulation of 6° [Fig. 2]. In conclusion, these early results demonstrate efficacy of CT-based PSI for TKA. The surgery can be performed efficiently, accurately, and safely. Furthermore, excellent short term clinical and radiographic results can be achieved


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 22 - 22
1 Feb 2020
Lawrence J Keggi J Randall A DeClaire J Ponder C Koenig J Shalhoub S Wakelin E Plaskos C
Full Access

Introduction. Soft-tissue balancing methods in TKA have evolved from surgeon feel to digital load-sensing tools. Such techniques allow surgeons to assess the soft-tissue envelope after bone cuts, however, these approaches are ‘after-the-fact’ and require soft-tissue release or bony re-cuts to achieve final balance. Recently, a robotic ligament tensioning device has been deployed which characterizes the soft tissue envelope through a continuous range-of-motion after just the initial tibial cut, allowing for virtual femoral resection planning to achieve a targeted gap profile throughout the range of flexion (figure-1). This study reports the first early clinical results and patient reported outcomes (PROMs) associated with this new technique and compares the outcomes with registry data. Methods. Since November 2017, 314 patients were prospectively enrolled and underwent robotic-assisted TKA using this surgical technique (mean age: 66.2 ±8.1; females: 173; BMI: 31.4±5.3). KOOS/WOMAC, UCLA, and HSS-Patient Satisfaction scores were collected pre- and post-operatively. Three, six, and twelve-month assessments were completed by 202, 141, and 63 patients, respectively, and compared to registry data from the Shared Ortech Aggregated Repository (SOAR). SOAR is a TJA PROM repository run by Ortech, an independent clinical data collection entity, and it includes data from thousands of TKAs from a diverse cross-section of participating hospitals, teaching institutions and clinics across the United States and Canada who collect outcomes data. PROMs were compared using a two-tailed t-test for non-equal variance. Results. When comparing the baseline PROM scores, robotic patients had equivalent womac knee stiffness (p=0.58) and UCLA activity scale (p=0.38) scores but slightly higher womac knee pain (p=0.002) and functional scores (p=0.014, figure-2). While all scores improved over time, the rate of improvement was generally greater at 6 months than at three months when comparing the two groups, with statistically higher six-month scores in the robotic group for all categories (p<0.001). Overall patient satisfaction in the RB cohort was 90.3%, 95.0% and 91.8% at 3M, 6M and 1Y, respectively (figure-3). Average length of hospital stay was 1.6 days (±0.8). Surgical complications in this cohort included one infection four months post-op, 6 post-operative knee manipulations, one pulmonary embolism and one wound dehiscence from a fall. Discussion. We postulated that the ability to use gap data prospectively under known loading conditions throughout the knee range-of-motion would allow femoral cut planning that resulted in optimum balance with fewer releases and better long-term results. While the study group patients had slightly higher baseline knee pain and function than registry patients and showed similar net improvements at the three-month mark, study patients showed significantly better improvements in all areas between three months and six months compared to registry data. WOMAC stiffness and UCLA activity scores were equal between the two groups at baseline and significantly improved at three months and six months. Better ligament balance may have significantly contributed to these gains and to the high rates of satisfaction reported in the study patients compared to the historical literature. Limitations to this study include the small number of patients and the lack of a closely matched control group. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 2 - 2
1 Jan 2016
Shah A
Full Access

Introduction. Fixed flexion isolated or along with varus / valgus is a common deformity for patients undergoing TKR. For a satisfactory outcome and normal gait post op FFD needs to be corrected completely. An additional distal femoral resection may be necessary to equalize the extension gape to correct Gr 2 FFDs. Aim. To demonstrate full FFD correction without resecting extra distal Femur. Methods. Prospective study between 2009–2012. Inclusion Criteria:. All cases of Gr2 FFDs. Exclusion Criteria:. Patients with h/o previous injury, fractures, surgery. 57 cases were recruited. All patients were implanted a PS knee. Measured resection technique was followed in all the cases. In the surgical technique once distal femoral, proximal tibial and AP femoral cuts are made, additional distal femur is not resected. To equalize the extension gape posterior sharp condylar margin is resected. Posterior osteophytes are removed. Posterior recess is created by stripping the capsule off posterior surface of the femur and clearing off any loose bodies. If necessary a horizontal capsulotomy is performed at the level of Tibial resection. (video clipping). Results. Pre op average KSS of 46 improved to 85 post op. 44 knees were Osteoarthritis and 13 were rheumatoid arthritis. 53 knees had complete correction intraop which was maintained post op. 4 knees had residual FFD of 5 to 10 degrees. 3 of them corrected in 3 months post op period. They had an extended rehabilitation programme.1 patient has persistent FFD 2 years post op. Discussion. Patients undergoing FFD correction have a tighter extension gap The extension gap needs to be equalized to the flexion gap. This can be addressed either by resecting extra distal femur or by posterior soft tissue management. Resection of additional distal femur has an advantage of correcting larger deformity and is quicker as well. However there is a clear disadvantage that there is loss of collateral ligament tension in flexion which leads to midflexion instability. Typically these patients feel unstable while descending stairs or getting up from chair unsupported. The joint line is raised causing Patella baja. This also can lead to restriction of ROMs post op. The possibility exists of a mismatch between femur and Tibial implant sizes for that particular implant system. The more proximal the cut the chances of damage the collateral ligament attachment on Femur are more. The method described above is more precise and avoids cutting extra distal Femur. Instead the emphasis is on the posterior structures. That avoids the collateral ligament imbalance in flexion. The flexion gap is better controlled while equalizing the extension gape hence Flexion – extension gap mismatch is avoided. The 1 knee that did not correct completely was that of RA and persistent synovitis in the immediate postop period was perhaps responsible. Conclusion. By a systematic approach to posterior release, Gr2 FFDs can be corrected without extra distal femoral resection. As shown in our study quite a few possible complications can be avoided by following the above mentioned algorithm


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 104 - 104
1 Jan 2016
Omori T Marumo K Saito M Suzuki H Kurosaka D Ozawa M Ikeda R Miyasaka T
Full Access

In total knee arthroplasty (TKA), rotational alignment of the femoral component is determined by the measured resection technique, in which anatomical landmarks serve as determinants, or by the gap balancing technique, in which the femoral component is positioned relative to the resected aspect of the tibia. The latter technique is considered logically more favorable for obtaining rectangular extension and flexion gaps. However, in patients with severe changes attributed to osteoarthritis and/or a severely limited range of motion, it is difficult to perform adequate posterior clearance (e.g. bone spur excision) before resecting the posterior femoral condyle, often causing unbalanced extension and flexion gaps after resection. Thus, the gap balancing technique is more technically demanding and requires higher skill. We employed a computed tomography (CT)-based navigation system to develop a simple and standardized surgical technique by performing two assessments: Assessment 1, we investigated the relationship between the position of the femoral component determined by the gap balancing technique and anatomical landmarks; and Assessment 2, we placed the femoral component at the position determined by the measured resection technique and within the acceptable gap-balanced range determined in Assessment 1. In Assessment 1, 18 knees with osteoarthritis were treated by posterior stabilized TKA for varus deformity. The extension-flexion balance after resection of the distal femoral condyle and the proximal tibia was within 3° in all cases. Posterior bone resection was performed parallel to the resected aspect of the tibia and at 90° of flexion under constant compression applied using a tensor. In other words, the rotational alignment of the femoral component was determined by the gap balancing technique, and its position relative to the posterior condylar axis (PCA) and clinical transepicondylar axis (CEA), which are landmarks in the measured resection technique, and the condylar twist angle (CTA; the angle between the CEA and PCA) were measured, and their relationships were quantitatively determined. The CTA, which was determined based on the preoperative CT data, was 4.7– 9.6° (mean, 7.05 ± 1.35°), while the aspect of the femoral resection was 3.0–8.3° externally rotated (mean, 5.6 ± 1.6°) to the PCA; a strong positive correlation was found between the rotational alignment of the femoral component and the CTA (p < 0.0001, R. 2. = 0.871). The aspect of the femoral resection was 0.3–2.6° internally rotated (mean, 1.4 ± 0.6°) to the CEA, and no correlation with the CTA was apparent. In Assessment 2, 39 knees with an extension-flexion balance ≤3° were examined to determine the internal-external rotation balance. Based on the results of Assessment 1, we employed the measured resection technique and placed the femoral component by rotationally aligning the target, which was 1.4° internally rotated to the CEA. The final rotational alignment of the femoral component was 2.0 ± 0.6° internally rotated to the CEA; the internal-external rotation balance at 90° of flexion was good and more toward external rotation by 0.72 ± 1.61°. The results demonstrated that the measured resection technique enables placement of the femoral component within an acceptable range of rotational alignment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 19 - 19
1 Jan 2016
Angibaud L Liebelt RA Gao B Silver X
Full Access

Introduction. From pre-operative planning to final implant cementation, total knee arthroplasty (TKA) preparation is a succession of many individual steps, each presenting potential sources of error that can result in devices being implanted outside the targeted range of alignment. This study assessed alignment discrepancy occurring during different TKA steps using an image-free computer-assisted orthopaedic surgery (CAOS) guidance system (Exactech GPS, Blue-Ortho, Grenoble, FR) in normal and abnormal mechanical axis. Materials and methods. We used a commercially available artificial leg (MITA trainer leg M-00058, Medical Models, Bristol, UK) able to receive (neutral / varus / valgus) knee inserts simulating the proximal tibia and distal femur. A pre-surgical profile was established to define resection parameters for the proximal tibial and distal femoral cuts (Figure 1A). Data from the guidance system were collected at three separate steps: (1) cutting block adjusted but not pinned to the bone (Figure 1B), (2) cutting block adjusted and pinned to the bone (Figure 1C), and (3) after the cuts were checked (Figure 1D). These data were then compared to the resection target parameters to track potential dispersions occurring during the process. Due to the amount of data (i.e., four studied resection parameters per bone, three operative steps, and three knee model types), the authors introduced an “error index”, which was a unitless indication of overall error magnitude obtained by averaging the absolute values of all linear and angular measurement errors. Due to knee model dimensions (∼55 mm), the authors equally considered linear and angular measurement values (i.e., 1 mm equivalent to 1°). Results. Regardless of resection parameter or bone deformity type, all linear or angular error distributions were symmetrical around the neutral value, which implies no obvious skew in terms of error direction. The type of knee model deformity had almost no effect on overall error magnitudes throughout all surgical steps (Figure 2). Discussion. Few studies present possible causes for errors when using CAOS for TKA. Notably, Bathis et al. evaluated cutting errors as the difference between the primary cutting block position and the resulting resection plane. As a result, errors due to a malpositioning of the guide jig itself were not described. 1. In general, the authors found the dispersions at each step to seemingly be random. For both the tibia and the femur, a significant increase in the error index from the adjusted to the attached step (p<0.001 and p=0.005; respectively) was observed, meaning the pinning of the cutting block to the bone is a key step. Also, observing the relationship between linear and angular parameters was relevant. For example, for the femur, a cut in extension was highly correlated with lower than expected distal femoral resection (Pearson correlation factor of 0.783 and 0.913 at the checked step for the medial and lateral distal femoral resections; respectively, p<0.001). Regardless of the presence and type of deformity, the evaluated image-free computer-assisted guidance system did not exhibit substantial alignment dispersions during any step of the procedure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 48 - 48
1 Oct 2012
Goldberg T Curry W Qing Q
Full Access

In May 2010, MyKnee® patient-specific instrumentation was approved for use in this procedure in the USA. This technique uses a pre-operative CT scan of the lower extremity to plan the surgery. Images of the hip, knee, and ankle are reconstructed digitally to assess pre-operative deformity as well as size of the knee. Surgery is then planned with the goals of restoring a neutral mechanical axis of limb and providing correct sizing and placement of implants after the surgery. From this plan, patient-specific jigs are created to perform the surgery achieving the planned result without sacrificing speed of surgery or increasing complexity of the procedure. The present study seeks to evaluate both intraoperative and radiographic results of this procedure. IRB approval for retrospective research was obtained prior to evaluation of the data. Thirty consecutive patients (14 males, 16 females) underwent TKA using the MyKnee technique by the senior author. Pre-operative long-standing radiographs were taken and compared to 6-week post-operative radiographs. Intraoperative data includes the femoral and tibial resection thickness: distal medial femoral, distal lateral femoral, posterior medial femoral, posterior lateral femoral, medial tibia, and lateral tibia. These were compared to the planned vs. actual resections. Tourniquet time was recorded as a measure of speed of surgery. These were compared to 30 consecutive patients using standard TKA technique by the same author. Intraoperative complications were also recorded. For patients with varus pre-operative deformities (n = 21), the mechanical alignment was 7.8° (range 1.2° to 15.2°). Seven patients had pre-operative valgus deformities averaging 6.93° (range 1.3° to 14.5°). Two patients were neutral. Post-operative alignment for all patients (n = 30) was varus 1.92° (range 0° to 5.8°). Seventy-eight percent of patients were within 3° and 97% of patients were within 3.6°. In comparison, post-operative alignment for standard TKA patients measured varus 1.85°, which was not statistically significant. Seventy-nine percent of patients were within 3°; however the outliers were more dramatic ranging 3.5° to 9.2°. Thirty femoral and 21 tibial resections were available for review using the MyKnee technique. The actual vs. planned resections for the distal medial femoral resection was 9.5 vs. 9.1mm respectively. Further actual vs. planned femoral resections include distal lateral femoral 8.4 vs. 6.3mm; posterior medial femoral 9.3 vs. 9.5mm; and posterior lateral femoral 8.6 vs. 7.0mm. The actual vs. planned tibial resections recorded include medial 6.07 vs. 6.29mm and lateral 9.36 vs. 8.19mm. Tourniquet time averaged 32.97 minutes (range 25 to 54) in the standard TKA group vs. 37.03 minutes (range 1 to 71) in the MyKnee group. This difference was not significant. However, the final 15 MyKnee patients had an average time of 33.46 minutes. No intraoperative complications occurred. Many techniques exist for performance of TKA. Patient-specific cutting blocks allow the surgeon to pre-operatively determine resection depths, rotations, alignment, and sizing prior to the operative procedure itself. The present study shows that intraoperative resections and post-operative alignments can be accurately achieved with pre-operative CT planning and using patient-specific instrumentation. For the typical varus knee deformity, cartilage will exist on the lateral side of the knee. This can cause measurement error when measuring the lateral compartments as the CT scan is based on bone only. This can be seen in 2.1mm and 1.6mm differences in the distal lateral femoral and posterior lateral femoral resections respectively. Thus, this difference can be explained by the false measurement of intact cartilage. More accurate results could be obtained if the cartilage was removed and bone measured. Valgus knees, being diseased in the lateral compartment, did not show such variance as expected in planned vs. actual resections. Intraoperative speed of surgery is important to all participants in TKA: surgeon, hospital, and patient. Obviously accuracy should not be sacrificed for speed so it is important for any new technology introduced to the market to accelerate surgery not compromise results. In the current study, the average times of MyKnee vs. standard TKA surgery were comparative and not significantly different using a two-sample T-test. The standard TKA average tourniquet time may appear faster than other reported literature; however the surgeon is on the end of learning curve with the system. The MyKnee average tourniquet time represents the initial procedures in the learning curve and can be considered slower than what they will eventually be as the author gains more experience with the technique. Efficiency was demonstrated with the decrease in tourniquet time for the last 15 patients. Furthermore, the goals of surgery were maintained radiographically. Regardless of the deformity, the patient's post-operative mechanical axes averaged 1.85° for standard technique and 1.92° for the MyKnee group, not statistically significantly different. These results were obtained via long-standing x-rays, which are well known to be prone to error in alignment secondary to potential flexion and rotation of the extremity. The standardised protocol for acquisition of the X-ray, attempts to prevent these errors and X-rays are routinely re-done if the technician feels error has occurred. The technique also appears safe as no intra-operative complications occurred and were recognised within the first six weeks post-operative. In conclusion, using patient-specific instrumentation (MyKnee) is safe, quick, and accurate in performance of TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 84 - 84
1 Feb 2017
Coyle R Bas M Rodriguez J Hepinstall M
Full Access

Background. Posterior referencing (PR) total knee arthroplasty (TKA) aims to restore posterior condylar offset. When a symmetric femoral implant is externally rotated (ER) to the posterior condylar axis, it is impossible to anatomically restore the offset of both condyles. PR jigs variously reference medially, laterally, or centrally. The distal femoral cutting jigs typically reference off the more distal medial condyle, causing distal and posterior resection discrepancies. We used sawbones to elucidate differences between commonly used PR cutting jigs with regards to posterior offset restoration. Materials/Methods. Using 32 identical sawbones, we performed distal and posterior femoral resections using cutting guides from 8 widely available TKA systems. 6 systems used a central-referencing strategy, 1 system used a lateral-referencing strategy, and 1 system used a medial-referencing strategy with implants of asymmetric thickness. Distal femoral valgus resection was set at 5 degrees for all specimens. Rotation was set at 3 degrees for 2 sawbones and 5 degrees for 2 sawbones with each system. We measured the thickness of all bone resections, and compared those values to known implant thickness. Results. Central- and lateral-referenced systems with symmetric implants showed distal lateral under-resection. The medial-referenced system with asymmetric implants restored the anatomic joint line medially and laterally. Central-referenced systems showed close to 1mm (SD ±0.2) postero-lateral offset over-restoration and postero-medial offset under-restoration at 3 degrees of ER, and a 1.6mm change in each offset at 5 degrees of ER. The lateral-referenced system demonstrated a 1.7mm mismatch between the distal-medial and the postero-medial resections at 3 degrees of rotation. There was a 3.9mm mismatch at 5 degrees of ER. Medial-referenced systems demonstrated a mismatch between the distal-lateral and postero-lateral resections, present only with 5 degrees of ER. Conclusion. Our data offers insight for arthroplasty surgeons into the bony resections taken by widely used TKA instrumentation systems. The lateral-referenced jigs reduced the postero-medial offset by 4 degrees at 5 degrees, a difference on the order of 1 to 2 femoral sizes depending on the implant system. The medial-referenced system, with the use of asymmetric condylar thicknesses, restored condylar anatomy within 1mm in the majority of circumstances. When set at 5 degrees of external rotation, over-restoration of the postero-lateral femoral offset occurred. Center-referenced systems resulted in minor changes in offset at 3 degrees of rotation, but a decrease in the postero-medial offset by 2mm at 5 degrees of external rotation. The distal femoral cutting jig typically restores the medial joint line in extension when there is minimal medial wear. Referencing laterally in flexion may introduce a discrepancy between the extension and flexion gaps. Available medial- and lateral-referenced jigs provide the option of shifting the bony resections anteriorly or posteriorly and adjusting the sizing as needed