header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DEVELOPING AND TESTING NOVEL DELIVERY SYSTEMS FOR GLUTAMATE RECEPTOR ANTAGONISTS FOR THE TREATMENT OF JOINT PAIN AND DISEASE

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

The AMPA/kainate glutamate receptor (GluR) antagonist NBQX reduced bone destruction when injected intra-articularly, in rat antigen induced arthritis (AIA) and is similarly protective in rodent models of osteoarthritis. NBQX reduced bone turnover in vivo and reduced mineralization in human primary osteoblasts (HOBs) in vitro. We are developing sustained release GluR antagonist delivery methods, to improve therapeutic effect. DNQX loaded Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were synthesized via double emulsion. DNQX loaded thermosetting hydrogels were synthesised by dissolving Pluronic-F127 (22% w/v) and Carbopol 934 (0.5% w/v) in dH2O, homogenising with DNQX/NBQX and set in dialysis cassettes at 37˚C. Supernatants from nanoparticles and hydrogels suspended in PBS (37˚C) were analysed using high performance liquid chromatography to determine drug release. Y201 MSCs were differentiated to osteoblasts (DMEM+10% FBS, Dexamethasone, β-Glycerophosphate and Ascorbic acid-2-phosphate) in sustained presence/absence of NBQX (200µM) or DNQX (200 and 400µM). Alizarin red staining quantified mineralisation at 14 days. Nanoparticles encapsulated 2.5mM DNQX (encapsulation efficiency=22%) and released encapsulated drug over 4 weeks. Hydrogels released 2.5mM DNQX load over 24 hours in 37˚C PBS. Y201 alizarin red staining was significantly reduced by both DNQX (p<0.01) and NBQX (p<0.05), compared to untreated controls. PLGA nanoparticles and hydrogels revealed different sustained release profiles. Sustained treatment with GluR antagonists reduced mineralisation in Y201 derived osteoblasts, consistent with effects of NBQX in HOBs. Sustained release of NBQX and DNQX in nanoparticles and hydrogels may improve efficacy of AMPA/kainate GluR antagonists in reducing bone remodelling and enhancing their bone protective potential in the treatment of joint disease.


Email: