Abstract
Background
Posterior referencing (PR) total knee arthroplasty (TKA) aims to restore posterior condylar offset. When a symmetric femoral implant is externally rotated (ER) to the posterior condylar axis, it is impossible to anatomically restore the offset of both condyles. PR jigs variously reference medially, laterally, or centrally. The distal femoral cutting jigs typically reference off the more distal medial condyle, causing distal and posterior resection discrepancies. We used sawbones to elucidate differences between commonly used PR cutting jigs with regards to posterior offset restoration.
Materials/Methods
Using 32 identical sawbones, we performed distal and posterior femoral resections using cutting guides from 8 widely available TKA systems. 6 systems used a central-referencing strategy, 1 system used a lateral-referencing strategy, and 1 system used a medial-referencing strategy with implants of asymmetric thickness. Distal femoral valgus resection was set at 5 degrees for all specimens. Rotation was set at 3 degrees for 2 sawbones and 5 degrees for 2 sawbones with each system. We measured the thickness of all bone resections, and compared those values to known implant thickness.
Results
Central- and lateral-referenced systems with symmetric implants showed distal lateral under-resection. The medial-referenced system with asymmetric implants restored the anatomic joint line medially and laterally. Central-referenced systems showed close to 1mm (SD ±0.2) postero-lateral offset over-restoration and postero-medial offset under-restoration at 3 degrees of ER, and a 1.6mm change in each offset at 5 degrees of ER. The lateral-referenced system demonstrated a 1.7mm mismatch between the distal-medial and the postero-medial resections at 3 degrees of rotation. There was a 3.9mm mismatch at 5 degrees of ER. Medial-referenced systems demonstrated a mismatch between the distal-lateral and postero-lateral resections, present only with 5 degrees of ER.
Conclusion
Our data offers insight for arthroplasty surgeons into the bony resections taken by widely used TKA instrumentation systems. The lateral-referenced jigs reduced the postero-medial offset by 4 degrees at 5 degrees, a difference on the order of 1 to 2 femoral sizes depending on the implant system. The medial-referenced system, with the use of asymmetric condylar thicknesses, restored condylar anatomy within 1mm in the majority of circumstances. When set at 5 degrees of external rotation, over-restoration of the postero-lateral femoral offset occurred. Center-referenced systems resulted in minor changes in offset at 3 degrees of rotation, but a decrease in the postero-medial offset by 2mm at 5 degrees of external rotation. The distal femoral cutting jig typically restores the medial joint line in extension when there is minimal medial wear. Referencing laterally in flexion may introduce a discrepancy between the extension and flexion gaps. Available medial- and lateral-referenced jigs provide the option of shifting the bony resections anteriorly or posteriorly and adjusting the sizing as needed.