Advertisement for orthosearch.org.uk
Results 1 - 20 of 37
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 856 - 862
1 Jun 2012
Piper SL Laron D Manzano G Pattnaik T Liu X Kim HT Feeley BT

Peri-tendinous injection of local anaesthetic, both alone and in combination with corticosteroids, is commonly performed in the treatment of tendinopathies. Previous studies have shown that local anaesthetics and corticosteroids are chondrotoxic, but their effect on tenocytes remains unknown. We compared the effects of lidocaine and ropivacaine, alone or combined with dexamethasone, on the viability of cultured bovine tenocytes. Tenocytes were exposed to ten different conditions: 1) normal saline; 2) 1% lidocaine; 3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone (dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex; and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery period, the viability of the tenocytes was quantified using the CellTiter-Glo viability assay and fluorescence-activated cell sorting (FACS) for live/dead cell counts. A 30-minute exposure to lidocaine alone was significantly toxic to the tenocytes in a dose-dependent manner, but a 30-minute exposure to ropivacaine or dexamethasone alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher doses of ropivacaine, but did not potentiate lidocaine tenocyte toxicity. As seen in other cell types, lidocaine has a dose-dependent toxicity to tenocytes but ropivacaine is not significantly toxic. Although dexamethasone alone is not toxic, its combination with 0.5% ropivacaine significantly increased its toxicity to tenocytes. These findings might be relevant to clinical practice and warrant further investigation


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 48 - 48
1 Aug 2013
Lomax A Fazzi U Watson M
Full Access

Single shot interscalene blocks are an effective analgesic for arthroscopic shoulder surgery. However, patients receiving these blocks are often found to be in significant pain when the block wears off, usually in the late evening or early hours of the morning. Overnight admission is currently routine in our unit, to ensure adequate analgesia can be administered during this period. Recent studies have suggested that adding dexamethasone to the local anaesthetic agent can prolong the duration of the block. We carried out a prospective study to assess whether addition of dexamethasone to brachial plexus blocks could reduce patient's post-operative analgesic demands and allow safe discharge on the same day after surgery. Twenty-six patients undergoing arthroscopic shoulder surgery during a morning theatre list, had ultrasound guided brachial plexus blocks using a mixture of 0.25% bupivacaine 20–30ml with 2–3mg of dexamethasone. All were admitted to the ward afterwards for analgesia and physiotherapy. Pain numerical rating scores (0–10) were recorded at rest in recovery one hour postoperatively by the attending anaesthetist and on active movement of the shoulder joint 24 hours after surgery by the attending physiotherapist. A standardised analgesia regime was prescribed with regular and as required medication, including as required strong opiates. Mean pain scores in recovery were 0.31 and on the morning after surgery were 2.38. Sixteen out of 26 required no further analgesia, with only 3 out of the 10 who did requiring opiates. The use of dexamethasone provides adequate analgesia for a prolonged period for most patients after brachial plexus block for shoulder surgery and does not result in a significant analgesic requirement when the block wears off. This may provide support for avoiding overnight admission in selected patients after arthroscopic shoulder surgery


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 135 - 135
2 Jan 2024
Iaquinta M Lanzillotti C Tognon M Martini F Stoddart M Bella ED
Full Access

The effects of dexamethasone (dex), during in vitro human osteogenesis, are contrasting. Indeed, dex downregulates SOX9 during osteogenic differentiation of human bone marrow mesenchymal stromal cells (HBMSCs). However, dex also promotes PPARG expression, resulting in the formation of adipocyte-like cells within the osteogenic monolayers. The regulation of both SOX9 and PPARG seems to be downstream the transactivation activity of the glucocorticoid receptor (GR), thus the effect of dex on SOX9 downregulation is indirect. This study aims at determining whether PPAR-γ regulates SOX9 expression levels, as suggested by several studies. HBMSCs were isolated from bone marrow of patients with written informed consent. HBMSCs were cultured in different osteogenic induction media containing 10 or 100 nM dex. Undifferentiated cells were used as controls. Cells were treated either with a pharmacological PPAR-γ inhibitor T0070907 (donors n=4) or with a PPARG-targeting siRNA (donors n=2). Differentiation markers or PPAR-γ target genes were analysed by RT-qPCR. Mineral deposition was assessed by ARS staining. Two-way ANOVA followed by a Tukey's multiple comparison test compared the effects of treatments. At day 7, T0070907 downregulated ADIPOQ and upregulated CXCL8, respectively targets of PPAR-γ-mediated transactivation and transrepression. RUNX2 and SOX9 were also significantly downregulated in absence of dex. PPARG was successfully downregulated by siRNA. ADIPOQ expression was also inhibited, while CXCL8 did not show any significant difference between siRNA treatment groups. RUNX2 was downregulated by the PPARG-siRNA treatment in presence of 100 nM dexamethasone, while SOX9 levels were not affected. ARS showed no change in the mineralization levels when PPARG expression or activity was inhibited. Understanding how dex regulates HBMSC differentiation is of pivotal importance to refine current in vitro models. These results suggest that PPARG does not mediate SOX9 downregulation. Unexpectedly, RUNX2 expression was also unaltered or even downregulated after PPAR-γ inhibition. Acknowledgements: AO Foundation, AO Research Institute (CH) and PRIN 2017 MUR (IT) for financial support


Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives. Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors. Methods. We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used. Results. As expected, dexamethasone had a strong inhibitory effect on the healing of unstable, but also stable, shaft fractures. In contrast, dexamethasone tended to increase the mechanical strength of metaphyseal bone regenerated under stable conditions. Conclusions. It seems that dexamethasone has different effects on metaphyseal and diaphyseal bone healing. This could be explained by the different role of inflammation at different sites of injury. Cite this article: Bone Joint Res 2015;4:170–175


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 58 - 58
1 Mar 2021
Chen Y Lian W Wang F
Full Access

Chronic glucocorticoid use causes osteogenesis loss, accelerating the progression of osteoporosis. Histone methylation is shown to epigenetically increase repressive transcription, altering lineage programming of mesenchymal stem cells (MSC). This study is undertaken to characterize the action of histone demethylase UTX to osteogenic lineage specification of bone-marrow MSC and bone integrity upon glucocorticoid treatment. Bone-marrow MSC were incubated in osteogenic medium containing supraphysiological dexamethasone. Osteogenic gene expression and mineralized nodule formation were probed using RT-PCR and von Kossa staining. The enrichment of trimethylated lysine 27 at histone 3 (H3K27me3) in Dkk1 promoter was quantified using chromatin immunoprecipitation-PCR. Bone mass and trabecular morphometry in methylprednisolone-treated skeletons were quantified using microCT analysis. Supraphysiological dexamethasone decreased osteogenic genes Runx2 and osteocalcin expression and mineralized matrix production along with reduced UTX expression in MSC. Forced UTX expression attenuated the glucocorticoid-mediated loss of osteogenic differentiation, whereas UTX knockdown provoked osteogenesis loss and cytoplasmic oil overproduction. UTX demethylated H3K27 and reduced the glucocorticoid-mediated the H3K27 enrichment in Dkk1 promoter, reversing beta-catenin signal, but downregulating Dkk1 production by MSC. In vivo, treatment with UTX inhibitor GSK-J4 significantly suppressed bone mineral density, trabecular volume, and thickness along with porous trabecular, fatty marrow and disturbed beta-catenin/Dkk1 histopathology comparable with glucocorticoid-induced osteoporosis condition. This study offers a productive insight into how UTX protects MSC from methylated histone-mediated osteogenesis repression in the development of glucocorticoid-induced osteoporosis


Bone & Joint Research
Vol. 3, Issue 9 | Pages 280 - 288
1 Sep 2014
Shimomura K Kanamoto T Kita K Akamine Y Nakamura N Mae T Yoshikawa H Nakata K

Objective. Excessive mechanical stress on synovial joints causes osteoarthritis (OA) and results in the production of prostaglandin E2 (PGE2), a key molecule in arthritis, by synovial fibroblasts. However, the relationship between arthritis-related molecules and mechanical stress is still unclear. The purpose of this study was to examine the synovial fibroblast response to cyclic mechanical stress using an in vitro osteoarthritis model. Method. Human synovial fibroblasts were cultured on collagen scaffolds to produce three-dimensional constructs. A cyclic compressive loading of 40 kPa at 0.5 Hz was applied to the constructs, with or without the administration of a cyclooxygenase-2 (COX-2) selective inhibitor or dexamethasone, and then the concentrations of PGE2, interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8 and COX-2 were measured. Results. The concentrations of PGE2, IL-6 and IL-8 in the loaded samples were significantly higher than those of unloaded samples; however, the concentrations of IL-1β and TNF-α were the same as the unloaded samples. After the administration of a COX-2 selective inhibitor, the increased concentration of PGE2 by cyclic compressive loading was impeded, but the concentrations of IL-6 and IL-8 remained high. With dexamethasone, upregulation of PGE2, IL-6 and IL-8 was suppressed. Conclusion. These results could be useful in revealing the molecular mechanism of mechanical stress in vivo for a better understanding of the pathology and therapy of OA. Cite this article: Bone Joint Res 2014;3:280–8


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed. Results. Using LA or GC, especially triamcinolone acetonide, a dilution of 1:100 resulted in only a moderate reduction of viability, while a dilution of 1:10 showed significantly fewer cell counts. TA and CA reduced viability significantly at a dilution of 1:2. Higher dilutions did not affect viability. Notably, HA showed no effects of cytotoxicity in all drug dilutions. Conclusion. The toxicity of common intra-articular injectable drugs, assessed by cell viability, is mainly dependent on the dilution of the drug being tested. LA are particularly toxic, whereas HA did not affect cell viability. Cite this article: P. Busse, C. Vater, M. Stiehler, J. Nowotny, P. Kasten, H. Bretschneider, S. B. Goodman, M. Gelinsky, S. Zwingenberger. Cytotoxicity of drugs injected into joints in orthopaedics. Bone Joint Res 2019;8:41–48. DOI: 10.1302/2046-3758.82.BJR-2018-0099.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 59 - 59
1 Mar 2021
Kou C Lian W Wang F
Full Access

Glucocorticoid excess is shown to deteriorate bone tissue integrity, increasing the risk of osteoporosis. Marrow adipogenesis at cost of osteogenesis is a prominent feature of this osteoporosis condition. Epigenetic pathway histone deacetylase (HDAC)-mediated histone acetylation regulates osteogenic activity and bone mass. This study is aimed to figure out what role of acetylated histone reader bromodomain-containing protein 4 (BRD4) did play in glucocorticoid-induced osteoporosis. Bone-marrow mesenchymal stem cells were incubated in osteogenic medium with or without 1 μM dexamethasone. Mineralized matrix and adipocyte formation were probed using von Kossa and Nile Red O staining, respectively. Osteogenic and adipogenic marker expression were quantified using RT-PCR. The binding of acetylated histone to promoter of transcription factors were detected using chromatin immunoprecipitation-PCR. Bone mineral density and microstructure in osteoporotic bone were quantified with microCT system. Glucocorticoid repressed osteogenic transcription factor Runx2 expression and mineralized matrix formation along with a low level of acetylated lysine 9 at histone 3 (H3K9ac), whereas BRD4 signaling and adipocytic formation were increased in cell cultures. BRD4 knockdown reversed the H3K9ac enrichment in Runx2 promoter and osteogenesis, but downregulated adipogenic differentiation. Silencing BRD4 attenuated H3K9ac occupancy in forkhead box P1 (Foxp1) relevant to lipid metabolism upon glucocorticoid stress. Foxp1 interference downregulated adipogenic activities of glucocorticoid-treated cells. In vivo, treatment with BRD4 inhibitor JQ-1 compromised the glucocorticoid-induced bone mineral density loss, spare trabecular structure, and fatty marrow, as well as improved biomechanical properties of bone tissue. Taken together, BRD4-mediated Foxp1 pathways drive mesenchymal stem cells shifting toward adipocytic cells rather than osteogenic cells to aggravates excessive marrow adipogenesis in the process of glucocorticoid-induced osteoporosis. Pharmacological inhibition of BRD4 signaling protects bone tissue from bone loss and fatty marrow in glucocorticoid-treated mice. This study conveys a new molecular insight into epigenetic regulation of osteogenesis and adipogenesis in osteoporotic skeleton and highlight the remedial effect of BRD4 inhibitor on glucocorticoid-induced bone loss


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 16 - 16
1 Dec 2020
Kontakis MG Schou J Hailer N
Full Access

Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood mononuclear cells (pbMNC) under different culture conditions, and how they compared to primary human osteoblasts. pbMNC were isolated from healthy adult volunteers by Ficoll density gradient centrifugation, and they were then cultured using media supplemented with 100nM Dexamethasone, 10mM sodium β-glycero phosphate and ascorbic acid (either 40mM or 0.05mM). For comparison, primary osteoblasts were isolated from the femoral heads of patients undergoing hip arthroplasty. After 4 weeks of culture, osteogenic activation was quantified with spectrometric measurement of alkalic phosphatase (ALP) and lactate dehydrogenase (LDH) levels. The extent of osteoid mineralization was measured with Alizarin red staining. We studied the effects of 1) varying cell concentration at seeding, 2) surface coating of culture wells with collagen and 3) high compared to low ascorbic acid (40mM and 0.05mM) media. Higher numbers of pbMNC (0.5–5.9 versus 0.062–0.25 million cells per well) at seeding resulted in a lower ALP/LDH-ratio (mean ± standard deviation), 0.39 ± 0.33 arbitrary units (AU) versus 1.36 ± 1.06 AU, but led to higher amount of osteoid production, 0.10 ± 0.06 versus 0.065 ± 0.02 AU, p < 0.05. Culture of pbMNC on collagen did not confer any difference in ALP/LDH-ratios, with 0.43 ± 0.3 AU for collagen-coated and 0.43 ± 0.41 AU for uncoated wells (p = 0.95), and we also observed no relevant difference in osteoid production (0.07 ± 0.01 AU for collagen-coated versus 0.1 ± 0.08 AU for uncoated wells, p = 0.28). Cultures of pbMNC on collagen in media supplemented with a higher concentration of ascorbic acid showed a 130% higher ALP/LDH-ratio when compared to cultures exposed to a lower ascorbic acid concentration (p < 0.05). Cultures with a low initial concentration of pbMNC (0.5 − 1 million cells) had no significantly different ALP/LDH-ratio when compared to primary human osteoblasts, but the cultures of pbMNC resulted in a 90% increase in osteoid mineralization when compared to primary human osteoblasts (p < 0.05). These findings indicate that progenitor cells derived from peripheral blood have a significant osteogenic potential, rendering them interesting candidates for seeding of scaffolds intended to fill critical sized bone defects. pbMNC produced almost double the amount of osteoid as primary osteoblasts. The isolation of pbMSC and COP is non-invasive and easy, and they might be seeded directly onto scaffolds without prior ex-vivo expansion, a question that we intend to pursue further


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 680 - 684
1 May 2008
Simon DWN Clarkin CE Das-Gupta V Rawlinson SCF Emery RJ Pitsillides AA

We examined cultured osteoblasts derived from paired samples from the greater tuberosity and acromion from eight patients with large chronic tears of the rotator cuff. We found that osteoblasts from the tuberosity had no apparent response to mechanical stimulation, whereas those derived from the acromion showed an increase in alkaline phosphatase activity and nitric oxide release which is normally a response of bone cells to mechanical strain. By contrast, we found that cells from both regions were able to respond to dexamethasone, a well-established promoter of osteoblastic differentiation, with the expected increase in alkaline phosphatase activity. Our findings indicate that the failure of repair of the rotator cuff may be due, at least in part, to a compromised capacity for mechanoadaptation within the greater tuberosity. It remains to be seen whether this apparent decrease in the sensitivity of bone cells to mechanical stimulation is the specific consequence of the reduced load-bearing history of the greater tuberosity in these patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 117 - 117
1 Dec 2020
Elsayed SAH Allen MJ
Full Access

Millions of patients each year suffer from challenging non-healing bone defects secondary to trauma or disease (e.g. cancer, osteoporosis or osteomyelitis). Tissue engineering approach to non-healing bone defects has been investigated over the past few decades in a search for a novel solution for critical size bone defects. The success of the tissue engineering approach relies on three main pillars, the right type of cells; and appropriate scaffold; and a biologically relevant biochemical/ biophysical stimuli. When it comes to cells the mesodermal origin of mesenchymal stem cells and its well demonstrated multipotentiality makes it an ideal option to be used in musculoskeletal regeneration. For the presented set of experimental assays, fully characterised (passage 3 to 5)ovine adipose-derived mesenchymal stems cells (Ad-MSC) were cultured either in growth medium (GM) consisting of Dulbecco's Modification of Eagle's Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum and 1% penicillin-streptomycin as a control or in osteogenic differentiation medium (DM), consisting of GM further supplemented with L- ascorbic acid (50 μg/ml), β-glycerophosphate (10 mM) and dexamethasone (100nM). Osteogenic differentiation was assessed biochemically by quantifying alkaline phosphatase (ALP) enzyme activity and alizarin red staining after 3, 7, 14 and 21 days in culture (where 1×105 cells/well were seeded in 24 well-plate, n=6/media type/ time point). Temporal patterns in osteogenic gene expression were quantified using real-time PCR for Runx-2, osteocalcin (OC), osteonectin (ON) and type 1 collagen (Col 1) at days 7, 15 and 21 (where 1×105 cells were seeded in T25 cell culture flasks for RNA extraction, n= 4 / gene/ media type/time point). The morphology of osteogenic cells was additionally evaluated by scanning electron microscopy (SEM) of cells seeded at low-density (1×102 cells) on glass coverslips for 2 weeks in GM or DM. The level of ALP activity of cells grown in osteogenic DM was significantly higher than the control growing in the standard growth medium (p ≤ 0.05) at days 3, 7 and 14. At 21 days there was a sharp drop in ALP values in the differentiating cells. Mineralisation, as evidenced by alizarin red staining, increased significantly by day 14 and then peaked at day 21. Quantitative real-time PCR confirmed early increases in Runx-2, Col 1 and osteonectin, peaking in the second week of culture, while osteocalcin peaked at 21 days of culture. Taken as a whole, these data indicate that ovine-MSCs exhibit a tightly defined pathway of initial proliferation and matrix maturation (up to 14 days), followed by terminal differentiation and mineralisation (days 14 to 21). SEM analysis confirmed the flattened, roughened appearance of these cells and abandoned extracellular matrix which resembled mature osteoblasts. Given the ready availability of adipose tissues, the use of Ad-MSCs as progenitors for bone tissue engineering applications is both feasible and reasonable. The data from this study indicate that Ad-MSCs follow a predictable pathway of differentiation that can be tracked using validated molecular and biochemical assays. Additional work is needed to confirm that these cells are osteogenic in vivo, and to identifying the best combination of scaffold materials and cell culture techniques (e.g. static versus dynamic) to accelerate or stimulate osteogenic differentiation for bone tissue engineering applications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 23 - 23
1 Jan 2019
Prokopovich P
Full Access

The efficient delivery of therapeutic molecules to the cartilage of joints is major obstacle in developing useful therapeutic interventions; hence, a targeted drug delivery system for this tissue is critical. We have overcome the challenge by developing a system that employs electrostatic attraction between the negatively charged constituents of cartilage and a positively charged polymer, poly-beta amino esters (PBAEs). We have demonstrated cartilage uptake of dexamethasone (DEX) covalently bound to the PBAE was doubled and retention in tissues prolonged compared to the equivalent dose of the commercial drug formulation. Moreover, no adverse effects on chondrocytes were found. Our data also show [1, 2] that PBAEs can bind not only healthy cartilage tissues but also enzymatically treated cartilage mimicking early stages of OA. Our PBAEs-prodrug technology's advantages are fourfold; the specificity and efficacy of its targeting mechanism for cartilage, the ease of its production and the low-cost nature of the delivery system


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 90 - 90
1 Nov 2018
Egan B Heard C Birchall J Mason D
Full Access

The AMPA/kainate glutamate receptor (GluR) antagonist NBQX reduced bone destruction when injected intra-articularly, in rat antigen induced arthritis (AIA) and is similarly protective in rodent models of osteoarthritis. NBQX reduced bone turnover in vivo and reduced mineralization in human primary osteoblasts (HOBs) in vitro. We are developing sustained release GluR antagonist delivery methods, to improve therapeutic effect. DNQX loaded Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were synthesized via double emulsion. DNQX loaded thermosetting hydrogels were synthesised by dissolving Pluronic-F127 (22% w/v) and Carbopol 934 (0.5% w/v) in dH. 2. O, homogenising with DNQX/NBQX and set in dialysis cassettes at 37˚C. Supernatants from nanoparticles and hydrogels suspended in PBS (37˚C) were analysed using high performance liquid chromatography to determine drug release. Y201 MSCs were differentiated to osteoblasts (DMEM+10% FBS, Dexamethasone, β-Glycerophosphate and Ascorbic acid-2-phosphate) in sustained presence/absence of NBQX (200µM) or DNQX (200 and 400µM). Alizarin red staining quantified mineralisation at 14 days. Nanoparticles encapsulated 2.5mM DNQX (encapsulation efficiency=22%) and released encapsulated drug over 4 weeks. Hydrogels released 2.5mM DNQX load over 24 hours in 37˚C PBS. Y201 alizarin red staining was significantly reduced by both DNQX (p<0.01) and NBQX (p<0.05), compared to untreated controls. PLGA nanoparticles and hydrogels revealed different sustained release profiles. Sustained treatment with GluR antagonists reduced mineralisation in Y201 derived osteoblasts, consistent with effects of NBQX in HOBs. Sustained release of NBQX and DNQX in nanoparticles and hydrogels may improve efficacy of AMPA/kainate GluR antagonists in reducing bone remodelling and enhancing their bone protective potential in the treatment of joint disease


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 129 - 133
1 Jan 2006
Lee SY Miwa M Sakai Y Kuroda R Niikura T Kurosaka M

We have investigated whether cells derived from haemarthrosis caused by injury to the anterior cruciate ligament could differentiate into the osteoblast lineage in vitro. Haemarthroses associated with anterior cruciate ligament injuries were aspirated and cultured. After treatment with β-glycerophosphate, ascorbic acid and dexamethasone or 1,25 (OH). 2. D. 3. , a significant increase in the activity of alkaline phosphatase was observed. Matrix mineralisation was demonstrated after 28 days and mRNA levels in osteoblast-related genes were enhanced. Our results suggest that the haemarthrosis induced by injury to the anterior cruciate ligament contains osteoprogenitor cells and is a potential alternative source for cell-based treatment in such injury


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 4 - 4
1 Apr 2018
Ziebart J Sellmann T Porath K Delenda B van Rienen U Bader R Köhling R
Full Access

Introduction. Migration of bone cells and precursor cells to the site of a bone defect can accelerate bone regeneration. Therefore, guidance of these cells by direct current (DC) is an interesting approach to improve implant ingrowth or fracture healing. To allow a better understanding of DC-induced directed migration, a specific stimulation chamber was established and the influence of DC on calcium channel expression in osteoblasts was investigated. Methods. Human osteoblasts were isolated from femoral heads of patients undergoing total hip arthroplasty after patient”s consent. The study was approved by the local ethical committee (AZ: 2010–10). Differentiation into osteoblasts was ensured by cultivation in standard cell culture medium enriched with β-glycerophosphate, ascorbic acid and dexamethasone. 2×10. 3. osteoblasts were seeded into custom-made chambers for DC field application. After 12 h DC was applied to chambers via Ag/AgCl electrodes set into separate reservoirs coupled to cell culture area by 2% agarose bridges in order to prevent cytotoxic impact of electrochemical reactions proceeding at the electrodes. Electric fields ranging from 150 to 450 V/m were applied to cells for 7 h. Several cell images were taken over time and used for evaluation of migration direction and speed with ImageJ software. Subsequently, cells were lysed in Trizol for RNA isolation and semiquantitative real-time polymerase chain reaction of voltage-gated calcium channels Cav1.4 and Cav3.2 as well as stretch-activated magnesium and calcium channel TRPM7 was performed. Results. Migration velocity of DC stimulated bone cells was 6.4 ± 2.1 µm/h whereas unstimulated control cells migrated significantly slower with a velocity of 3.6 ± 1.1 µm/h (p<0.001). No correlation between magnitude of electric field and migration velocity was found. Migration of osteoblasts was directed towards the anode during DC application while unstimulated cells migrated undirectedly. Gene expression analysis showed significant correlation of electric field strength and TRPM7 expression (p<0.01) appearing in increased TRPM7 expression after exposure to higher electric fields. Voltage-gated calcium channels Cav1.4 and Cav3.2 were not regulated by DC fields. Conclusion. A chamber for DC field application on human osteoblasts was established and migration velocity and direction was found to be influenced by DC fields. Regulation of selected calcium channels by DC was observed for stretch-activated channel TPRM7 that is known to be involved in osteoblast differentiation and migration induced by platelet-derived growth factor. Future studies will concentrate on investigation of involvement of specific calcium channels in osteoblast migration by using specific calcium channel inhibitors and calcium deprivation from cell culture medium


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 329 - 329
1 Jul 2014
Beckmann R Hartz C Tohidnezhad M Neuss-Stein S Ventura Ferreira M Rath B Tingart M Pries F Varoga D Pufe T
Full Access

Aim of the study was to evaluate if abrasion-arthroplasty (AAP) and abrasion-chondroplasty (ACP) leads to a release of mesenchymal stem cell (MSC) like cells from the bone marrow to the joint cavity where they probably differentiate into a chondrogenic phenotype. Introduction. Cartilage demage is a sever problem in our aging society. About 5 million people only in Germany are affected. Osteoathritis is a degeneration of cartilage caused by aging or traumata 50 % of the people over 40 have signs of osteoarthritis. But the ability of self-regeneration of cartilage is strongly limited. There are different approaches to therapy osteoathritic lesions. Arthroscopic treatment of OA includes bone marrow stimulation technique such as abrasion arthroplasty (AAP) and microfracturing (MF). Beside the support of chondrocyte progenitor cells the environment is also important for the commitment to chondrocytes. Therefore insulin-like growth factor-1 (IGF-1) and transforming growth factor beta-1 (TGF-β1) are important factors during the regeneration process. In the present study we characterised the heamarthrosis and the released cells after AAP and its ability to differentiate into the chondrocyte lineage. Material and Methods. Postoperative haemarthrosis was taken 5, 22 or 44 hours after surgery. 7.5 mg Dexamethasone (Corticosteroid) was administered into the knee joint to prevent postoperative inflammation. Mononuclear cells were isolated from haemarthrosis from the drainage bottle by ficoll density gradient centrifugation. The isolated cells were characterised using fluorescence-activated cell-sorting (FACS) analysis for characteristic markers of MSC such as CD 44, 73, 90, 105. After expanding cells were cultured in a pellet culture. After 3 weeks, histochemistry and immunohistochemistry against Sox9, collagen II and proteoglycan were performed. The release of IGF1, BMP4 and BMP7 was analysed in haemarthrosis serum by ELISA and Luminex technology. Results. The isolated cells after AAP are positive for the mesenchymal stem cell marker CD105, CD90, CD73, CD 44 and negative for the marker of hematopoetic stem cells CD 34. Isolated cells after ACP couldn't be expanded for further characterizations. The staining of the 3D-culture revealed a positive signal for the chondrogen transcription factor Sox9 and the expression of extracellular markerproteins like collagen type II and proteoglycan. Both surgery techniques, AAP and ACP provides a chondrogenic environment. We were able to detect IGF-1, TGFß, BMP4 and BMP7 in the haemarthrosis. Discussion. The benefit of abrasion arthroplasty surgery and microfracturing is controversial discussed because they do not consistently result in hyaline cartilage. But the opening of the bone marrow allows the release of monocytic cells which have the potential to differentiate into a chondrogenic phenotype. In 3D-culture these cells express Sox9 and a collagen proteoglycan rich matrix. The haemarthrosis provides also a cartilage-stimulating environment. We could detect IGF1, TGFβ, BMP4 and 7 which could enhance the commitment concerning differentiation of MSCs to a chondrogenic lineage concerning the production of cartilage specific extracellular matrix. Taken together our study provides the evidence for a therapeutic benefit of opening bone marrow in order to generate neocartilage after AAP


Summary. The findings demonstrate that culture expanded human mesenchymal stem cells (MSCs) incorporated and proliferated in clinically relevant cell scaffolds better than freshly isolated bone marrow mononucleated cells (MNCs); in fact, only in MSC cultures were cells present for longer term chondrogenic inductions. Introduction. The treatment of chondral defects poses a significant clinical problem and a variety of cell sources and techniques have been studied and practiced to regenerate cartilage. Preclinical and clinical evidence suggests that MSCs can help regenerate cartilage when transplanted into cartilage lesions. However, the uptake of MSCs for cell therapies is limited due to the need for their culture expansion to generate subsequent numbers for transplantation. An alternative is to use minimally manipulated MNCs, which avoids the costs and regulatory implications of culture expansion and would enable the treatment of cartilage defects in a one-step procedure. Therefore, this study has focused on comparing these two cell types within three different scaffolds that can currently be used as cell delivery systems. Methods. Culture expanded human MSCs and MNCs freshly isolated from bone marrow were seeded at a density of 50,000 cells in 3mm. 2. scaffolds of Chondro-Gide® (type I/III collagen), Alpha Chondro Shield® (polyglycolic acid) and Hyalofast™ (hyaluronic acid). The cell-seeded scaffolds were incubated for 2 hours to permit initial cell adhesion and then treated with or without chondrogenic inducers (100nM dexamethasone, 10ng/ml TGF-β1, 37.5µg/ml ascorbic acid and ITS-X in DMEM/10% serum) for 28 days at 37°C. The Cell incorporation, growth and viability was assessed using Live/Dead staining and confocal microscopy, along with histological stains of the sectioned scaffolds. Proteoglycan synthesis was measured using DMMB assay of glycosaminoglycan (GAG) into the harvested culture medium. Results. MSCs adhered to the scaffolds to a much greater extent than the MNCs. In fact, the low number of MNCs initially incorporated into the scaffolds diminished over time such that no viable MNCs were seen during long term cultures and in all cases. MSCs incorporated into the Chondro-Gide® scaffold better than into the Alpha Chondro Shield® or Hyalofast™, and during long term cultures the MSCs in Chondro-Gide® proliferated to become significantly greater in number than those in the other two scaffolds. There was no clear matrix deposition. However, the MSCs in Hyalofast™ were rounded in shape, which is consistent with the morphology of chondrocytes, in the presence of chondrogenic inducers only. Furthermore, a significantly greater level of GAG was detected in the medium harvested from Chondro-Gide® and Hyalofast™ cultures under chondrogenic conditions compared with non chondrogenic conditions. Discussion/Conclusion. This study has shown that human MSCs incorporated, adhered and proliferated better in clinically utilised cell scaffolds compared to MNCs, enabling the induction of chondrogenesis in the longer term. Freshly isolated MNCs from bone marrow contain only 0.01–0.001% of MSCs in addition to non-adherent cell types, e.g. hematopoietic cells, which may account for their low cellular incorporation and decreased cell proliferation in the scaffolds. This outcome for MNCs may be improved using prospective MSC isolation techniques, where in vivo studies are also required to properly examine the chondrogenic potential. Nonetheless, our initial work suggests that culture expanded MSCs are a better option than minimally manipulated cells for cartilage repair


Summary Statement. One of the most challenging problems in osteogenic 3D-tissue engineering is, to quantify the amount of new hydroxylapatite deposition. . 18. F-NaF-Labeling is a new, high-sensitive method to proof and quantify the osteogenic potential of hMSCs in an in vitro 3D-model. Introduction. 18. F-labeled sodium fluorine was the first widely used agent for skeletal scintigraphy in the 1960s. . 18. F-NaF is rapidly exchanged for hydroxylgroups of the hydroxylapatite, covalently binding to the surface of new bone, which results in the formation of fluoroapatite. Three dimensional scaffolds are used to favor osteogenic differentiation of precursor cells. Cell-loaded scaffolds are investigated for their healing potential of critical size bone defects. Assessing the osteogenic potential of MSCs in 3D-in vitro cultures is of major interest in tissue engineering in order to maximise bone formation in vitro and in vivo. One of the most challenging problems is, to quantify directly the amount of new hydroxylapatite deposition without destroying the evaluated cell-loaded scaffold. Within this abstract, we present a novel, non-destructive, high-sensitive method to quantify the amount of local hydroxylapatite deposition in 3D-cultures using . 18. F-NaF. Material & Methods. hMSCs (n=5) were seeded in duplicates on highly porous collagen I/III scaffolds (circular, 8 × 2mm, 550.000 cells/scaffold). Osteogenic differentiation of the MSCs was established with DMEM low glucose + 10% FCS + 1% P/S + 10mM beta-glycerol phosphate + 173µM ascorbicacid-2-phosphate + 100nM dexamethasone. As control the same media without osteogenic supplements was used. Cultures were kept at 37°C and 5% CO. 2. , media was changed every 2 days. After 21 days 40 MBq . 18. F-NaF in 1ml 0,9%NaCl was added to each scaffold, placed in a 2ml tube. After 2 hours of incubation, scaffolds were washed in aqua dest. (3x). To measure the bound activity, two methods were used. First the scaffolds were placed in an activity-meter (dose-calibrator) to assess the amount of bound radioactive tracer in MBq. Then, all scaffolds were placed in a µ-PET-scanner also for quantification of the bound activity (Bq/ml) and for 3D-imaging. To quantify the absolute calcium content, the 8mm scaffolds were lysed and analyzed by inductively coupled plasma massspectrometry (ICP-MS). In advance a DNA-Pico-Green assay was performed and all results were normalised to the DNA-amount of each scaffold. Qualitative proof for the presence of hydroxylapatite was made by alizarin red staining as well as by scanning electron microscopy followed by energy dispersive X-ray-spectroscopy (SEM/EDX) of the histology sections (6µm) from the paraffin embedded duplicate scaffolds. Results. The . 18. F activity evaluated by µ-PET scan and the results from the activity meter showed a statistically significant tracer uptake in the osteogenic induced group when compared to controls; Mann-Whitney-U Test: p=0,008 (µ-PET), p=0,008 (activity-meter). Spearman-Correlation analysis showed a statistical significant high correlation for the two methods (correlation-coefficient 0,712; p = 0,019). Results from ICP-MS revealed significant amounts of calcium within the osteogenic group samples while within the control group was no calcium detection at all. The alizarin red stained slides also showed a positive stain for the osteogenic group, within the control group there was positive stain. SEM/EDX confirmed the presence of calcium and phosphorus for the osteogenic group. Conclusion. Measurement of . 18. F-NaF uptake is a high-sensitive method to proof and quantify the osteogenic potential of hMSCs in a collagen scaffold based three dimensional tissue engineering model