Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal
Fixed flexion contracture is often present in association with osteoarthritis of the knee and correction is one of the key surgical goals in total knee replacement. Surgical strategies to correct flexion contracture include removal of posterior osteophytes, posterior capsular release and additional distal
INTRODUCTION. Although the most commonly used method of femoral component alignment in total knee arthroplasty (TKA) is an intramedullary (IM) guides, this method demonstrated a limited degree of accuracy. The purpose of this study was to assess whether a portable, accelerometer-based surgical navigation system (Knee Align 2 system; Orth Align, Inc, Aliso Viejo, Calif) improve accuracy of the post-operative radiographic femoral component alignment compared to conventional IM alignment guide. MATERIALS & METHODS. Since February 2014, 44 consecutive patients (39 female, 5 male) with primary arthritis of the knee were enrolled in this prospective, randomized controlled study. 24 patients underwent TKA (Vanguard RP or PS, Biomet Japan) using the navigation device for the distal
Purpose. The aim of this study was to compare the accuracy of limb alignment and component positioning after total knee arthroplasty(TKA) performed using fixed or individual distal femoral valgus correction angle(VCA)in valgus knees. Materials and Methods. One hundred and twenty-four patients were randomised to undergo TKA with either of the clinical baseline, radiological outcomes and subsequent outcome such as knee HSS scores, knee range of motion (ROM) and visual analogue scale (VAS) scores were assessed. Knees in the individual group (n=62) were performed with a tailored VCA. Knees in the fixed group (n=62) were performed utilizing a 4°VCA. Results. The distribution of distal femoral valgus cut angle used in the individual group range from 3° to 8°. There were statistically significant differences between groups in post-operative hip-knee-ankle angle (individual: 180.0°±3.8°; fixed: 178.5°±2.9°; P=0.00). 86.9% of patients in the individual group had a post-operative mechanical axis deviation within ± 3°compared to 70.7% in the fixed group (P = 0.03). Patients in the fixed group had a higher percentage of postoperative residual deformity than in the individual group, and this difference was statistically significant (p=0.03). No significant differences were observed between the groups in terms of femoral and component alignment except coronal femoral component angle (α), although the size of the difference was very small(individual: 90.12°±1.61°; fixed: 88.97°±2.50°), the difference was statistically significant (P=0.00). There were no differences in HSS scores, knee ROM, or VAS pain scores in the early phase after surgery between groups. Conclusions. This study demonstrated that the VCA in patients with knee valgus deformities are smaller than normal or varus knee. Individual VCA for distal
Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to
Background. Coronal malalignment has been proposed as a risk factor for mechanical failure after total knee arthroplasty (TKA). In response to these concerns, technologies that provide intraoperative feedback to the surgeon about component positioning have been developed with the goal of reducing rates of coronal plane malalignment and improving TKA longevity. Imageless hand-held portable accelerometer technology has been developed to address some the limitations associated with other computer assisted navigation devices including line-of-sight problems, preoperative imaging requirements, extra pin sites, up-font capital expenditures, and learning curve. The purpose of this study was to compare the accuracy and precision of a hand-held portable navigation system versus conventional instrumentation for tibial and
Aims. The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG. Methods. In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)). Results. AG was best visualized with T1-weighted axial images providing sufficient cover in 25 cases confirmed by pathological findings.These results demonstrate AG as a discrete and substantial muscle of the anterior compartment of the thigh, deep to VI and useful in providing anterior soft tissue margin in distal
Introduction. Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability. Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely, gap-balancing techniques allow for pre-emptive adjustment of bone resections to achieve knee balance thereby potentially reducing the amount of ligament releases required. No study to our knowledge has compared the rates of soft tissue release in these two techniques, however. The objective of this study was, therefore, to compare the rates of soft tissue releases required to achieve a balanced knee in tibial-first gap-balancing versus femur-first measured-resection techniques in robotic assisted TKA, and to compare with release rates reported in the literature for conventional, measured resection TKA [1]. Methods. The number and type of soft tissue releases were documented and reviewed in 615 robotic-assisted gap-balancing and 76 robotic-assisted measured-resection TKAs as part of a multicenter study. In the robotic-assisted gap balancing group, a robotic tensioner was inserted into the knee after the tibial resection and the soft tissue envelope was characterized throughout flexion under computer-controlled tension (fig-1).
Alignment of total joint replacement in the valgus knee can be done readily with intramedullary alignment and hand-held instruments. Intramedullary alignment instruments usually are used for the
Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure. [2,3]. Methods. Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;. [1]. these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial alignment strategies: mechanical alignment (i.e., perpendicular to the tibial mechanical axis) and 2° tibial varus alignment (the
Introduction. Intimate bone-implant contact is a requirement for achieving stable component fixation and osseo-integration of porous-coated implants in TKA. However, consistently attaining a press-fit and a tight-fitting femoral component can be problematic when using conventional instrumentation. We present a new robotic cutting-guide system that permits intra-operative adjustment of the
Introduction. The KneeAlign2 (OrthAlign, Inc., Aliso Viejo, CA) is a portable accelerometer-based navigation device for use in performing the distal
The present IRB approved study evaluates the early results of 100 TKAs using CT-based Patient-Specific Instrumentation (PSI) (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). For this technique, a CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made. Outcomes measured for the present study include surgical factors such as Tourniquet Time (TT) as a measure of surgical efficiency, the actual intraoperative bony resection thicknesses to be compared to the planned resections from the CT scan, and complication data. Furthermore, pre- and post-operative long standing alignment and Knee Society Scores (KSS) were obtained. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. No osteophytes are removed as the blocks use the positive topography of the osteophytes for registration. The distal
The present IRB approved study evaluates the early results of 100 TKAs using CT-based Patient-Specific Instrumentation (PSI) (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). For this technique, a CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made [Fig. 1]. Outcomes measured for the present study include surgical factors such as Tourniquet Time (TT) as a measure of surgical efficiency, the actual intraoperative bony resection thicknesses to be compared to the planned resections from the CT scan, and complication data. Furthermore, pre- and post-operative long standing alignment and Knee Society Scores (KSS) were obtained. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. No osteophytes are removed as the blocks use the positive topography of the osteophytes for registration. The distal
Introduction. Soft-tissue balancing methods in TKA have evolved from surgeon feel to digital load-sensing tools. Such techniques allow surgeons to assess the soft-tissue envelope after bone cuts, however, these approaches are ‘after-the-fact’ and require soft-tissue release or bony re-cuts to achieve final balance. Recently, a robotic ligament tensioning device has been deployed which characterizes the soft tissue envelope through a continuous range-of-motion after just the initial tibial cut, allowing for virtual
Introduction. Fixed flexion isolated or along with varus / valgus is a common deformity for patients undergoing TKR. For a satisfactory outcome and normal gait post op FFD needs to be corrected completely. An additional distal
In total knee arthroplasty (TKA), rotational alignment of the femoral component is determined by the measured resection technique, in which anatomical landmarks serve as determinants, or by the gap balancing technique, in which the femoral component is positioned relative to the resected aspect of the tibia. The latter technique is considered logically more favorable for obtaining rectangular extension and flexion gaps. However, in patients with severe changes attributed to osteoarthritis and/or a severely limited range of motion, it is difficult to perform adequate posterior clearance (e.g. bone spur excision) before resecting the posterior femoral condyle, often causing unbalanced extension and flexion gaps after resection. Thus, the gap balancing technique is more technically demanding and requires higher skill. We employed a computed tomography (CT)-based navigation system to develop a simple and standardized surgical technique by performing two assessments: Assessment 1, we investigated the relationship between the position of the femoral component determined by the gap balancing technique and anatomical landmarks; and Assessment 2, we placed the femoral component at the position determined by the measured resection technique and within the acceptable gap-balanced range determined in Assessment 1. In Assessment 1, 18 knees with osteoarthritis were treated by posterior stabilized TKA for varus deformity. The extension-flexion balance after resection of the distal femoral condyle and the proximal tibia was within 3° in all cases. Posterior bone resection was performed parallel to the resected aspect of the tibia and at 90° of flexion under constant compression applied using a tensor. In other words, the rotational alignment of the femoral component was determined by the gap balancing technique, and its position relative to the posterior condylar axis (PCA) and clinical transepicondylar axis (CEA), which are landmarks in the measured resection technique, and the condylar twist angle (CTA; the angle between the CEA and PCA) were measured, and their relationships were quantitatively determined. The CTA, which was determined based on the preoperative CT data, was 4.7– 9.6° (mean, 7.05 ± 1.35°), while the aspect of the
Introduction. From pre-operative planning to final implant cementation, total knee arthroplasty (TKA) preparation is a succession of many individual steps, each presenting potential sources of error that can result in devices being implanted outside the targeted range of alignment. This study assessed alignment discrepancy occurring during different TKA steps using an image-free computer-assisted orthopaedic surgery (CAOS) guidance system (Exactech GPS, Blue-Ortho, Grenoble, FR) in normal and abnormal mechanical axis. Materials and methods. We used a commercially available artificial leg (MITA trainer leg M-00058, Medical Models, Bristol, UK) able to receive (neutral / varus / valgus) knee inserts simulating the proximal tibia and distal femur. A pre-surgical profile was established to define resection parameters for the proximal tibial and distal femoral cuts (Figure 1A). Data from the guidance system were collected at three separate steps: (1) cutting block adjusted but not pinned to the bone (Figure 1B), (2) cutting block adjusted and pinned to the bone (Figure 1C), and (3) after the cuts were checked (Figure 1D). These data were then compared to the resection target parameters to track potential dispersions occurring during the process. Due to the amount of data (i.e., four studied resection parameters per bone, three operative steps, and three knee model types), the authors introduced an “error index”, which was a unitless indication of overall error magnitude obtained by averaging the absolute values of all linear and angular measurement errors. Due to knee model dimensions (∼55 mm), the authors equally considered linear and angular measurement values (i.e., 1 mm equivalent to 1°). Results. Regardless of resection parameter or bone deformity type, all linear or angular error distributions were symmetrical around the neutral value, which implies no obvious skew in terms of error direction. The type of knee model deformity had almost no effect on overall error magnitudes throughout all surgical steps (Figure 2). Discussion. Few studies present possible causes for errors when using CAOS for TKA. Notably, Bathis et al. evaluated cutting errors as the difference between the primary cutting block position and the resulting resection plane. As a result, errors due to a malpositioning of the guide jig itself were not described. 1. In general, the authors found the dispersions at each step to seemingly be random. For both the tibia and the femur, a significant increase in the error index from the adjusted to the attached step (p<0.001 and p=0.005; respectively) was observed, meaning the pinning of the cutting block to the bone is a key step. Also, observing the relationship between linear and angular parameters was relevant. For example, for the femur, a cut in extension was highly correlated with lower than expected distal
In May 2010, MyKnee® patient-specific instrumentation was approved for use in this procedure in the USA. This technique uses a pre-operative CT scan of the lower extremity to plan the surgery. Images of the hip, knee, and ankle are reconstructed digitally to assess pre-operative deformity as well as size of the knee. Surgery is then planned with the goals of restoring a neutral mechanical axis of limb and providing correct sizing and placement of implants after the surgery. From this plan, patient-specific jigs are created to perform the surgery achieving the planned result without sacrificing speed of surgery or increasing complexity of the procedure. The present study seeks to evaluate both intraoperative and radiographic results of this procedure. IRB approval for retrospective research was obtained prior to evaluation of the data. Thirty consecutive patients (14 males, 16 females) underwent TKA using the MyKnee technique by the senior author. Pre-operative long-standing radiographs were taken and compared to 6-week post-operative radiographs. Intraoperative data includes the femoral and tibial resection thickness: distal medial femoral, distal lateral femoral, posterior medial femoral, posterior lateral femoral, medial tibia, and lateral tibia. These were compared to the planned vs. actual resections. Tourniquet time was recorded as a measure of speed of surgery. These were compared to 30 consecutive patients using standard TKA technique by the same author. Intraoperative complications were also recorded. For patients with varus pre-operative deformities (n = 21), the mechanical alignment was 7.8° (range 1.2° to 15.2°). Seven patients had pre-operative valgus deformities averaging 6.93° (range 1.3° to 14.5°). Two patients were neutral. Post-operative alignment for all patients (n = 30) was varus 1.92° (range 0° to 5.8°). Seventy-eight percent of patients were within 3° and 97% of patients were within 3.6°. In comparison, post-operative alignment for standard TKA patients measured varus 1.85°, which was not statistically significant. Seventy-nine percent of patients were within 3°; however the outliers were more dramatic ranging 3.5° to 9.2°. Thirty femoral and 21 tibial resections were available for review using the MyKnee technique. The actual vs. planned resections for the distal medial
Background. Posterior referencing (PR) total knee arthroplasty (TKA) aims to restore posterior condylar offset. When a symmetric femoral implant is externally rotated (ER) to the posterior condylar axis, it is impossible to anatomically restore the offset of both condyles. PR jigs variously reference medially, laterally, or centrally. The distal femoral cutting jigs typically reference off the more distal medial condyle, causing distal and posterior resection discrepancies. We used sawbones to elucidate differences between commonly used PR cutting jigs with regards to posterior offset restoration. Materials/Methods. Using 32 identical sawbones, we performed distal and posterior